Detection of Atrial Fibrillation Using a Machine Learning Approach
Abstract
:1. Introduction
- We developed a novel deep learning architecture for convolutional neural network (CNN) and long short-term memory (LSTM) to automatically detect AF. In addition, in depth comparison has been done with state-of-the-art approaches as well as baseline models, such as ResNet and Convolutional LSTM.
- Comparative analysis of the proposed approach with two widely online benchmark datasets.
- It is to be noted that, unlike the traditional machine learning algorithms, the deep learning methods have integrated feature extraction into the model, thus the handcrafted features are not needed. In addition, these methods can mine well different types of data sources and have good generalization ability, allowing for the computer to automatically learn and extract related features for any given issues. We developed an end-to-end approach that is based on deep learning approaches, which does not require feature selection and feature extraction technique.
- Additionally, we developed novel framework that can detect AF based on raw ECG signals than instead of other ECG features.
2. Related Work
2.1. ML Methods
2.2. Feature-Based Methods
2.3. Wearable Devices for AF Detection
3. Methodology
3.1. ML Models
3.2. DL Models
4. Experimental Results
Comparison with State-of-the-Art Approaches
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shen, M.; Zhang, L.; Luo, X.; Xu, J. Atrial Fibrillation Detection Algorithm Based on Manual Extraction Features and Automatic Extraction Features. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Hulun Buir, China, 28–30 August 2020. [Google Scholar]
- Lown, M.; Brown, M.; Brown, C.; Yue, A.M.; Shah, B.N.; Corbett, S.J.; Lewith, G.; Stuart, B.; Moore, M.; Little, P. Machine learning detection of Atrial Fibrillation using wearable technology. PLoS ONE 2020, 15, e0227401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zolotarev, A.M.; Hansen, B.J.; Ivanova, E.A.; Helfrich, K.M.; Li, N.; Janssen, P.M.; Mohler, P.J.; Mokadam, N.A.; Whitson, B.A.; Fedorov, M.V.; et al. Optical Mapping-Validated Machine Learning Improves Atrial Fibrillation Driver Detection by Multi-Electrode Mapping. Circ. Arrhythmia Electrophysiol. 2020, 13, e008249. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, P.; Wang, S. Automated detection of atrial fibrillation in ECG signals based on wavelet packet transform and correlation function of random process. Biomed. Signal Process. Control. 2020, 55, 101662. [Google Scholar] [CrossRef]
- Shankar, M.G.; Babu, C.G. An exploration of ECG signal feature selection and classification using machine learning techniques. Int. J. Innov. Technol. Explor. Eng. Regul 2020, 9, 797–804. [Google Scholar]
- Shi, H.; Wang, H.; Qin, C.; Zhao, L.; Liu, C. An incremental learning system for atrial fibrillation detection based on transfer learning and active learning. Comput. Methods Programs Biomed. 2020, 187, 105219. [Google Scholar] [CrossRef]
- Parvaneh, S.; Rubin, J.; Babaeizadeh, S.; Xu-Wilson, M. Cardiac arrhythmia detection using deep learning: A review. J. Electrocardiol. 2019, 57, S70–S74. [Google Scholar] [CrossRef]
- Jiang, F.; Dashtipour, K.; Hussain, A. A Survey on Deep Learning for the Routing Layer of Computer Network. In Proceedings of the 2019 UK/China Emerging Technologies (UCET), Glasgow, UK, 21–22 August 2019; pp. 1–4. [Google Scholar]
- Gotlibovych, I.; Crawford, S.; Goyal, D.; Liu, J.; Kerem, Y.; Benaron, D.; Yilmaz, D.; Marcus, G.; Li, Y. End-to-end deep learning from raw sensor data: Atrial fibrillation detection using wearables. arXiv 2018, arXiv:1807.10707. [Google Scholar]
