Formulation of Poloxamers for Drug Delivery
<p>Configurations of Pluronic<sup>®</sup> F127 (EO<sub>100</sub>PO<sub>65</sub>EO<sub>100</sub>) and L64 (EO<sub>13</sub>PO<sub>30</sub>EO<sub>13</sub>) micelles determined from coarse-grained implicit solvent simulations. The micelle core is made up of the PPO blocks, while the corona is formed from the PEO blocks. Reprinted with permission from [<a href="#B55-jfb-09-00011" class="html-bibr">55</a>]. Copyright 2006 American Chemical Society.</p> "> Figure 2
<p>Micellization boundaries for aqueous Pluronic<sup>®</sup> P105 (EO<sub>27</sub>PO<sub>56</sub>EO<sub>27</sub>) solutions with added polar organic solvents. Micelles form at poloxamer concentrations and temperatures above the lines. Note that the micellization boundaries shift depending on the quality of the solvent. Data obtained from [<a href="#B69-jfb-09-00011" class="html-bibr">69</a>].</p> "> Figure 3
<p>Ternary isothermal phase diagram of Pluronic<sup>®</sup> P84 (EO<sub>19</sub>PO<sub>43</sub>EO<sub>19</sub>) in water and <span class="html-italic">p</span>-xylene at 25 °C. l<sub>1</sub>, H<sub>1</sub>, V<sub>1</sub>, Lα, V<sub>2</sub>, H<sub>2</sub> and l<sub>2</sub> indicate normal (“oil-in-water”) micellar cubic, normal hexagonal, normal bicontinuous cubic, lamellar, reverse (“water-in-oil”) bicontinuous cubic, reverse hexagonal and reverse micellar lyotropic liquid crystalline phases, respectively. L<sub>1</sub> and L<sub>2</sub> indicate normal micellar and reverse micellar solutions. Reprinted with permission from [<a href="#B47-jfb-09-00011" class="html-bibr">47</a>]. Copyright 1998 American Chemical Society.</p> "> Figure 4
<p>The amount of hydrophobic fenofibrate, a cholesterol reducer, solubilized in aqueous poloxamer solution increases linearly with block copolymer concentration. The fenofibrate was added to micellar aqueous poloxamer solutions and allowed to equilibrate for 24 h at 25 °C. Pluronic<sup>®</sup> PE 9200 (EO<sub>8</sub>PO<sub>47</sub>EO<sub>8</sub>), 10300 (EO<sub>16</sub>PO<sub>56</sub>EO<sub>16</sub>), 10400 (EO<sub>25</sub>PO<sub>56</sub>EO<sub>25</sub>) and 10500 (EO<sub>37</sub>PO<sub>56</sub>EO<sub>37</sub>). Reprinted from [<a href="#B92-jfb-09-00011" class="html-bibr">92</a>], Copyright 2016, with permission from Elsevier.</p> "> Figure 5
<p>ITC curves generated from ITC experiments for the titration of different poloxamers ((<b>a</b>) Pluronic F127; (<b>b</b>) Pluronic P84; (<b>c</b>) Pluronic F108) into water (empty symbols) and aqueous 0.004 mM oxcarbazepine (OXC) solutions (filled symbols) at 37 °C. OXC is used to reduce the frequency of epileptic occurrences. The micellization process was endothermic for all poloxamers in both solutions. The presence of OXC made the micellization of Pluronic F127 (EO<sub>100</sub>PO<sub>65</sub>EO<sub>100</sub>) and F108 (EO<sub>132</sub>PO<sub>50</sub>EO<sub>132</sub>) less endothermic due to its interaction with the long PEO blocks. The micellization process was more endothermic in Pluronic<sup>®</sup> P84 (EO<sub>19</sub>PO<sub>43</sub>EO<sub>19</sub>) solutions, owing to strong hydrophobic interactions with the PPO block. Reprinted from [<a href="#B93-jfb-09-00011" class="html-bibr">93</a>], Copyright 2016, with permission from Elsevier.</p> "> Figure 6
<p>Dynamic light scattering measurement of aqueous 5.26 wt % F127-drug systems: no drug (squares), 0.1 wt % ibuprofen (circles), 0.1 wt % aspirin (up-triangles) and 0.1 wt % erythromycin (down-triangles). The drug was added to micellar F127 solutions by vigorous mixing at temperatures between 40 and 60 °C. The average hydrodynamic radius (R<sub>H</sub>) of the micelles decreased sharply with temperature at first. Aspirin, the least hydrophobic drug, led to the formation of the largest and most polydisperse micelles. The distribution of relaxation times, which were calculated from the autocorrelation scattering functions from the DLS measurement, is shown in the inset: no drugs (solid line), 0.1 wt % ibuprofen (circle-line), 0.1 wt % aspirin (square-line) and 0.1 wt % erythromycin (triangle-line). Wide distributions indicate high polydispersity. Ibuprofen, the most hydrophobic of the evaluated drugs, produced the most compact structures, while it resulted in the least polydisperse micelles. Reprinted with permission from [<a href="#B99-jfb-09-00011" class="html-bibr">99</a>]. Copyright 2013 American Chemical Society.</p> "> Figure 7
<p>Stern–Volmer plots for (<b>a</b>) ERY-F127, where ERY is erythrosine, and (<b>b</b>) ERYBUT-F127, where ERYBUT is a butylated erythrosine ester derivative. Fo and F represent the fluorescence intensity of the photosensitizer in the absence and presence, respectively, of iodide, a water-soluble quencher. The samples were prepared by the ethanol thin film hydration method; micelles were re-dispersed by stirring with water at 60 °C for 8 h. In (<b>b</b>), two populations are observed. “Κ<sub>SV1</sub>” and “Κ<sub>SV2</sub>” correspond to ERYBUT located near the PEO (corona) and PPO (core) regions, respectively. Reprinted from [<a href="#B112-jfb-09-00011" class="html-bibr">112</a>]. Copyright 2016 Wiley.</p> "> Figure 8
<p>Preparation of kinetically-frozen surfactant-stripped drug-loaded nanoparticles. The process is initiated by dissolving the desired active ingredient in 10% <span class="html-italic">w</span>/<span class="html-italic">v</span> of Pluronic<sup>®</sup> F127 (EO<sub>100</sub>PO<sub>65</sub>EO<sub>100</sub>) to produce drug-loaded micelles. As the temperature is decreased below the critical micellization temperature (to a temperature of 4 °C in this example), a majority of the self-assembled poloxamer chains dissociate away as unimers. The unimers are dialyzed out of the system, leaving behind poloxamer-stabilized nanoparticles [<a href="#B142-jfb-09-00011" class="html-bibr">142</a>].</p> ">
Abstract
:1. Introduction
2. Poloxamer Self-Assembly in Aqueous Solutions
3. Preparation of Poloxamer-Based Drug Delivery Formulations
3.1. Direct Solubilization of Actives
3.2. Thin Film Hydration
