Personalized 3D-Printed Prostheses for Bone Defect Reconstruction After Tumor Resection in the Foot and Ankle
<p>Preoperative imaging. (<b>A</b>) Preoperative X-ray showing a well-demarcated lesion within the calcaneus with cortical thinning and intact surrounding bone structures. (<b>B</b>) Preoperative CT scan demonstrating a 25 × 12 × 15 mm hypodense lesion in the calcaneal body, with thinning of the cortical bone and no evidence of periosteal reaction. (<b>C</b>) Preoperative MRI. (<b>a</b>) T1-weighted image showing homogenous low signal intensity. (<b>b</b>) T2-weighted image showing heterogeneous high signal intensity with central low-signal areas.</p> "> Figure 2
<p>3D Surgical planning. (<b>A</b>) 3D image rendering from CT data used to simulate the calcaneal defect and design a personalized prosthesis for surgical reconstruction. (<b>B</b>) Clinical photograph of the 3D-printed prosthesis used for simulation.</p> "> Figure 3
<p>Intraoperative findings. (<b>A</b>) Clinical photograph showing the calcaneal defect after excising the tumor via an oblique incision on the medial heel. (<b>B</b>) Intraoperative view of the implantation of the pre-designed personalized prosthesis into the calcaneal defect.</p> "> Figure 4
<p>Postoperative imaging. Postoperative radiographs of the calcaneus of right foot in axial and lateral views showing stable fixation and prosthesis placement.</p> "> Figure 5
<p>Preoperative imaging. (<b>A</b>) Preoperative X-ray demonstrating a lytic lesion with well-defined margins in the tibia. (<b>B</b>) Preoperative CT scan showing the lesion’s cortical involvement and surrounding bone structure integrity. (<b>C</b>) Preoperative MRI. (<b>a</b>) T1-weighted image displaying a hypointense lesion within the tibia. (<b>b</b>) T2-weighted image showing heterogeneous hyperintensity with internal low-signal regions. (<b>c</b>) Contrast-enhanced T1-weighted image highlighting the lesion’s vascular characteristics.</p> "> Figure 6
<p>3D Surgical planning. Three-dimensional image rendering from CT data used for preoperative planning and simulation of prosthesis design.</p> "> Figure 7
<p>Intraoperative findings. (<b>A</b>) Intraoperative image showing the 3D-printed cutting guide being tested for proper size and fit after bone exposure. (<b>B</b>) Cutting guide secured to the tibia using K-wires for precise positioning. (<b>C</b>) Cortical bone resection performed using the cutting guide to create a well-defined cortical window. (<b>D</b>) Verification of the alignment of the cortical window with the cutting guide. (<b>E</b>) Patient-specific prosthesis tested for fit within the bone defect, with cortical bone temporarily fixed using K-wires. (<b>F</b>) Post-curettage view showing complete removal of the tumor within the tibia cavity. (<b>G</b>) Intraoperative insertion of the patient-specific prosthesis into the tibial bone defect. (<b>H</b>) Cortical window replaced over the prosthesis for anatomical reconstruction. (<b>I</b>) Final fixation using a medial malleolar plate to secure the cortical window and prosthesis.</p> "> Figure 8
<p>Postoperative imaging. Postoperative radiographs of the ankle in anteroposterior and lateral views showing stable fixation with a locking plate with proper prosthesis placement.</p> "> Figure 9
