Cytocompatibility of Polymers for Skin-Contact Applications Produced via Pellet Extrusion
<p>Pellet 3D printer with indicated heating zones.</p> "> Figure 2
<p>Representative SEM images of additively manufactured specimens (magnification 30×, 100× and 500×).</p> "> Figure 3
<p>Representative average roughness of all groups.</p> "> Figure 4
<p>Representative fluorescent staining images of cells cultured in specimen extracts for 24 h (scale bar = 100 μm). Ti and Cu were the negative control (N.C.) and positive control (P.C.), respectively. Green fluorescence represents viable cells, and red fluorescence indicates apoptotic cells with compromised membrane integrity.</p> "> Figure 5
<p>Quantification assessment of extract test. (<b>a</b>) Relative cell metabolic activity of L929 cells cultured in different extracts for 24 h, evaluated using a CCK-8 assay. The negative control (Ti) was set to 100%. The dashed line (70% of the negative control) shows a cutoff between toxic and nontoxic effects. * represents a statistical difference compared to the negative control. (<b>b</b>) Relative LDH release of L929 cells exposed to different extracts for 24 h, evaluated using an LDH assay. The maximum LDH release was set to 100%. The dashed line (30% of the positive control) indicates a cutoff between toxic and nontoxic effects. * represents a statistical difference compared to the positive control.</p> "> Figure 6
<p>Representative fluorescent staining images of cells cultured on specimen surfaces for 24 h (scale bar = 100 μm). Ti and Cu were the negative control (N.C.) and positive control (P.C.), respectively. Green fluorescence represents viable cells, and red fluorescence indicates apoptotic cells with compromised membrane integrity.</p> "> Figure 7
<p>Quantification assessment of direct contact test. (<b>a</b>) Relative cell metabolic activity of L929 fibroblasts cultured on specimen surfaces for 24 h, evaluated using a CCK-8 assay. The negative control (Ti) was set to 100%. The dashed line (70% of the negative control) shows a cutoff between toxic and nontoxic effects. * represents a statistical difference compared to the negative control. (<b>b</b>) Relative LDH release of L929 fibroblasts cultured on specimen surfaces for 24 h, evaluated using an LDH assay. The maximum LDH release was set to 100%. The dashed line (30% of the positive control) indicates a cutoff between toxic and nontoxic effects. * represents a statistical difference compared to the positive control.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Surface Characterization
2.3. Cytotoxicity Test
2.4. Statistical Analysis
3. Results
3.1. Surface Morphologies
3.2. Cytotoxicity Evaluation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, R.K.; Jin, Y.; Wensman, J.; Shih, A. Additive manufacturing of custom orthoses and prostheses—A review. Addit. Manuf. 2016, 12, 77–89. [Google Scholar] [CrossRef]
- Cordella, F.; Ciancio, A.L.; Sacchetti, R.; Davalli, A.; Cutti, A.G.; Guglielmelli, E.; Zollo, L. Literature Review on Needs of Upper Limb Prosthesis Users. Front. Neurosci. 2016, 10, 209. [Google Scholar] [CrossRef] [PubMed]
- Senthil Selvam, P.; Sandhiya, M.; Chandrasekaran, K.; Hepzibah Rubella, D.; Karthikeyan, S. Prosthetics for Lower Limb Amputation. In Prosthetics and Orthotics; Arazpour, M., Ed.; IntechOpen: London, UK, 2021; ISBN 978-1-83962-900-6. [Google Scholar]
- Shahar, F.S.; Hameed Sultan, M.T.; Lee, S.H.; Jawaid, M.; Md Shah, A.U.; Safri, S.N.A.; Sivasankaran, P.N. A review on the orthotics and prosthetics and the potential of kenaf composites as alternative materials for ankle-foot orthosis. J. Mech. Behav. Biomed. Mater. 2019, 99, 169–185. [Google Scholar] [CrossRef]
- Tibbitt, M.W.; Rodell, C.B.; Burdick, J.A.; Anseth, K.S. Progress in material design for biomedical applications. Proc. Natl. Acad. Sci. USA 2015, 112, 14444–14451. [Google Scholar] [CrossRef] [PubMed]
- ISO 22523:2006; External Limb Prostheses and External Orthoses: Requirements and Test Methods. International Organization for Standardization: Geneva, Switzerland, 2006.