3.3. Temperature-Induced Emulsification
3.4. Solvent Displacement
3.5. Kinetically Frozen Micelles
4. Conclusions and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Moghimi, S.M.; Hunter, A.C. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol. 2000, 18, 412–420. [Google Scholar] [CrossRef]
- Roy, D.; Cambre, J.N.; Sumerlin, B.S. Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 2010, 35, 278–301. [Google Scholar] [CrossRef]
- Herzberger, J.; Niederer, K.; Pohlit, H.; Seiwert, J.; Worm, M.; Wurm, F.R.; Frey, H. Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chem. Rev. 2016, 116, 2170–2243. [Google Scholar] [CrossRef] [PubMed]
- Bodratti, A.M.; Sarkar, B.; Alexandridis, P. Adsorption of poly(ethylene oxide)-containing amphiphilic polymers on solid-liquid interfaces: Fundamentals and applications. Adv. Colloid Interface Sci. 2017, 244, 132–163. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, B.; Venugopal, V.; Bodratti, A.M.; Tsianou, M.; Alexandridis, P. Nanoparticle surface modification by amphiphilic polymers in aqueous media: Role of polar organic solvents. J. Colloid Interface Sci. 2013, 397, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Alexandridis, P. Physicochemical aspects of drug delivery and release from polymer-based colloids. Curr. Opin. Colloid Interface Sci. 2000, 5, 132–143. [Google Scholar] [CrossRef]
- Alexandridis, P. Gold Nanoparticle Synthesis, Morphology Control, and Stabilization Facilitated by Functional Polymers. Chem. Eng. Technol. 2011, 34, 15–28. [Google Scholar] [CrossRef]
- Agnely, F.; Djedour, A.; Bochot, A.; Grossiord, J.L. Properties of various thermoassociating polymers: Pharmaceutical and cosmetic applications. J. Drug Deliv. Sci. Technol. 2006, 16, 3–10. [Google Scholar] [CrossRef]
- Tadros, T.F. Viscoelastic properties of sterically stabilised emulsions and their stability. Adv. Colloid Interface Sci. 2015, 222, 692–708. [Google Scholar] [CrossRef] [PubMed]
- Tadros, T.F. Interfacial Phenomena and Colloid Stability—Industrial Applications; De Gruyter: Berlin, Germany, 2015; Volume 2. [Google Scholar]
- Chang, Y.; Chu, W.-L.; Chen, W.-Y.; Zheng, J.; Liu, L.; Ruaan, R.-C.; Higuchi, A. A systematic SPR study of human plasma protein adsorption behavior on the controlled surface packing of self-assembled poly(ethylene oxide) triblock copolymer surfaces. J. Biomed. Mater. Res. Part A 2010, 93, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Akash, M.S.H.; Rehman, K. Recent progress in biomedical applications of Pluronic (PF127): Pharmaceutical perspectives. J. Control. Release 2015, 209, 120–138. [Google Scholar] [CrossRef] [PubMed]
- Jeong, B.; Kim, S.W.; Bae, Y.H. Thermosensitive sol–gel reversible hydrogels. Adv. Drug Deliv. Rev. 2012, 64, 154–162. [Google Scholar] [CrossRef]
- Moon, H.J.; Ko, D.Y.; Park, M.H.; Joo, M.K.; Jeong, B. Temperature-responsive compounds as in situ gelling biomedical materials. Chem. Soc. Rev. 2012, 41, 4860–4883. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Ding, J. Injectable hydrogels as unique biomedical materials. Chem. Soc. Rev. 2008, 37, 1473–1481. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Qi, T.; Wei, X.; Qu, Y.; Wu, Q.; Luo, F.; Qian, Z. Thermosensitive Polymeric Hydrogels As Drug Delivery Systems. Curr. Med. Chem. 2013, 20, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Duttagupta, A.S.; Chaudhary, H.M.; Jadhav, K.R.; Kadam, V.J. Cubosomes: Innovative Nanostructures for Drug Delivery. Curr. Drug Deliv. 2016, 13, 482–493. [Google Scholar] [CrossRef] [PubMed]
- Chiappetta, D.A.; Sosnik, A. Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. Eur. J. Pharm. Biopharm. 2007, 66, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Tanbour, R.; Martins, A.M.; Pitt, W.G.; Husseini, G.A. Drug Delivery Systems Based on Polymeric Micelles and Ultrasound: A Review. Curr. Pharm. Des. 2016, 22, 2796–2807. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yang, P.; Ma, H.; Yin, W.; Wu, X.; Wang, H.; Xu, D.; Zhang, X. Amphiphilic block copolymers-based mixed micelles for noninvasive drug delivery. Drug Deliv. 2016, 23, 3063–3071. [Google Scholar] [CrossRef] [PubMed]
- Almeida, H.; Amaral, M.H.; Lobao, P.; Sousa Lobo, J.M. Applications of poloxamers in ophthalmic pharmaceutical formulations: An overview. Expert Opin. Drug Deliv. 2013, 10, 1223–1237. [Google Scholar] [CrossRef] [PubMed]
- Bromberg, L. Polymeric micelles in oral chemotherapy. J. Control. Release 2008, 128, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Garg, T.; Rath, G.; Murthy, R.S.R.; Goyal, A.K. Surfactant-based drug delivery systems for treating drug-resistant lung cancer. Drug Deliv. 2016, 23, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Kabanov, A.; Zhu, J.; Alakhoy, V. Pluronic block copolymers for gene delivery. Adv. Genet. 2005, 53, 231–261. [Google Scholar] [PubMed]
- Kabanov, A.V.; Batrakova, E.V.; Alakhov, V.Y. Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J. Control. Release 2002, 82, 189–212. [Google Scholar] [CrossRef]
- Alakhova, D.Y.; Kabanov, A.V. Pluronics and MDR Reversal: An Update. Mol. Pharm. 2014, 11, 2566–2578. [Google Scholar] [CrossRef] [PubMed]
- Batrakova, E.V.; Kabanov, A.V. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release 2008, 130, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Kunjachan, S.; Rychlik, B.; Storm, G.; Kiessling, F.; Lammers, T. Multidrug resistance: Physiological principles and nanomedical solutions. Adv. Drug Deliv. Rev. 2013, 65, 1852–1865. [Google Scholar] [CrossRef] [PubMed]
- Torrice, M. Does Nanomedicine Have a Delivery Problem? ACS Cent. Sci. 2016, 2, 434–437. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, M.; Betts, D.; Suh, A.; Bui, K.; Kim, L.; Cho, H. Hydrogel-Based Drug Delivery Systems for Poorly Water-Soluble Drugs. Molecules 2015, 20, 20397–20408. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.W.; Lee, H.; Kim, J.Y.; Koo, E.J.; Oh, K.S.; Yuk, S.H. Pluronic-Based Core/Shell Nanoparticles for Drug Delivery and Diagnosis. Curr. Med. Chem. 2013, 20, 3488–3499. [Google Scholar] [CrossRef] [PubMed]