<p>Preoperative imaging. (<b>A</b>) Preoperative X-ray showing a lytic lesion in the distal third of the fibula with cortical thinning and a visible fracture line. (<b>B</b>) Preoperative CT scan illustrating the lesion’s cortical destruction, dimensions, and evidence of a pathological fracture. (<b>C</b>) Preoperative MRI. (<b>a</b>) T2-weighted image demonstrating a hypointense lobulated mass with irregular margins. (<b>b</b>) Contrast-enhanced T1-weighted image showing heterogeneous intermediate-to-low signal intensity with central necrotic areas and prominent extraosseous extension.</p> "> Figure 10
<p>Intraoperative findings. (<b>A</b>) Personalized cutting guide fixed to the fibula, facilitating en bloc resection using a microsaw. (<b>B</b>) Clinical photograph of the tumor removed via en bloc resection. (<b>C</b>) Insertion of the 3D-printed patient-specific prosthesis into the bone defect following en bloc resection.</p> "> Figure 11
<p>Postoperative imaging. Postoperative radiographs of the ankle in anteroposterior and lateral views showing stable intramedullary prosthesis fixation and proper alignment.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Preoperative Planning and Design
2.3. Prosthesis Fabrication
2.4. Surgical Techniques
2.5. Postoperative Evaluation
2.6. Ethical Approval and Consent
3. Results
3.1. Case I: Diffuse Neurofibroma of the Calcaneus
3.2. Case II: Low-Grade Chondrosarcoma of the Distal Tibia
3.3. Case III: Metastatic Fibular Lesion from Lung Cancer
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hughes, A.M.; Kolb, A.D.; Shupp, A.B.; Shine, K.M.; Bussard, K.M. Printing the Pathway Forward in Bone Metastatic Cancer Research: Applications of 3D Engineered Models and Bioprinted Scaffolds to Recapitulate the Bone-Tumor Niche. Cancers 2021, 13, 507. [Google Scholar] [CrossRef]
- Mayfield, C.K.; Ayad, M.; Lechtholz-Zey, E.; Chen, Y.; Lieberman, J.R. 3D-Printing for Critical Sized Bone Defects: Current Concepts and Future Directions. Bioengineering 2022, 9, 680. [Google Scholar] [CrossRef] [PubMed]
- Meng, M.; Wang, J.; Huang, H.; Liu, X.; Zhang, J.; Li, Z. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. J. Orthop. Transl. 2023, 42, 94–112. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Kang, H.G. Application of 3-dimensional printing implants for bone tumors. Clin. Exp. Pediatr. 2022, 65, 476–482. [Google Scholar] [CrossRef]
- Kim, J.H.; Oh, J.H.; Han, I.; Kim, H.S.; Chung, S.W. Grafting using injectable calcium sulfate in bone tumor surgery: Comparison with demineralized bone matrix-based grafting. Clin. Orthop. Surg. 2011, 3, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.; Kim, S.; Chung, S.H. Clinical Outcome of Beta-Tricalcium Phosphate Use for Bone Defects after Operative Treatment of Benign Tumors. Clin. Orthop. Surg. 2019, 11, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Angelini, A.; Kotrych, D.; Trovarelli, G.; Szafrański, A.; Bohatyrewicz, A.; Ruggieri, P. Analysis of principles inspiring design of three-dimensional-printed custom-made prostheses in two referral centres. Int. Orthop. 2020, 44, 829–837. [Google Scholar] [CrossRef]
- Zekry, K.M.; Yamamoto, N.; Hayashi, K.; Takeuchi, A.; Alkhooly, A.Z.A.; Abd-Elfattah, A.S.; Elsaid, A.N.S.; Ahmed, A.R.; Tsuchiya, H. Reconstruction of intercalary bone defect after resection of malignant bone tumor. J. Orthop. Surg. 2019, 27, 2309499019832970. [Google Scholar] [CrossRef] [PubMed]