- Kalita, H.; Zindani, D. A Review on Materials for Orthotic Devices: Processing and Characterization. In Design, Development, and Optimization of Bio-Mechatronic Engineering Products; Davim, J., Kumar, K., Davim, J.P., Eds.; IGI Global: Hershey PA, USA, 2019; pp. 208–229. [Google Scholar]
- Kumar, S.; Bhowmik, S. Potential use of natural fiber-reinforced polymer biocomposites in knee prostheses: A review on fair inclusion in amputees. Iran Polym. J. 2022, 31, 1297–1319. [Google Scholar] [CrossRef]
- Olsen, J.; Day, S.; Dupan, S.; Nazarpour, K.; Dyson, M. 3D-Printing and upper-limb prosthetic sockets; promises and pitfalls. bioRxiv 2020. [Google Scholar] [CrossRef] [PubMed]
- Oleiwi, J.K.; Hamad, Q.A.; Abdulrahman, S.A. Flexural, impact and max. shear stress properties of fibers composite for prosthetic socket. Mater. Today Proc. 2022, 56, 3121–3128. [Google Scholar] [CrossRef]
- Chaparro-Rico, B.; Martinello, K.; Fucile, S.; Cafolla, D. User-Tailored Orthosis Design for 3D Printing with PLACTIVE: A Quick Methodology. Crystals 2021, 11, 561. [Google Scholar] [CrossRef]
- Global Prosthetics and Orthotics Markets Report 2022–2028: Leading Players Such as Bauerfeind, Ossur, Fillauer, and Ottobock are Highly Focused on Launching New Orthotics and Prosthetics Products. Research and Markets. Available online: https://www.globenewswire.com/en/news-release/2023/01/11/2586842/28124/en/Global-Prosthetics-and-Orthotics-Markets-Report-2022-2028-Leading-Players-Such-as-Bauerfeind-Ossur-Fillauer-and-Ottobock-are-Highly-Focused-on-Launching-New-Orthotics-and-Prostheti.html (accessed on 20 March 2023).
- Jha, M.K.; Gupta, S.; Chaudhary, V.; Gupta, P. Material selection for biomedical application in additive manufacturing using TOPSIS approach. Mater. Today Proc. 2022, 62, 1452–1457. [Google Scholar] [CrossRef]
- Wang, X.; Tao, Y.; Pan, S.; Fang, X.; Lou, C.; Xu, Y.; Wu, J.; Sang, M.; Lu, L.; Gong, X.; et al. Biocompatible and breathable healthcare electronics with sensing performances and photothermal antibacterial effect for motion-detecting. NPJ Flex Electron 2022, 6, 95. [Google Scholar] [CrossRef]
- Garcia-Romeu, M.L.; Ferrer, I.; Pasotti, C.; Coma, J.; Rosa-Sainz, A.; Centeno, G. Preliminary study on the use of 3D printed biodegradable polymeric sheet for the manufacturing of medical prostheses by SPIF. Procedia CIRP 2022, 110, 76–81. [Google Scholar] [CrossRef]
- Kumar, A.; Chhabra, D. Adopting additive manufacturing as a cleaner fabrication framework for topologically optimized orthotic devices: Implications over sustainable rehabilitation. Clean. Eng. Technol. 2022, 10, 100559. [Google Scholar] [CrossRef]
- Liu, J.; Naeem, M.A.; Al Kouzbary, M.; Al Kouzbary, H.; Shasmin, H.N.; Arifin, N.; Abd Razak, N.A.; Abu Osman, N.A. Effect of Infill Parameters on the Compressive Strength of 3D-Printed Nylon-Based Material. Polymers 2023, 15, 255. [Google Scholar] [CrossRef] [PubMed]
- Zuniga, J. 3D Printed Antibacterial Prostheses. Appl. Sci. 2018, 8, 1651. [Google Scholar] [CrossRef]
- Michalec, P.; Varsavas, S.D.; Arbeiter, F.; Weidner, R.; Faller, L.-M. Effects of Printing Direction and Multi-material on Hardness of Additively Manufactured Thermoplastic Elastomers for Comfortable Orthoses and Prostheses. In Additive Manufacturing in Multidisciplinary Cooperation and Production; Springer: Cham, Germany, 2024; pp. 33–41. [Google Scholar] [CrossRef]
- Faller, L.-M.; Deniz Varsavas, S.; Ali, A.M.J.; Michalec, P.; Lakshmi Gidugu, S.; Spintzyk, S.; Riemelmoser, F.O. iLEAD—Intelligent lightweight functional and hybrid 3D-printing for medical assistive devices: Current status focusing on the multi-material aspect. Mater. Today Proc. 2022, 70, 512–518. [Google Scholar] [CrossRef]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices: Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- ISO 10993-12:2021; Biological Evaluation of Medical Devices: Part 12: Sample Preparation and Reference Materials. International Organization for Standardization: Geneva, Switzerland, 2021.