- Shubhra, Q.T.H.; Toth, J.; Gyenis, J.; Feczko, T. Poloxamers for Surface Modification of Hydrophobic Drug Carriers and Their Effects on Drug Delivery. Polym. Rev. 2014, 54, 112–138. [Google Scholar] [CrossRef]
- Biswas, S.; Kumari, P.; Lakhani, P.M.; Ghosh, B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur. J. Pharm. Sci. 2016, 83, 184–202. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; He, C.; Tian, H.; Ding, J.; Hsiao, B.S.; Chu, B.; Chen, X. Polymeric nanostructured materials for biomedical applications. Prog. Polym. Sci. 2016, 60, 86–128. [Google Scholar] [CrossRef]
- Vijayan, V.M.; Muthu, J. Polymeric nanocarriers for cancer theranostics. Polym. Adv. Technol. 2017, 28, 1572–1582. [Google Scholar] [CrossRef]
- Paik, B.A.; Mane, S.R.; Jia, X.; Kiick, K.L. Responsive hybrid (poly)peptide-polymer conjugates. J. Mater. Chem. B 2017, 5, 8274–8288. [Google Scholar] [CrossRef]
- Barreiro-Iglesias, R.; Bromberg, L.; Temchenko, M.; Hatton, T.A.; Concheiro, A.; Alvarez-Lorenzo, C. Solubilization and stabilization of camptothecin in micellar solutions of pluronic-g-poly(acrylic acid) copolymers. J. Control. Release 2004, 97, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Bromberg, L. Self-Assembly in Aqueous Solutions of Polyether-Modified Poly(acrylic acid). Langmuir 1998, 14, 5806–5812. [Google Scholar] [CrossRef]
- Bromberg, L.; Temchenko, M.; Hatton, T.A. Dually Responsive Microgels from Polyether-Modified Poly(acrylic acid): Swelling and Drug Loading. Langmuir 2002, 18, 4944–4952. [Google Scholar] [CrossRef]
- Alexandridis, P.; Hatton, T.A. Poly(ethylene oxide)-poly(propylene oxide )-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: Thermodynamics, structure, dynamics, and modeling. Colloids Surf. A Physicochem. Eng. Asp. 1994, 96, 1–46. [Google Scholar] [CrossRef]
- Alexandridis, P. Poly(ethylene oxide)/poly(propylene oxide) block copolymer surfactants. Curr. Opin. Colloid Interface Sci. 1997, 2, 478–489. [Google Scholar] [CrossRef]
- Innocenzi, P.; Malfatti, L.; Soler-Illia, G.J.A.A. Hierarchical Mesoporous Films: From Self-Assembly to Porosity with Different Length Scales. Chem. Mater. 2011, 23, 2501–2509. [Google Scholar] [CrossRef]
- Alexandridis, P.; Zhou, D.; Khan, A. Lyotropic Liquid Crystallinity in Amphiphilic Block Copolymers: Temperature Effects on Phase Behavior and Structure for Poly(ethylene oxide)-β-poly(propylene oxide)-b-poly(ethylene oxide) Copolymers of Different Composition. Langmuir 1996, 12, 2690–2700. [Google Scholar] [CrossRef]
- Wanka, G.; Hoffmann, H.; Ulbricht, W. Phase Diagrams and Aggregation Behavior of Poly(oxyethylene)-Poly(oxypropylene)-Poly(oxyethylene) Triblock Copolymers in Aqueous Solutions. Macromolecules 1994, 27, 4145–4159. [Google Scholar] [CrossRef]
- Alexandridis, P.; Olsson, U.; Lindman, B. Self-Assembly of Amphiphilic Block Copolymers: The (EO)13(PO)30(EO)13-Water-p-Xylene System. Macromolecules 1995, 28, 7700–7710. [Google Scholar] [CrossRef]
- Holmqvist, P.; Alexandridis, P.; Lindman, B. Modification of the Microstructure in Poloxamer Block Copolymer—Water—“Oil” Systems by Varying the “Oil” Type. Macromolecules 1997, 30, 6788–6797. [Google Scholar] [CrossRef]
- Alexandridis, P.; Olsson, U.; Lindman, B. A Record Nine Different Phases (Four Cubic, Two Hexagonal, and One Lamellar Lyotropic Liquid Crystalline and Two Micellar Solutions) in a Ternary Isothermal System of an Amphiphilic Block Copolymer and Selective Solvents (Water and Oil). Langmuir 1998, 14, 2627–2638. [Google Scholar] [CrossRef]
- Linse, P. Micellization of poly(ethylene oxide)-poly(propylene oxide) block copolymers in aqueous solution. Macromolecules 1993, 26, 4437–4449. [Google Scholar] [CrossRef]
- Linse, P.; Malmsten, M. Temperature-dependent micellization in aqueous block copolymer solutions. Macromolecules 1992, 25, 5434–5439. [Google Scholar] [CrossRef]
- Heo, M.-Y.; Piao, Z.-Z.; Kim, T.-W.; Cao, Q.-R.; Kim, A.; Lee, B.-J. Effect of solubilizing and microemulsifying excipients in polyethylene glycol 6000 solid dispersion on enhanced dissolution and bioavailability of ketoconazole. Arch. Pharm. Res. 2005, 28, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Kositza, M.J.; Bohne, C.; Alexandridis, P.; Hatton, T.A.; Holzwarth, J.F. Dynamics of Micro- and Macrophase Separation of Amphiphilic Block-Copolymers in Aqueous Solution. Macromolecules 1999, 32, 5539–5551. [Google Scholar] [CrossRef]
- Alexandridis, P.; Athanassiou, V.; Fukuda, S.; Hatton, T.A. Surface Activity of Poly(ethylene oxide)-block-Poly(propylene oxide)-block-Poly(ethylene oxide) Copolymers. Langmuir 1994, 10, 2604–2612. [Google Scholar] [CrossRef]
- Alexandridis, P.; Holzwarth, J.F.; Hatton, T.A. Micellization of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymers in Aqueous Solutions: Thermodynamics of Copolymer Association. Macromolecules 1994, 27, 2414–2425. [Google Scholar] [CrossRef]
- Mortensen, K. Phase Behaviour of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock-Copolymer Dissolved in Water. Europhys. Lett. 1992, 19. [Google Scholar] [CrossRef]
- Bedrov, D.; Ayyagari, C.; Smith, G.D. Multiscale Modeling of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymer Micelles in Aqueous Solution. J. Chem. Theory Comput. 2006, 2, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Nivaggioli, T.; Alexandridis, P.; Hatton, T.A.; Yekta, A.; Winnik, M.A. Fluorescence Probe Studies of Pluronic Copolymer Solutions as a Function of Temperature. Langmuir 1995, 11, 730–737. [Google Scholar] [CrossRef]
- Alexandridis, P.; Nivaggioli, T.; Hatton, T.A. Temperature Effects on Structural Properties of Pluronic P104 and F108 PEO-PPO-PEO Block Copolymer Solutions. Langmuir 1995, 11, 1468–1476. [Google Scholar] [CrossRef]
- Yang, L.; Alexandridis, P.; Steytler, D.C.; Kositza, M.J.; Holzwarth, J.F. Small-Angle Neutron Scattering Investigation of the Temperature-Dependent Aggregation Behavior of the Block Copolymer Pluronic L64 in Aqueous Solution. Langmuir 2000, 16, 8555–8561. [Google Scholar] [CrossRef]