- Vierra, B.M.; Blumenthal, S.R.; Amanatullah, D.F. Modularity in Total Hip Arthroplasty: Benefits, Risks, Mechanisms, Diagnosis, and Management. Orthopedics 2017, 40, 355–366. [Google Scholar] [CrossRef]
- Pandit, H.; Glyn-Jones, S.; McLardy-Smith, P.; Gundle, R.; Whitwell, D.; Gibbons, C.L.; Ostlere, S.; Athanasou, N.; Gill, H.S.; Murray, D.W. Pseudotumours associated with metal-on-metal hip resurfacings. J. Bone Jt. Surg. Br. 2008, 90, 847–851. [Google Scholar] [CrossRef]
- Langton, D.J.; Jameson, S.S.; Joyce, T.J.; Hallab, N.J.; Natu, S.; Nargol, A.V. Early failure of metal-on-metal bearings in hip resurfacing and large-diameter total hip replacement: A consequence of excess wear. J. Bone Jt. Surg. Br. 2010, 92, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Kanniyappan, H.; Cheng, K.Y.; Badhe, R.V.; Neto, M.; Bijukumar, D.; Barba, M.; Pourzal, R.; Mathew, M. Investigation of cell-accelerated corrosion (CAC) on the CoCrMo alloy with segregation banding: Hip implant applications. J. Mech. Behav. Biomed. Mater. 2024, 152, 106449. [Google Scholar] [CrossRef] [PubMed]
- Dekker, T.J.; Steele, J.R.; Federer, A.E.; Hamid, K.S.; Adams, S.B., Jr. Use of Patient-Specific 3D-Printed Titanium Implants for Complex Foot and Ankle Limb Salvage, Deformity Correction, and Arthrodesis Procedures. Foot Ankle Int. 2018, 39, 916–921. [Google Scholar] [CrossRef]
- Park, J.W.; Kang, H.G.; Lim, K.M.; Park, D.W.; Kim, J.H.; Kim, H.S. Bone tumor resection guide using three-dimensional printing for limb salvage surgery. J. Surg. Oncol. 2018, 118, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Li, H.; Huang, L. The Efficacy of 3D Printing Model in the Intraarticular Osteotomy in the Treatment of Malunion of Tibial Plateau Fracture. Orthop. Surg. 2023, 15, 85–92. [Google Scholar] [CrossRef]
- Portnoy, Y.; Koren, J.; Khoury, A.; Factor, S.; Dadia, S.; Ran, Y.; Benady, A. Three-dimensional technologies in presurgical planning of bone surgeries: Current evidence and future perspectives. Int. J. Surg. 2023, 109, 3–10. [Google Scholar] [CrossRef]
- Lee, M.; Yoon, K.; Lee, K.S. Social Network Analysis in the Legislative Process in the Korean Medical Device Industry. Inquiry 2018, 55, 46958018791858. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.H.; Li, F.A.; Fan, Y.T.; Tu, P.W. A study of medical device regulation management model in Asia. Expert Rev. Med. Devices 2016, 13, 533–543. [Google Scholar] [CrossRef]
- Hayashi, K.; Tsuchiya, H. The role of surgery in the treatment of metastatic bone tumor. Int. J. Clin. Oncol. 2022, 27, 1238–1246. [Google Scholar] [CrossRef]
- Veth, R.; Schreuder, B.; van Beem, H.; Pruszczynski, M.; de Rooy, J. Cryosurgery in aggressive, benign, and low-grade malignant bone tumours. Lancet Oncol. 2005, 6, 25–34. [Google Scholar] [CrossRef]
- Haberal, B.; Turkbey Simsek, D.; Simsek, E.K. Intraosseous Schwannoma of the Calcaneus: A Rare Tumor of the Bone. Case Rep. Orthop. 2018, 2018, 9824025. [Google Scholar] [CrossRef]
- Ilgenfritz, R.M.; Jones, K.B.; Lueck, N.; Buckwalter, J.A. Intraosseous neurilemmoma involving the distal tibia and fibula: A case report. Iowa Orthop. J. 2006, 26, 138–143. [Google Scholar] [PubMed]