- Wu, J.; Roy, J.; Stewart, W.F. Prediction modeling using EHR data: Challenges, strategies, and a comparison of machine learning approaches. Med. Care 2010, 48, S106–S113. [Google Scholar] [CrossRef]
- Chan, T.H.; Jia, K.; Gao, S.; Lu, J.; Zeng, Z.; Ma, Y. PCANet: A simple deep learning baseline for image classification? IEEE Trans. Image Process. 2015, 24, 5017–5032. [Google Scholar] [CrossRef] [Green Version]
- Dashtipour, K.; Gogate, M.; Li, J.; Jiang, F.; Kong, B.; Hussain, A. A hybrid Persian sentiment analysis framework: Integrating dependency grammar based rules and deep neural networks. Neurocomputing 2020, 380, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.H.; Liu, H.C.; Chen, W.; Tan, T.H. Evaluating Quality of Photoplethymographic Signal on Wearable Forehead Pulse Oximeter With Supervised Classification Approaches. IEEE Access 2020, 8, 185121–185135. [Google Scholar] [CrossRef]
- Kwon, S.; Hong, J.; Choi, E.K.; Lee, B.; Baik, C.; Lee, E.; Jeong, E.R.; Koo, B.K.; Oh, S.; Yi, Y. Detection of Atrial Fibrillation Using a Ring-Type Wearable Device (CardioTracker) and Deep Learning Analysis of Photoplethysmography Signals: Prospective Observational Proof-of-Concept Study. J. Med Internet Res. 2020, 22, e16443. [Google Scholar] [CrossRef]
- Gogate, M.; Dashtipour, K.; Bell, P.; Hussain, A. Deep Neural Network Driven Binaural Audio Visual Speech Separation. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–7. [Google Scholar]
- Dashtipour, K.; Ieracitano, C.; Morabito, F.C.; Raza, A.; Hussain, A. An Ensemble Based Classification Approach for Persian Sentiment Analysis. In Progresses in Artificial Intelligence and Neural Systems; Springer: Berlin/Heidelberg, Germany, 2020; pp. 207–215. [Google Scholar]
- Grégoire, J.; Gilon, C.; Subramanian, N.; Bersini, H. Forecasting episodes of atrial fibrillation using a new machine learning algorithm. Arch. Cardiovasc. Dis. Suppl. 2020, 12, 103. [Google Scholar] [CrossRef]
- Bundy, J.D.; Heckbert, S.R.; Chen, L.Y.; Lloyd-Jones, D.M.; Greenland, P. Evaluation of Risk Prediction Models of Atrial Fibrillation (from the Multi-Ethnic Study of Atherosclerosis [MESA]). Am. J. Cardiol. 2020, 125, 55–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.C.; Wang, Z.Y. Big Data and Atrial Fibrillation: Current Understanding and New Opportunities. J. Cardiovasc. Transl. Res. 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bruser, C.; Diesel, J.; Zink, M.D.; Winter, S.; Schauerte, P.; Leonhardt, S. Automatic detection of atrial fibrillation in cardiac vibration signals. IEEE J. Biomed. Health Inf. 2012, 17, 162–171. [Google Scholar] [CrossRef]
- Xiong, Z.; Liu, T.; Tse, G.; Gong, M.; Gladding, P.A.; Smaill, B.H.; Stiles, M.K.; Gillis, A.M.; Zhao, J. A machine learning aided systematic review and meta-analysis of the relative risk of atrial fibrillation in patients with diabetes mellitus. Front. Physiol. 2018, 9, 835. [Google Scholar] [CrossRef] [Green Version]
- Hurnanen, T.; Lehtonen, E.; Tadi, M.J.; Kuusela, T.; Kiviniemi, T.; Saraste, A.; Vasankari, T.; Airaksinen, J.; Koivisto, T.; Pänkäälä, M. Automated detection of atrial fibrillation based on time–frequency analysis of seismocardiograms. IEEE J. Biomed. Health Inf. 2016, 21, 1233–1241. [Google Scholar] [CrossRef]
- Asgari, S.; Mehrnia, A.; Moussavi, M. Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine. Comput. Biol. Med. 2015, 60, 132–142. [Google Scholar] [CrossRef]
- Andersen, R.S.; Peimankar, A.; Puthusserypady, S. A deep learning approach for real-time detection of atrial fibrillation. Expert Syst. Appl. 2019, 115, 465–473. [Google Scholar] [CrossRef]