- Schillen, K.; Brown, W.; Johnsen, R.M. Micellar Sphere-to-Rod Transition in an Aqueous Triblock Copolymer System. A Dynamic Light Scattering Study of Translational and Rotational Diffusion. Macromolecules 1994, 27, 4825–4832. [Google Scholar] [CrossRef]
- King, S.M.; Heenan, R.K.; Cloke, V.M.; Washington, C. Neutron Scattering from a Poly(oxyethylene)-Poly(oxypropylene)-Poly(oxyethylene) Copolymer in Dilute Aqueous Solution under Shear Flow. Macromolecules 1997, 30, 6215–6222. [Google Scholar] [CrossRef]
- Mortensen, K.; Pedersen, J.S. Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution. Macromolecules 1993, 26, 805–812. [Google Scholar] [CrossRef]
- Yang, L.; Alexandridis, P. Polyoxyalkylene Block Copolymers in Formamide-Water Mixed Solvents: Micelle Formation and Structure Studied by Small-Angle Neutron Scattering. Langmuir 2000, 16, 4819–4829. [Google Scholar] [CrossRef]
- Alexandridis, P.; Yang, L. SANS Investigation of Polyether Block Copolymer Micelle Structure in Mixed Solvents of Water and Formamide, Ethanol, or Glycerol. Macromolecules 2000, 33, 5574–5587. [Google Scholar] [CrossRef]
- Kaizu, K.; Alexandridis, P. Glucose-induced sphere to ellipsoid transition of polyoxyethylene-polyoxypropylene block copolymer micelles in aqueous solutions. Colloids Surf. A Physicochem. Eng. Asp. 2015, 480, 203–213. [Google Scholar] [CrossRef]
- Armstrong, J.; Chowdhry, B.; Mitchell, J.; Beezer, A.; Leharne, S. Effect of Cosolvents and Cosolutes upon Aggregation Transitions in Aqueous Solutions of the Poloxamer F87 (Poloxamer P237): A High Sensitivity Differential Scanning Calorimetry Study. J. Phys. Chem. 1996, 100, 1738–1745. [Google Scholar] [CrossRef]
- Sarkar, B.; Ravi, V.; Alexandridis, P. Micellization of amphiphilic block copolymers in binary and ternary solvent mixtures. J. Colloid Interface Sci. 2013, 390, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Alexandridis, P.; Athanassiou, V.; Hatton, T.A. Pluronic-P105 PEO-PPO-PEO Block Copolymer in Aqueous Urea Solutions: Micelle Formation, Structure, and Microenvironment. Langmuir 1995, 11, 2442–2450. [Google Scholar] [CrossRef]
- Alexandridis, P.; Holzwarth, J.F. Differential Scanning Calorimetry Investigation of the Effect of Salts on Aqueous Solution Properties of an Amphiphilic Block Copolymer (Poloxamer). Langmuir 1997, 13, 6074–6082. [Google Scholar] [CrossRef]
- Kaizu, K.; Alexandridis, P. Micellization of polyoxyethylene-polyoxypropylene block copolymers in aqueous polyol solutions. J. Mol. Liquids 2015, 210, 20–28. [Google Scholar] [CrossRef]
- Artzner, F.; Geiger, S.; Olivier, A.; Allais, C.; Finet, S.; Agnely, F. Interactions between Poloxamers in Aqueous Solutions: Micellization and Gelation Studied by Differential Scanning Calorimetry, Small Angle X-ray Scattering, and Rheology. Langmuir 2007, 23, 5085–5092. [Google Scholar] [CrossRef] [PubMed]
- Cabana, A.; Aı̈t-Kadi, A.; Juhász, J. Study of the Gelation Process of Polyethylene Oxide-polypropylene Oxide-polyethylene Oxide Copolymer (Poloxamer 407) Aqueous Solutions. J. Colloid Interface Sci. 1997, 190, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Pozzo, D.C.; Hollabaugh, K.R.; Walker, L.M. Rheology and phase behavior of copolymer-templated nanocomposite materials. J. Rheol. 2005, 49, 759–782. [Google Scholar] [CrossRef]
- Svensson, B.; Olsson, U.; Alexandridis, P.; Mortensen, K. A SANS Investigation of Reverse (Water-in-Oil) Micelles of Amphiphilic Block Copolymers. Macromolecules 1999, 32, 6725–6733. [Google Scholar] [CrossRef]
- Svensson, B.; Alexandridis, P.; Olsson, U. Self-Assembly of a Poly(ethylene oxide)/Poly(propylene oxide) Block Copolymer (Pluronic P104, (EO)27(PO)61(EO)27) in the Presence of Water and Xylene. J. Phys. Chem. B 1998, 102, 7541–7548. [Google Scholar] [CrossRef]
- Alexandridis, P.; Olsson, U.; Lindman, B. Phase Behavior of Amphiphilic Block Copolymers in Water-Oil Mixtures: The Pluronic 25R4-Water-p-Xylene System. J. Phys. Chem. 1996, 100, 280–288. [Google Scholar] [CrossRef]
- Ivanova, R.; Lindman, B.; Alexandridis, P. Modification of the lyotropic liquid crystalline microstructure of amphiphilic block copolymers in the presence of cosolvents. Adv. Colloid Interface Sci. 2001, 89, 351–382. [Google Scholar] [CrossRef]
- Sarkar, B.; Lakshmichand, J.; Alexandridis, P. Self-Assembly of Amphiphilic Block Copolymers in Ternary Solvent Mixtures: Lyotropic Liquid Crystalline Phase Behavior and Structure. Macromol. Chem. Phys. 2012, 213, 2514–2528. [Google Scholar] [CrossRef]
- Alexandridis, P. Structural Polymorphism of Poly(ethylene oxide)-Poly(propylene oxide) Block Copolymers in Nonaqueous Polar Solvents. Macromolecules 1998, 31, 6935–6942. [Google Scholar] [CrossRef]
- Couderc, S.; Li, Y.; Bloor, D.M.; Holzwarth, J.F.; Wyn-Jones, E. Interaction between the Nonionic Surfactant Hexaethylene Glycol Mono-n-dodecyl Ether (C12EO6) and the Surface Active Nonionic ABA Block Copolymer Pluronic F127 (EO97PO69EO97)Formation of Mixed Micelles Studied Using Isothermal Titration Calorimetry and Differential Scanning Calorimetry. Langmuir 2001, 17, 4818–4824. [Google Scholar]
- Nambam, J.S.; Philip, J. Effects of Interaction of Ionic and Nonionic Surfactants on Self-Assembly of PEO-PPO-PEO Triblock Copolymer in Aqueous Solution. J. Phys. Chem. B 2012, 116, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.T.; Bronich, T.K.; Kabanov, A.V. Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic® block copolymers. J. Control. Release 2004, 94, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Alexandridis, P.; Olsson, U.; Lindman, B. Structural Polymorphism of Amphiphilic Copolymers: Six Lyotropic Liquid Crystalline and Two Solution Phases in a Poly(oxybutylene)-β-poly(oxyethylene)-Water-Xylene System. Langmuir 1997, 13, 23–34. [Google Scholar] [CrossRef]
- Kaizu, K.; Alexandridis, P. Effect of surfactant phase behavior on emulsification. J. Colloid Interface Sci. 2016, 466, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef] [PubMed]
- ChemSpider. Royal Society of Chemistry. Available online: www.chemspider.com (accessed on 13 January 2018).