- Björnsson, J.; McLeod, R.A.; Unni, K.K.; Ilstrup, D.M.; Pritchard, D.J. Primary chondrosarcoma of long bones and limb girdles. Cancer 1998, 83, 2105–2119. [Google Scholar] [CrossRef]
- Fiorenza, F.; Abudu, A.; Grimer, R.J.; Carter, S.R.; Tillman, R.M.; Ayoub, K.; Mangham, D.C.; Davies, A.M. Risk factors for survival and local control in chondrosarcoma of bone. J. Bone Jt. Surg. Br. 2002, 84, 93–99. [Google Scholar] [CrossRef]
- Streitbürger, A.; Ahrens, H.; Balke, M.; Buerger, H.; Winkelmann, W.; Gosheger, G.; Hardes, J. Grade I chondrosarcoma of bone: The Münster experience. J. Cancer Res. Clin. Oncol. 2009, 135, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Ahlmann, E.R.; Menendez, L.R.; Fedenko, A.N.; Learch, T. Influence of cryosurgery on treatment outcome of low-grade chondrosarcoma. Clin. Orthop. Relat. Res. 2006, 451, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Schreuder, H.W.; Keijser, L.C.; Veth, R.P. Beneficial effects of cryosurgical treatment in benign and low-grade-malignant bone tumors in 120 patients. Ned. Tijdschr. Voor Geneeskd. 1999, 143, 2275–2281. [Google Scholar]
- Kollender, Y.; Meller, I.; Bickels, J.; Flusser, G.; Issakov, J.; Merimsky, O.; Marouani, N.; Nirkin, A.; Weinbroum, A.A. Role of adjuvant cryosurgery in intralesional treatment of sacral tumors. Cancer 2003, 97, 2830–2838. [Google Scholar] [CrossRef]
- Kermavnar, T.; Shannon, A.; O’Sullivan, K.J.; McCarthy, C.; Dunne, C.P.; O’Sullivan, L.W. Three-Dimensional Printing of Medical Devices Used Directly to Treat Patients: A Systematic Review. 3D Print. Addit. Manuf. 2021, 8, 366–408. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Yue, J.; Song, N.; Li, S. Innovations in three-dimensional-printed individualized bone prosthesis materials: Revolutionizing orthopedic surgery: A review. Int. J. Surg. 2024, 110, 6748–6762. [Google Scholar] [CrossRef]
- Cojocaru, F.D.; Balan, V.; Verestiuc, L. Advanced 3D Magnetic Scaffolds for Tumor-Related Bone Defects. Int. J. Mol. Sci. 2022, 23, 16190. [Google Scholar] [CrossRef]
- Dang, W.; Ma, B.; Li, B.; Huan, Z.; Ma, N.; Zhu, H.; Chang, J.; Xiao, Y.; Wu, C. 3D printing of metal-organic framework nanosheets-structured scaffolds with tumor therapy and bone construction. Biofabrication 2020, 12, 025005. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yon, C.-J.; Choi, B.-C.; Lee, J.-M.; Lee, S.-W. Personalized 3D-Printed Prostheses for Bone Defect Reconstruction After Tumor Resection in the Foot and Ankle. J. Funct. Biomater. 2025, 16, 62. https://doi.org/10.3390/jfb16020062
Yon C-J, Choi B-C, Lee J-M, Lee S-W. Personalized 3D-Printed Prostheses for Bone Defect Reconstruction After Tumor Resection in the Foot and Ankle. Journal of Functional Biomaterials. 2025; 16(2):62. https://doi.org/10.3390/jfb16020062
Chicago/Turabian StyleYon, Chang-Jin, Byung-Chan Choi, Jung-Min Lee, and Si-Wook Lee. 2025. "Personalized 3D-Printed Prostheses for Bone Defect Reconstruction After Tumor Resection in the Foot and Ankle" Journal of Functional Biomaterials 16, no. 2: 62. https://doi.org/10.3390/jfb16020062
APA StyleYon, C.-J., Choi, B.-C., Lee, J.-M., & Lee, S.-W. (2025). Personalized 3D-Printed Prostheses for Bone Defect Reconstruction After Tumor Resection in the Foot and Ankle. Journal of Functional Biomaterials, 16(2), 62. https://doi.org/10.3390/jfb16020062