Research on Building DSM Fusion Method Based on Adaptive Spline and Target Characteristic Guidance
<p>Representative building roof shapes [<a href="#B17-information-12-00467" class="html-bibr">17</a>].</p> "> Figure 2
<p>Four-slope-roofed building spline function description.</p> "> Figure 3
<p>Multiscale gridding of building areas.</p> "> Figure 4
<p>Comparison of the effect before and after the fusion of flat-roofed buildings with different variance Gaussian noise. (<b>a</b>) DSM of the truth map for flat-roofed building. (<b>b</b>) DSM 1 variance 0.5. (<b>c</b>) DSM 2 variance 0.5. (<b>d</b>) DSM after fusion variance 0.5. (<b>e</b>) DSM 1 variance 1. (<b>f</b>) DSM 2 variance 1. (<b>g</b>) DSM after fusion variance 1.</p> "> Figure 5
<p>Comparison of the effect before and after the fusion of pitched-roofed buildings with different variance Gaussian noise. (<b>a</b>) DSM of the truth map for pitched-roofed building. (<b>b</b>) DSM 1 variance 0.1. (<b>c</b>) DSM 2 variance 0.1. (<b>d</b>) DSM after fusion variance 0.1. (<b>e</b>) DSM 1 variance 0.5. (<b>f</b>) DSM 2 variance 0.5. (<b>g</b>) DSM after fusion variance 0.5. (<b>h</b>) DSM 1 variance 1. (<b>i</b>) DSM 2 variance 1. (<b>j</b>) DSM after fusion variance 1.</p> "> Figure 5 Cont.
<p>Comparison of the effect before and after the fusion of pitched-roofed buildings with different variance Gaussian noise. (<b>a</b>) DSM of the truth map for pitched-roofed building. (<b>b</b>) DSM 1 variance 0.1. (<b>c</b>) DSM 2 variance 0.1. (<b>d</b>) DSM after fusion variance 0.1. (<b>e</b>) DSM 1 variance 0.5. (<b>f</b>) DSM 2 variance 0.5. (<b>g</b>) DSM after fusion variance 0.5. (<b>h</b>) DSM 1 variance 1. (<b>i</b>) DSM 2 variance 1. (<b>j</b>) DSM after fusion variance 1.</p> "> Figure 6
<p>Comparison of the effect before and after the fusion of four-slope-roofed buildings with different variance Gaussian noise. (<b>a</b>) DSM of the truth map for four-slope-roofed building. (<b>b</b>) DSM 1 variance 0.5. (<b>c</b>) DSM 2 variance 0.5. (<b>d</b>) DSM after fusion variance 0.5. (<b>e</b>) DSM 1 variance 1. (<b>f</b>) DSM 2 variance 1. (<b>g</b>) DSM after fusion variance 1.</p> "> Figure 6 Cont.
<p>Comparison of the effect before and after the fusion of four-slope-roofed buildings with different variance Gaussian noise. (<b>a</b>) DSM of the truth map for four-slope-roofed building. (<b>b</b>) DSM 1 variance 0.5. (<b>c</b>) DSM 2 variance 0.5. (<b>d</b>) DSM after fusion variance 0.5. (<b>e</b>) DSM 1 variance 1. (<b>f</b>) DSM 2 variance 1. (<b>g</b>) DSM after fusion variance 1.</p> "> Figure 7
<p>Comparison of DSM of buildings before and after fusion. (<b>a</b>) Original image. (<b>b</b>) DSM obtained by Method 1. (<b>c</b>) DSM obtained by Method 2. (<b>d</b>) DSM after fusion. (<b>e</b>) Truth map.</p> "> Figure 7 Cont.