- Nagarajan, R.; Ganesh, K. Block copolymer self-assembly in selective solvents: Theory of solubilization in spherical micelles. Macromolecules 1989, 22, 4312–4325. [Google Scholar] [CrossRef]
- Nagarajan, R. Solubilization of hydrocarbons and resulting aggregate shape transitions in aqueous solutions of Pluronic® (PEO-PPO-PEO) block copolymers. Colloids Surf. B Biointerfaces 1999, 16, 55–72. [Google Scholar] [CrossRef]
- Nagarajan, R.; Ganesh, K. Comparison of Solubilization of Hydrocarbons in (PEO-PPO) Diblock versus (PEO-PPO-PEO) Triblock Copolymer Micelles. J. Colloid Interface Sci. 1996, 184, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, M.Y.; Melik-Nubarov, N.S.; Batrakova, E.V.; Kabanov, A.V. Relationship between Pluronic Block Copolymer Structure, Critical Micellization Concentration and Partitioning Coefficients of Low Molecular Mass Solutes. Macromolecules 2000, 33, 3305–3313. [Google Scholar] [CrossRef]
- Raval, A.; Pillai, S.A.; Bahadur, A.; Bahadur, P. Systematic characterization of Pluronic® micelles and their application for solubilization and in vitro release of some hydrophobic anticancer drugs. J. Mol. Liquids 2017, 230, 473–481. [Google Scholar] [CrossRef]
- Alexander, S.; Cosgrove, T.; Prescott, S.W.; Castle, T.C. Flurbiprofen Encapsulation Using Pluronic Triblock Copolymers. Langmuir 2011, 27, 8054–8060. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Kim, V.; Prévost, S.; Seidel, K.; Maier, W.; Marguerre, A.-K.; Oetter, G.; Tadros, T.; Gradzielski, M. Solubilization of active ingredients of different polarity in Pluronic® micellar solutions—Correlations between solubilizate polarity and solubilization site. J. Colloid Interface Sci. 2016, 477, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Singla, P.; Chabba, S.; Mahajan, R.K. A systematic physicochemical investigation on solubilization and in vitro release of poorly water soluble oxcarbazepine drug in pluronic micelles. Colloids Surf. A Physicochem. Eng. Asp. 2016, 504, 479–488. [Google Scholar] [CrossRef]
- Turco Liveri, M.L.; Licciardi, M.; Sciascia, L.; Giammona, G.; Cavallaro, G. Peculiar Mechanism of Solubilization of a Sparingly Water Soluble Drug into Polymeric Micelles. Kinetic and Equilibrium Studies. J. Phys. Chem. B 2012, 116, 5037–5046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurter, P.N.; Hatton, T.A. Solubilization of polycyclic aromatic hydrocarbons by poly(ethylene oxide-propylene oxide) block copolymer micelles: Effects of polymer structure. Langmuir 1992, 8, 1291–1299. [Google Scholar] [CrossRef]
- Hurter, P.N.; Scheutjens, J.M.H.M.; Hatton, T.A. Molecular modeling of micelle formation and solubilization in block copolymer micelles. 1. A self-consistent mean-field lattice theory. Macromolecules 1993, 26, 5592–5601. [Google Scholar] [CrossRef]
- Hurter, P.N.; Scheutjens, J.M.H.M.; Hatton, T.A. Molecular modeling of micelle formation and solubilization in block copolymer micelles. 2. Lattice theory for monomers with internal degrees of freedom. Macromolecules 1993, 26, 5030–5040. [Google Scholar] [CrossRef]
- Nagarajan, R.; Barry, M.; Ruckenstein, E. Unusual selectivity in solubilization by block copolymer micelles. Langmuir 1986, 2, 210–215. [Google Scholar] [CrossRef]
- Basak, R.; Bandyopadhyay, R. Encapsulation of Hydrophobic Drugs in Pluronic F127 Micelles: Effects of Drug Hydrophobicity, Solution Temperature, and pH. Langmuir 2013, 29, 4350–4356. [Google Scholar] [CrossRef] [PubMed]
- Foster, B.; Cosgrove, T.; Hammouda, B. Pluronic Triblock Copolymer Systems and Their Interactions with Ibuprofen. Langmuir 2009, 25, 6760–6766. [Google Scholar] [CrossRef] [PubMed]
- Scherlund, M.; Brodin, A.; Malmsten, M. Micellization and gelation in block copolymer systems containing local anesthetics. Int. J. Pharm. 2000, 211, 37–49. [Google Scholar] [CrossRef]
- Bouchemal, K.; Agnely, F.; Koffi, A.; Djabourov, M.; Ponchel, G. What can isothermal titration microcalorimetry experiments tell us about the self-organization of surfactants into micelles? J. Mol. Recognit. 2010, 23, 335–342. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Alexandridis, P. Micellization Thermodynamics of Pluronic P123 (EO20PO70EO20) Amphiphilic Block Copolymers in Aqueous Ethylammonium Nitrate (EAN) Solutions. Polymers 2018, 10, 32. [Google Scholar] [CrossRef]
- Schmolka, I.R. Artificial skin I. Preparation and properties of pluronic F-127 gels for treatment of burns. J. Biomed. Mater. Res. 1972, 6, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Akkari, A.C.S.; Papini, J.Z.B.; Garcia, G.K.; Franco, M.K.K.D.; Cavalcanti, L.P.; Gasperini, A.; Alkschbirs, M.I.; Yokaichyia, F.; de Paula, E.; Tófoli, G.R.; et al. Poloxamer 407/188 binary thermosensitive hydrogels as delivery systems for infiltrative local anesthesia: Physico-chemical characterization and pharmacological evaluation. Mater. Sci. Eng. C 2016, 68, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, U.; Chat, O.A.; Maswal, M.; Jabeen, S.; Dar, A.A. An investigation of Pluronic P123-sodium cholate mixed system: Micellization, gelation and encapsulation behavior. RSC Adv. 2015, 5, 83608–83618. [Google Scholar] [CrossRef]