- Wu, X.; Sui, Z.; Chu, C.H.; Huang, G. Detection of Atrial Fibrillation from Short ECG Signals Using a Hybrid Deep Learning Model. In International Conference on Smart Health; Springer: Berlin/Heidelberg, Germany, 2019; pp. 269–282. [Google Scholar]
- Nemati, S.; Ghassemi, M.M.; Ambai, V.; Isakadze, N.; Levantsevych, O.; Shah, A.; Clifford, G.D. Monitoring and detecting atrial fibrillation using wearable technology. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 3394–3397. [Google Scholar]
- Aschbacher, K.; Yilmaz, D.; Kerem, Y.; Crawford, S.; Benaron, D.; Liu, J.; Eaton, M.; Tison, G.H.; Olgin, J.E.; Li, Y.; et al. Atrial fibrillation detection from raw photoplethysmography waveforms: A deep learning application. Heart Rhythm. O2 2020, 1, 3–9. [Google Scholar] [CrossRef]
- Gadaleta, M.; Rossi, M.; Steinhubl, S.R.; Quer, G. Deep learning to detect atrial fibrillation from short noisy ecg segments measured with wireless sensors. Circulation 2018, 138, A16177. [Google Scholar]
- Sieciński, S.; Kostka, P.S.; Tkacz, E.J. Comparison of Atrial Fibrillation Detection Performance Using Decision Trees, SVM and Artificial Neural Network. In International Conference on Information Technology & Systems; Springer: Berlin/Heidelberg, Germany, 2019; pp. 693–701. [Google Scholar]
- Sadr, N.; Jayawardhana, M.; Pham, T.T.; Tang, R.; Balaei, A.T.; de Chazal, P. A low-complexity algorithm for detection of atrial fibrillation using an ECG. Physiol. Meas. 2018, 39, 064003. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.W.; Hau, Y.W.; Lim, C.W.; Othman, M.A. Artificial intelligence classification methods of atrial fibrillation with implementation technology. Comput. Assist. Surg. 2016, 21, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Lahdenoja, O.; Hurnanen, T.; Iftikhar, Z.; Nieminen, S.; Knuutila, T.; Saraste, A.; Kiviniemi, T.; Vasankari, T.; Airaksinen, J.; Pänkäälä, M.; et al. Atrial fibrillation detection via accelerometer and gyroscope of a smartphone. IEEE J. Biomed. Health Inf. 2017, 22, 108–118. [Google Scholar] [CrossRef]
- Xia, Y.; Wulan, N.; Wang, K.; Zhang, H. Detecting atrial fibrillation by deep convolutional neural networks. Comput. Biol. Med. 2018, 93, 84–92. [Google Scholar] [CrossRef]
- Cao, P.; Li, X.; Mao, K.; Lu, F.; Ning, G.; Fang, L.; Pan, Q. A novel data augmentation method to enhance deep neural networks for detection of atrial fibrillation. Biomed. Signal Process. Control 2020, 56, 101675. [Google Scholar] [CrossRef]
- Dörr, M.; Nohturfft, V.; Brasier, N.; Bosshard, E.; Djurdjevic, A.; Gross, S.; Raichle, C.J.; Rhinisperger, M.; Stöckli, R.; Eckstein, J. The WATCH AF trial: SmartWATCHes for detection of atrial fibrillation. JACC Clin. Electrophysiol. 2019, 5, 199–208. [Google Scholar] [CrossRef]
- Choudhury, S.; Bhowal, A. Comparative analysis of machine learning algorithms along with classifiers for network intrusion detection. In Proceedings of the 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), Chennai, India, 6–8 May 2015; pp. 89–95. [Google Scholar]
- Zhang, H.; Zhang, J.; Li, H.B.; Chen, Y.X.; Yang, B.; Guo, Y.T.; Chen, Y.D. Validation of single centre pre-mobile atrial fibrillation apps for continuous monitoring of atrial fibrillation in a real-world setting: Pilot cohort study. J. Med. Internet Res. 2019, 21, e14909. [Google Scholar] [CrossRef]
- Suykens, J.A.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Naraei, P.; Abhari, A.; Sadeghian, A. Application of multilayer perceptron neural networks and support vector machines in classification of healthcare data. In Proceedings of the 2016 Future Technologies Conference (FTC), San Francisco, CA, USA, 6–7 December 2016; pp. 848–852. [Google Scholar]