- Chen, J.; Dai, J.; Qian, J.; Li, W.; Li, R.; Pang, D.; Wan, G.; Li, P.; Xu, S. Influence of Surface Roughness on Biodegradability and Cytocompatibility of High-Purity Magnesium. Materials 2022, 15, 3991. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Schille, C.; Schweizer, E.; Kimmerle-Müller, E.; Rupp, F.; Heiss, A.; Legner, C.; Klotz, U.E.; Geis-Gerstorfer, J.; Scheideler, L. Selection of extraction medium influences cytotoxicity of zinc and its alloys. Acta Biomater. 2019, 98, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Klaassen, M.; de Vries, E.G.; Masen, M.A. Friction in the contact between skin and a soft counter material: Effects of hardness and surface finish. J. Mech. Behav. Biomed. Mater. 2019, 92, 137–143. [Google Scholar] [CrossRef]
- Schwartz, D.; Magen, Y.K.; Levy, A.; Gefen, A. Effects of humidity on skin friction against medical textiles as related to prevention of pressure injuries. Int. Wound J. 2018, 15, 866–874. [Google Scholar] [CrossRef]
- Hall, D.C.; Palmer, P.; Ji, H.-F.; Ehrlich, G.D.; Król, J.E. Bacterial Biofilm Growth on 3D-Printed Materials. Front. Microbiol. 2021, 12, 646303. [Google Scholar] [CrossRef]
- Sandler, N.; Salmela, I.; Fallarero, A.; Rosling, A.; Khajeheian, M.; Kolakovic, R.; Genina, N.; Nyman, J.; Vuorela, P. Towards fabrication of 3D printed medical devices to prevent biofilm formation. Int. J. Pharm. 2014, 459, 62–64. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Huettig, F.; Schille, C.; Schweizer, E.; Geis-Gerstorfer, J.; Spintzyk, S. Peel bond strength between 3D printing tray materials and elastomeric impression/adhesive systems: A laboratory study. Dent. Mater. 2020, 36, e241–e254. [Google Scholar] [CrossRef] [PubMed]
No | Material | Material Trade Name | Company | Hardness | Abbreviation |
---|---|---|---|---|---|
#1 | Polylactide natural | PLA Nat | Pollen AM | ~70 ShoreD | PLA |
#2 | Thermoplastic polyurethane | TPU High Strength | Pollen AM | 85 ShoreA | TPU |
#3 | Thermoplastic styrene block copolymers | Green flex 608353-2 | HEXPOL | 60 ShoreA | TPS-SEBS |
#4 | Thermoplastic elastomer with carbon black content | TC7OEX-BLCK (EC Series) | Kraiburg TPE | 70 ShoreA | TPE-EC |
#5 | Thermoplastic elastomer | TC7FTZ (FR2 Series) | Kraiburg TPE | 70 ShoreA | TPE-70ShA |
#6 | Thermoplastic elastomer | TPE 45 ShA | Pollen AM | 45 ShoreA | TPE-45ShA |
#7 | Thermoplastic elastomer | TPE 30 Sh00 | Pollen AM | 30 Shore00 | TPE-30Sh00 |
Material | PLA | TPU | TPS-SEBS | TPE-EC | TPE-70ShA | TPE-45ShA | TPE-30Sh00 |
---|---|---|---|---|---|---|---|
Cold temperature [°C] | 62 | 65 | 50 | 57 | 45 | 57 | 45 |
Extruder temperature [°C] | 167 | 178 | 110 | 130 | 110 | 130 | 130 |
Head temperature [°C] | 185 | 210 | 200 | 225 | 180 | 220 | 195 |
Bed temperature [°C] | 60 | 60 | 70 | 60 | 60 | 60 | 35 |
Flow [%] | 50 | 55 | 48 | 270 | 43 | 53 | 45 |
Printing speed [mm/s] | 20 | 25 | 20 | 15 | 20 | 15 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varsavas, S.D.; Michalec, P.; Khalifa, M.; Li, P.; Spintzyk, S. Cytocompatibility of Polymers for Skin-Contact Applications Produced via Pellet Extrusion. J. Funct. Biomater. 2024, 15, 179. https://doi.org/10.3390/jfb15070179
Varsavas SD, Michalec P, Khalifa M, Li P, Spintzyk S. Cytocompatibility of Polymers for Skin-Contact Applications Produced via Pellet Extrusion. Journal of Functional Biomaterials. 2024; 15(7):179. https://doi.org/10.3390/jfb15070179
Chicago/Turabian StyleVarsavas, Sakine Deniz, Paweł Michalec, Mohammed Khalifa, Ping Li, and Sebastian Spintzyk. 2024. "Cytocompatibility of Polymers for Skin-Contact Applications Produced via Pellet Extrusion" Journal of Functional Biomaterials 15, no. 7: 179. https://doi.org/10.3390/jfb15070179
APA StyleVarsavas, S. D., Michalec, P., Khalifa, M., Li, P., & Spintzyk, S. (2024). Cytocompatibility of Polymers for Skin-Contact Applications Produced via Pellet Extrusion. Journal of Functional Biomaterials, 15(7), 179. https://doi.org/10.3390/jfb15070179