- Bhowmik, M.; Kumari, P.; Sarkar, G.; Bain, M.K.; Bhowmick, B.; Mollick, M.M.R.; Mondal, D.; Maity, D.; Rana, D.; Bhattacharjee, D.; et al. Effect of xanthan gum and guar gum on in situ gelling ophthalmic drug delivery system based on Poloxamer-407. Int. J. Biol. Macromol. 2013, 62, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Boonlai, W.; Tantishaiyakul, V.; Hirun, N.; Phaisan, S.; Uma, T. The effect of the preservative methylparaben on the thermoresponsive gelation behavior of aqueous solutions of poloxamer 407. J. Mol. Liquids 2017, 240, 622–629. [Google Scholar] [CrossRef]
- Wei, Z.; Hao, J.; Yuan, S.; Li, Y.; Juan, W.; Sha, X.; Fang, X. Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: Formulation, optimization and in vitro characterization. Int. J. Pharm. 2009, 376, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jackson, J.K.; Burt, H.M. Development of amphiphilic diblock copolymers as micellar carriers of taxol. Int. J. Pharm. 1996, 132, 195–206. [Google Scholar] [CrossRef]
- Pucelik, B.; Arnaut, L.G.; Stochel, G.; Dąbrowski, J.M. Design of Pluronic-Based Formulation for Enhanced Redaporfin-Photodynamic Therapy against Pigmented Melanoma. ACS Appl. Mater. Interfaces 2016, 8, 22039–22055. [Google Scholar] [CrossRef] [PubMed]
- De Freitas, C.F.; Pellosi, D.S.; Estevao, B.M.; Calori, I.R.; Tsubone, T.M.; Politi, M.J.; Caetano, W.; Hioka, N. Nanostructured Polymeric Micelles Carrying Xanthene Dyes for Photodynamic Evaluation. Photochem. Photobiol. 2016, 92, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Pellosi, D.S.; Tessaro, A.L.; Moret, F.; Gaio, E.; Reddi, E.; Caetano, W.; Quaglia, F.; Hioka, N. Pluronic® mixed micelles as efficient nanocarriers for benzoporphyrin derivatives applied to photodynamic therapy in cancer cells. J. Photochem. Photobiol. A Chem. 2016, 314, 143–154. [Google Scholar] [CrossRef]
- Zhao, L.; Du, J.; Duan, Y.; Zang, Y.n.; Zhang, H.; Yang, C.; Cao, F.; Zhai, G. Curcumin loaded mixed micelles composed of Pluronic P123 and F68: Preparation, optimization and in vitro characterization. Colloids Surf. B Biointerfaces 2012, 97, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Jindal, N.; Mehta, S.K. Nevirapine loaded Poloxamer 407/Pluronic P123 mixed micelles: Optimization of formulation and in vitro evaluation. Colloids Surf. B Biointerfaces 2015, 129, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Chokshi, R.J.; Sandhu, H.K.; Iyer, R.M.; Shah, N.H.; Malick, A.W.; Zia, H. Characterization of physico-mechanical properties of indomethacin and polymers to assess their suitability for hot-melt extrusion processs as a means to manufacture solid dispersion/solution. J. Pharm. Sci. 2005, 94, 2463–2474. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Chatterji, A.; Sandhu, H.; Choi, D.S.; Chokshi, H.; Shah, N. Evaluation of solid state properties of solid dispersions prepared by hot-melt extrusion and solvent co-precipitation. Int. J. Pharm. 2008, 355, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.S.; Song, J.Y.; Cho, S.H.; Lee, B.S.; Kim, S.Y.; Kim, K.; Jeon, H.; Kwon, I.C.; Yuk, S.H. Paclitaxel-loaded Pluronic nanoparticles formed by a temperature-induced phase transition for cancer therapy. J. Control. Release 2010, 148, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, J.Y.; Koo, E.J.; Lee, J.; Lee, E.H.; Oh, K.S.; Yuk, S.H. Nanoencapsulation of drug-loaded lipid by temperature-induced phase transition. Chem. Biochem. Eng. Q. 2012, 26, 385–390. [Google Scholar]
- Oh, K.S.; Han, H.; Yoon, B.D.; Lee, M.; Kim, H.; Seo, D.W.; Seo, J.H.; Kim, K.; Kwon, I.C.; Yuk, S.H. Effect of HIFU treatment on tumor targeting efficacy of docetaxel-loaded Pluronic nanoparticles. Colloids Surf. B Biointerfaces 2014, 119, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.S.; Lee, S.; Na, J.H.; Kim, J.-Y.; Kim, D.-E.; Kim, K.; Kwon, I.C.; Yuk, S.H.; Jeong, S.Y. Blood-pool multifunctional nanoparticles formed by temperature-induced phase transition for cancer-targeting therapy and molecular imaging. Int. J. Pharm. 2012, 437, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Crucho, C.I.C.; Barros, M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C 2017, 80, 771–784. [Google Scholar] [CrossRef] [PubMed]
- Mora-Huertas, C.E.; Fessi, H.; Elaissari, A. Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification–diffusion methods: Critical comparison. Adv. Colloid Interface Sci. 2011, 163, 90–122. [Google Scholar] [CrossRef] [PubMed]
- Shazly, G.A.; Ibrahim, M.A.; Badran, M.M.; Zoheir, K.M.A. Utilizing Pluronic F-127 and Gelucire 50/13 Solid Dispersions for Enhanced Skin Delivery of Flufenamic Acid. Drug Dev. Res. 2012, 73, 299–307. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, X.; Zhao, L.; Jiao, Y.; Liu, J.; Zhai, G. In vitro and in vivo study of Baicalin-loaded mixed micelles for oral delivery. Drug Deliv. 2016, 23, 1933–1939. [Google Scholar] [PubMed]