<p>Comparison of DSM of buildings before and after fusion. (<b>a</b>) Original image. (<b>b</b>) DSM obtained by Method 1. (<b>c</b>) DSM obtained by Method 2. (<b>d</b>) DSM after fusion. (<b>e</b>) Truth map.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Building Geometric Structure Characteristics
2.2. Analysis of Fitting Error of Adaptive Spline to Building Target
2.3. DSM Fusion Guided by Building Geometric Characteristics Based on Adaptive Spline
Algorithm 1. DSM fusion method based on adaptive spline guided by building target structure characteristics. |
Input: n sets of DSMs Initialization: Initialize the mesh partitioning of the spline function, calculate the n sets of DSM weights and the iteration counter , initialize and . Step 1: Step 2: Step 3: Use alternate iteration method to optimize variables, fix and in turn, and use Equations (3) and (7) to calculate and . Step 4: Let , . Step 5: If or then execute Step 6; otherwise, skip to Step 2. Step 6: If or then the algorithm is executed; otherwise, increase the mesh density and skip to Step 1. Output: DSM after fusion . |
3. Results
3.1. Experimental Results and Analysis of Simulated DSM Data
3.2. IKONOS Data Experiment Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ruchay, A.; Dorofeev, K.; Kolpakov, V. Fusion of information from multiple kinect sensors for 3D object reconstruction. Comput. Opt. 2018, 42, 898–903. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Y.; Men, C.; Men, Y. Double Propagation Stereo Matching for Urban 3-D Reconstruction from Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 1–17. [Google Scholar] [CrossRef]
- Partovi, T.; Fraundorfer, F.; Bahmanyar, R.; Huang, H.; Reinartz, P. Automatic 3-D building model reconstruction from Very High Resolution stereo satellite imagery. Remote Sens. 2019, 11, 1660. [Google Scholar] [CrossRef] [Green Version]
- Jiao, N.; Wang, F.; You, H. A New RD-RFM Stereo Geolocation Model for 3D Geo-Information Reconstruction of SAR-Optical Satellite Image Pairs. IEEE Access 2020, 8, 94654–94664. [Google Scholar] [CrossRef]
- Li, Y.; Wu, B. Relation-Constrained 3D Reconstruction of Buildings in Metropolitan Areas from Photogrammetric Point Clouds. Remote Sens. 2021, 13, 129. [Google Scholar] [CrossRef]
- Rupnik, E.; Pierrot-Deseilligny, M.; Delorme, A. 3D reconstruction from multi-view VHR-satellite images in MicMac. ISPRS J. Photogramm. Remote Sens. 2018, 139, 201–211. [Google Scholar] [CrossRef]
- Oude Elberink, S.; Vosselman, G. 3D information extraction from laser point clouds covering complex road junctions. Photogramm. Rec. 2009, 24, 23–36. [Google Scholar] [CrossRef]
- Zomer, R.; Ustin, S.; Ives, J. Using satellite Remote Sensing for DEM extraction in complex mountainous terrain: Landscape analysis of the Makalu Barun National Park of eastern Nepal. Int. J. Remote Sens. 2002, 23, 125–143. [Google Scholar] [CrossRef]
- Arefi, H.; Reinartz, P. Building reconstruction using dsm and orthorectified images. Remote Sens. 2013, 5, 1681–1703. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Jiang, W.; Shan, J.; Zhang, J.; Li, L. Investigation on the Weighted RANSAC Approaches for Building Roof Plane Segmentation from LiDAR Point Clouds. Remote Sens. 2016, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, W.; Chen, Y.; Chen, M.; Yan, K. Semantic decomposition and reconstruction of compound buildings with symmetric roofs from LiDAR data and aerial imagery. Remote Sens. 2015, 7, 13945–13974. [Google Scholar] [CrossRef] [Green Version]
- Karantzalos, K.; Paragios, N. Large-scale building reconstruction through information fusion and 3-D priors. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2283–2296. [Google Scholar] [CrossRef] [Green Version]
- Oude Elberink, S.; Vosselman, G. Building reconstruction by target based graph matching on incomplete laser data: Analysis and limitations. Sensors 2009, 9, 6101–6118. [Google Scholar] [CrossRef] [PubMed]
- Brenner, C. Constraints for modelling complex objects. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2005, 36, 49–54. [Google Scholar]
- Henn, A.; Gröger, G.; Stroh, V.; Plümer, L. Model driven reconstruction of roofs from sparse lidar point clouds. ISPRS J. Photogramm. Remote Sens. 2013, 76, 17–29. [Google Scholar] [CrossRef]
- Lafarge, F.; Descombes, X.; Zerubia, J.; Pierrot-Deseilligny, M. Structural approach for building reconstruction from a single DSM. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Brenner, C.; Sester, M. A generative statistical approach to automatic 3D building roof reconstruction from laser scanning data. ISPRS J. Photogramm. Remote Sens. 2013, 79, 29–43. [Google Scholar] [CrossRef]