- Ma, G.; Yang, J.; Zhang, L.; Song, C. Effective antitumor activity of paclitaxel-loaded poly (Ɛ-caprolactone)/pluronic F68 nanoparticles after intratumoral delivery into the murine breast cancer model. Anticancer Drugs 2010, 21, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Fang, Z.; Yao, L.; Dahmani, F.Z.; Yin, L.; Zhou, J.; Yao, J. A micelle-like structure of poloxamer-methotrexate conjugates as nanocarrier for methotrexate delivery. Int. J. Pharm. 2015, 487, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hao, J.; Li, Y.; Zhang, Z.; Sha, X.; Han, L.; Fang, X. Poly(caprolactone)-modified Pluronic P105 micelles for reversal of paclitaxcel-resistance in SKOV-3 tumors. Biomaterials 2012, 33, 4741–4751. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.Y.; Pan, X.; Tao, L.; Cheng, F.; Li, Z.L.; Gong, Y.C.; Li, Y.P. Enhanced effect of folated pluronic F87-PLA/TPGS mixed micelles on targeted delivery of paclitaxel. Int. J. Biol. Macromol. 2017, 103, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Sun, Z.; Fang, X.; Fang, X.; Xiao, F.; Wang, Y.; Chen, M. Synthesis, characterization and anti-cancer activity of Pluronic F68-curcumin conjugate micelles. Drug Deliv. 2016, 23, 2587–2595. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.-J.; Yoon, H.Y.; Koo, H.; Ko, S.-H.; Shim, J.-S.; Lee, J.-H.; Kim, K.; Chan Kwon, I.; Kim, D.-D. Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic® for tumor-targeted delivery of docetaxel. Biomaterials 2011, 32, 7181–7190. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, K.; Yang, C.; Huang, S.; Wang, M. Multifunctional polymeric micelles loaded with doxorubicin and poly(dithienyl-diketopyrrolopyrrole) for near-infrared light-controlled chemo-phototherapy of cancer cells. Colloids Surf. B Biointerfaces 2017, 157, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Shaarani, S.; Hamid, S.S.; Kaus, N.H.M. The Influence of Pluronic F68 and F127 Nanocarrier on Physicochemical Properties, In vitro Release, and Antiproliferative Activity of Thymoquinone Drug. Pharmacogn. Res. 2017, 9, 12–20. [Google Scholar]
- Wang, J.; Ma, W.; Tu, P. The mechanism of self-assembled mixed micelles in improving curcumin oral absorption: In vitro and in vivo. Colloids Surf. B Biointerfaces 2015, 133, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Wang, J.; Sun, E.; Yang, L.; Yan, H.-M.; Jia, X.-B.; Zhang, Z.-H. Preparation and evaluation of icariside II-loaded binary mixed micelles using Solutol HS15 and Pluronic F127 as carriers. Drug Deliv. 2016, 23, 3248–3256. [Google Scholar] [CrossRef] [PubMed]
- Ke, Z.; Zhang, Z.; Wu, H.; Jia, X.; Wang, Y. Optimization and evaluation of Oridonin-loaded Soluplus®-Pluronic P105 mixed micelles for oral administration. Int. J. Pharm. 2017, 518, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tang, L.; Sun, L.; Bao, J.; Song, C.; Huang, L.; Liu, K.; Tian, Y.; Tian, G.; Li, Z.; et al. A novel paclitaxel-loaded poly(ε-caprolactone)/Poloxamer 188 blend nanoparticle overcoming multidrug resistance for cancer treatment. Acta Biomater. 2010, 6, 2045–2052. [Google Scholar] [CrossRef] [PubMed]
- Ma Ling, G.; Mei, D.; Xing Yi, L. Preparation and characterization of honokiol nanoparticles. J. Mater. Sci. Mater. Med. 2008, 19, 2605–2608. [Google Scholar]
- Gupta, P.N.; Jain, S.; Nehate, C.; Alam, N.; Khare, V.; Dubey, R.D.; Saneja, A.; Kour, S.; Singh, S.K. Development and evaluation of paclitaxel loaded PLGA:poloxamer blend nanoparticles for cancer chemotherapy. Int. J. Biol. Macromol. 2014, 69, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Swarnakar, N.K.; Godugu, C.; Singh, R.P.; Jain, S. The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials 2011, 32, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Dehvari, K.; Lin, K.-S.; Hammouda, B. Small-angle neutron scattering studies of microenvironmental and structural changes of Pluronic micelles upon encapsulation of paclitaxel. J. Taiwan Inst. Chem. Eng. 2017, 71, 405–413. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, W.; Geng, J.; Chitgupi, U.; Unsal, H.; Federizon, J.; Rzayev, J.; Sukumaran, D.K.; Alexandridis, P.; Lovell, J.F. Therapeutic surfactant-stripped frozen micelles. Nat. Commun. 2016, 7, 11649. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jeon, M.; Rich, L.J.; Hong, H.; Geng, J.; Zhang, Y.; Shi, S.; Barnhart, T.E.; Alexandridis, P.; Huizinga, J.D.; et al. Non-invasive, Multimodal Functional Imaging of the Intestine with Frozen Micellar Naphthalocyanines. Nat. Nanotechnol. 2014, 9, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, R.; Hatton, T.A. Nanoparticles: Synthesis, Stabilization, Passivation, and Functionalization; American Chemical Society: Washington, DC, USA, 2008; Volume 996, p. 470. [Google Scholar]
- Nicolai, T.; Colombani, O.; Chassenieux, C. Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers. Soft Matter 2010, 6, 3111–3118. [Google Scholar] [CrossRef]
- Kanamala, M.; Wilson, W.R.; Yang, M.; Palmer, B.D.; Wu, Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials 2016, 85, 152–167. [Google Scholar] [CrossRef] [PubMed]
- Hare, J.I.; Lammers, T.; Ashford, M.B.; Puri, S.; Storm, G.; Barry, S.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev. 2017, 108, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.-Y.; Zhang, A.-Q.; Cheng, S.-X.; Rong, L.; Zhang, X.-Z. Drug self-delivery systems for cancer therapy. Biomaterials 2017, 112, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.X.; Ahmed, T.; Li, L.Y.; Li, J.; Abbasi, A.Z.; Wu, X.Y. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale 2017, 9, 1334–1355. [Google Scholar] [CrossRef] [PubMed]