- Habib, A.F.; Zhai, R.; Kim, C. Generation of complex polyhedral building models by integrating stereo-aerial imagery and lidar data. Photogramm. Eng. Remote Sens. 2010, 76, 609–623. [Google Scholar] [CrossRef]
- Awrangjeb, M.; Fraser, C.S. Automatic segmentation of raw Lidar data for extraction of building roofs. Remote Sens. 2014, 6, 3716–3751. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Wang, R.; Peethambaran, J. Topologically Aware Building Rooftop Reconstruction From Airborne Laser Scanning Point Clouds. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7032–7052. [Google Scholar] [CrossRef]
- Verma, V.; Kumar, R.; Hsu, S. 3D Building Detection and Modeling From Aerial Lidar Data. In Proceedings of the IEEE Computer Society Conference on the Computer Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2006; Volume 2, pp. 2213–2220. [Google Scholar]
- Chauve, A.-L.; Labatut, P.; Pons, J.-P. Robust piecewise-planar 3D reconstruction and completion from large-scale unstructured point data. In Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010; pp. 1261–1268. [Google Scholar]
- Sampath, A.; Shan, J. Segmentation and reconstruction of polyhedral building roofs from aerial LIDAR point clouds. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1554–1567. [Google Scholar] [CrossRef]
- Kim, K.; Shan, J. Building roof modeling from airborne laser scanning data based on level set approach. ISPRS J. Photogramm. Remote Sens. 2011, 66, 484–497. [Google Scholar] [CrossRef]
- Tian, Y.; Gerke, M.; Vosselman, G.; Zhu, Q. Knowledge-based building reconstruction from terrestrial video sequences. ISPRS J. Photogramm. Remote Sens. 2010, 65, 395–408. [Google Scholar] [CrossRef]
- Fan, H.; Yao, W.; Fu, Q. Segmentation of Sloped Roofs from Airborne LiDAR point Clouds Using Ridge-based Hierarchical Decomposition. Remote Sens. 2014, 6, 3284–3301. [Google Scholar] [CrossRef] [Green Version]
- Xiong, B.; Elberink, S.O.; Vosselman, G. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds. ISPRS J. Photogramm. Remote Sens. 2014, 93, 227–242. [Google Scholar] [CrossRef]
- Yin, X.; Hao, X.; Gao, T.; Chen, H.; Chen, W. Building Detection based on Rectangle Approximation and Region Growing. In Proceedings of the 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa Village, HI, USA, 16–26 July 2020. [Google Scholar]
- Ma, L.; Li, J.; Ma, J.; Zhang, H. A Modified Census Transform Based on the Neighborhood Information for Stereo Matching Algorithm. In Proceedings of the 2013 Seventh International Conference on Image and Graphics, Qingdao, China, 26–28 July 2013. [Google Scholar]
- Lee, S.; Jin, H.L.; Lim, J.; Suh, I.H. Robust stereo matching using adaptive random walk with restart algorithm. Image Vis. Comput. 2015, 37, 1–11. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, W. Data Driven Adaptive Spline Smoothing. Stat. Sin. 2010, 20, 1143–1163. [Google Scholar]
- Wang, W.; Zhao, H.; Zeng, X.; Doǧançay, K. Steady-state performance analysis of nonlinear spline adaptive filter under maximum correntropy criterion. IEEE Trans. Circuits Syst. II Exp. Briefs 2020, 67, 1154–1158. [Google Scholar] [CrossRef]
- Roy, S.S.; Roy, R.; Balas, V.E. Estimating heating load in buildings using multivariate adaptive regression splines, extreme learning machine, a hybrid model of MARS and ELM. Renew. Sustain. Energy Rev. 2018, 82, 4256–4268. [Google Scholar]
- Xu, B.; Jiang, W.; Li, L. HRTT: A hierarchical roof topology structure for robust building roof reconstruction from point clouds. Remote Sens. 2017, 9, 354. [Google Scholar] [CrossRef] [Green Version]
DSM 1 | DSM 2 | DSM after Fusion | |
---|---|---|---|
Noise variance 0.5 | 0.3934 | 0.3976 | 0.0128 |
Noise variance 1 | 0.8120 | 0.7076 | 0.0135 |
DSM 1 | DSM 2 | DSM after Fusion | |
---|---|---|---|
Noise variance 0.1 | 0.0810 | 0.0801 | 0.0762 |
Noise variance 0.5 | 0.3942 | 0.4076 | 0.1266 |
Noise variance 1 | 0.8226 | 0.7983 | 0.1268 |
DSM 1 | DSM 2 | DSM after Fusion | |
---|---|---|---|
Noise variance 0.5 | 0.3858 | 0.4095 | 0.0203 |
Noise variance 1 | 0.7961 | 0.7609 | 0.0320 |
Method | RMSE |
---|---|
Method 1 | 2.24 |
Method 2 | 2.87 |
Fusion | 2.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Chen, H.; Yang, S. Research on Building DSM Fusion Method Based on Adaptive Spline and Target Characteristic Guidance. Information 2021, 12, 467. https://doi.org/10.3390/info12110467
Liu J, Chen H, Yang S. Research on Building DSM Fusion Method Based on Adaptive Spline and Target Characteristic Guidance. Information. 2021; 12(11):467. https://doi.org/10.3390/info12110467
Chicago/Turabian StyleLiu, Jinming, Hao Chen, and Shuting Yang. 2021. "Research on Building DSM Fusion Method Based on Adaptive Spline and Target Characteristic Guidance" Information 12, no. 11: 467. https://doi.org/10.3390/info12110467