- Pellosi, D.S.; Calori, I.R.; de Paula, L.B.; Hioka, N.; Quaglia, F.; Tedesco, A.C. Multifunctional theranostic Pluronic mixed micelles improve targeted photoactivity of Verteporfin in cancer cells. Mater. Sci. Eng. C 2017, 71, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kulthe, S.S.; Inamdar, N.N.; Choudhari, Y.M.; Shirolikar, S.M.; Borde, L.C.; Mourya, V.K. Mixed micelle formation with hydrophobic and hydrophilic Pluronic block copolymers: Implications for controlled and targeted drug delivery. Colloids Surf. B Biointerfaces 2011, 88, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Fathalla, Z.M.A.; Vangala, A.; Longman, M.; Khaled, K.A.; Hussein, A.K.; El-Garhy, O.H.; Alany, R.G. Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: Design, characterisation, toxicity and transcorneal permeation studies. Eur. J. Pharm. Biopharm. 2017, 114, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Murgia, S.; Falchi, A.M.; Meli, V.; Schillén, K.; Lippolis, V.; Monduzzi, M.; Rosa, A.; Schmidt, J.; Talmon, Y.; Bizzarri, R.; et al. Cubosome formulations stabilized by a dansyl-conjugated block copolymer for possible nanomedicine applications. Colloids Surf. B Biointerfaces 2015, 129, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Stefania, B.; Laura, A.; Claudia, C.; Chiara, G.; Angela, M.F.; Vito, L.; Andrea, L.; Paolo, M.; Valeria, M.; Maura, M.; et al. Cubosomes for in vivo fluorescence lifetime imaging. Nanotechnology 2017, 28, 055102. [Google Scholar]
- Oh, K.S.; Kim, J.Y.; Yoon, B.D.; Lee, M.; Kim, H.; Kim, M.; Seo, J.H.; Yuk, S.H. Sol-gel transition of nanoparticles/polymer mixtures for sustained delivery of exenatide to treat type 2 diabetes mellitus. Eur. J. Pharm. Biopharm. 2014, 88, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, U.; Goliaei, A.; Tsereteli, L.; Berkowitz, M.L. Properties of Poloxamer Molecules and Poloxamer Micelles Dissolved in Water and Next to Lipid Bilayers: Results from Computer Simulations. J. Phys. Chem. B 2016, 120, 5823–5830. [Google Scholar] [CrossRef] [PubMed]
- Firestone, M.A.; Wolf, A.C.; Seifert, S. Small-Angle X-ray Scattering Study of the Interaction of Poly(ethylene oxide)-β-Poly(propylene oxide)-β-Poly(ethylene oxide) Triblock Copolymers with Lipid Bilayers. Biomacromolecules 2003, 4, 1539–1549. [Google Scholar] [CrossRef] [PubMed]
- Barse, R.; Kokare, C.; Tagalpallewar, A. Influence of hydroxypropylmethylcellulose and poloxamer composite on developed ophthalmic in situ gel: Ex vivo and in vivo characterization. J. Drug Deliv. Sci. Technol. 2016, 33, 66–74. [Google Scholar] [CrossRef]
- Nasir, F.; Iqbal, Z.; Khan, J.A.; Khan, A.; Khuda, F.; Ahmad, L.; Khan, A.; Khan, A.; Dayoo, A.; Roohullah. Development and evaluation of diclofenac sodium thermorevesible subcutaneous drug delivery system. Int. J. Pharm. 2012, 439, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Xu, H.; Zhang, C.; Liu, K.; Bao, X.; Chu, Q.; He, Y.; Tian, Y. Preparation and characterization of curcumin thermosensitive hydrogels for intratumoral injection treatment. Drug Dev. Ind. Pharm. 2014, 40, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
Pluronic® Notation | MW | PO Units | EO Units | cmc at 25 °C (% w/v) | cmc at 30 °C (% w/v) | cmc at 35 °C (% w/v) |
---|---|---|---|---|---|---|
L64 | 2900 | 30 | 26 | n/a | 1.5 | 0.4 |
P65 | 3400 | 17 | 36 | n/a | 4 | 1 |
P84 | 4200 | 43 | 38 | 2.6 | 0.6 | 0.15 |
P85 | 4600 | 40 | 52 | 4 | 0.9 | 0.2 |
F88 | 11,400 | 39 | 206 | n/a | n/a | 1.7 |
P103 | 4950 | 60 | 34 | 0.07 | 0.01 | 0.002 |
P104 | 5900 | 61 | 54 | 0.3 | 0.04 | 0.008 |
P105 | 6500 | 56 | 74 | 0.3 | 0.025 | 0.005 |
F108 | 14,600 | 50 | 264 | 4.5 | 0.8 | 0.15 |
P123 | 5750 | 69 | 38 | 0.03 | 0.005 | 0.001 |
F127 | 12,600 | 65 | 200 | 0.7 | 0.1 | 0.025 |
Compound | Molecular Weight (g/mol) | LogP | Structure |
---|---|---|---|
Oxcarbazepine | 252.3 | 1.5 | |
Paclitaxel | 853.9 | 3.0 | |
Ibuprofen | 203.3 | 4.0 | |
Flurbiprofen | 244.3 | 4.2 | |
Fenofibrate | 360.8 | 5.3 | |
Vitamin K1 | 450.7 | 9.3 |
Compound | LogP | Drug:F127 Molar Ratio | Drug Concentration (mg/mL) | Size (nm) |
---|---|---|---|---|
α-Tocopherol | 8.8 | 17 | 39 | 86 |
Cabazitaxel | 3.7 | 8 | 41 | 62 |
Coenzyme Q10 | 9.9 | 30 | 43 | 82 |
Cholecalciferol | 8.0 | 29 | 62 | 45 |
Cyclosporine A | 4.1 | 15 | 7 | 165 |
Ergocalciferol | 7.8 | 12 | 25 | 112 |
Ivermectin | 4.4 | 45 | 80 | 39 |
Retinal palmitate | 10.1 | 14 | 33 | 114 |
Squalene | 8.6 | 44 | 80 | 81 |
Testosterone undecanoate | 6.7 | 10 | 60 | 112 |
Vitamin Κ1 | 8.5 | 51 | 150 | 74 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bodratti, A.M.; Alexandridis, P. Formulation of Poloxamers for Drug Delivery. J. Funct. Biomater. 2018, 9, 11. https://doi.org/10.3390/jfb9010011
Bodratti AM, Alexandridis P. Formulation of Poloxamers for Drug Delivery. Journal of Functional Biomaterials. 2018; 9(1):11. https://doi.org/10.3390/jfb9010011
Chicago/Turabian StyleBodratti, Andrew M., and Paschalis Alexandridis. 2018. "Formulation of Poloxamers for Drug Delivery" Journal of Functional Biomaterials 9, no. 1: 11. https://doi.org/10.3390/jfb9010011
APA StyleBodratti, A. M., & Alexandridis, P. (2018). Formulation of Poloxamers for Drug Delivery. Journal of Functional Biomaterials, 9(1), 11. https://doi.org/10.3390/jfb9010011