- Yang, X.; Shah, S.A.; Ren, A.; Zhao, N.; Zhang, Z.; Fan, D.; Zhao, J.; Wang, W.; Ur-Rehman, M. Freezing of gait detection considering leaky wave cable. IEEE Trans. Antennas Propag. 2018, 67, 554–561. [Google Scholar] [CrossRef]
- Cui, T.J.; Zoha, A.; Li, L.; Shah, S.A.; Alomainy, A.; Imran, M.A.; Abbasi, Q.H. Revolutionizing Future Healthcare using Wireless on the Walls (WoW). arXiv 2020, arXiv:2006.06479. [Google Scholar]
- Dashtipour, K.; Raza, A.; Gelbukh, A.; Zhang, R.; Cambria, E.; Hussain, A. PerSent 2.0: Persian Sentiment Lexicon Enriched with Domain-Specific Words. In International Conference on Brain Inspired Cognitive Systems; Springer: Berlin/Heidelberg, Germany, 2019; pp. 497–509. [Google Scholar]
- Jiang, F.; Kong, B.; Li, J.; Dashtipour, K.; Gogate, M. Robust Visual Saliency Optimization Based on Bidirectional Markov Chains. Cogn. Comput. 2020. [Google Scholar] [CrossRef]
- Hussien, I.O.; Dashtipour, K.; Hussain, A. Comparison of sentiment analysis approaches using modern Arabic and Sudanese Dialect. In International Conference on Brain Inspired Cognitive Systems; Springer: Berlin/Heidelberg, Germany, 2018; pp. 615–624. [Google Scholar]
- Adeel, A.; Gogate, M.; Farooq, S.; Ieracitano, C.; Dashtipour, K.; Larijani, H.; Hussain, A. A survey on the role of wireless sensor networks and IoT in disaster management. In Geological Disaster Monitoring Based on Sensor Networks; Springer: Berlin/Heidelberg, Germany, 2019; pp. 57–66. [Google Scholar]
- Dashtipour, K.; Gogate, M.; Adeel, A.; Hussain, A.; Alqarafi, A.; Durrani, T. A comparative study of persian sentiment analysis based on different feature combinations. In International Conference in Communications, Signal Processing, and Systems; Springer: Berlin/Heidelberg, Germany, 2017; pp. 2288–2294. [Google Scholar]
- Liu, S.H.; Li, R.X.; Wang, J.J.; Chen, W.; Su, C.H. Classification of photoplethysmographic signal quality with deep convolution neural networks for accurate measurement of cardiac stroke volume. Appl. Sci. 2020, 10, 4612. [Google Scholar] [CrossRef]
- Gogate, M.; Dashtipour, K.; Adeel, A.; Hussain, A. Cochleanet: A robust language-independent audio-visual model for speech enhancement. arXiv 2020, arXiv:1909.10407. [Google Scholar] [CrossRef]
- Dashtipour, K.; Gogate, M.; Adeel, A.; Algarafi, A.; Howard, N.; Hussain, A. Persian named entity recognition. In Proceedings of the 2017 IEEE 16th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), Oxford, UK, 26–28 July 2017; pp. 79–83. [Google Scholar]
- Ozturk, M.; Gogate, M.; Onireti, O.; Adeel, A.; Hussain, A.; Imran, M.A. A novel deep learning driven, low-cost mobility prediction approach for 5G cellular networks: The case of the Control/Data Separation Architecture (CDSA). Neurocomputing 2019, 358, 479–489. [Google Scholar] [CrossRef]
- Mammone, N.; Ieracitano, C.; Morabito, F.C. A deep CNN approach to decode motor preparation of upper limbs from time–frequency maps of EEG signals at source level. Neural Netw. 2020, 124, 357–372. [Google Scholar] [CrossRef]
- Gogate, M.; Adeel, A.; Hussain, A. Deep learning driven multimodal fusion for automated deception detection. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017; pp. 1–6. [Google Scholar]
- Gogate, M.; Adeel, A.; Marxer, R.; Barker, J.; Hussain, A. DNN driven speaker independent audio-visual mask estimation for speech separation. arXiv 2018, arXiv:1808.00060. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Rubin, J.; Parvaneh, S.; Rahman, A.; Conroy, B.; Babaeizadeh, S. Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ECG recordings. J. Electrocardiol. 2018, 51, S18–S21. [Google Scholar] [CrossRef]
- Warrick, P.A.; Homsi, M.N. Ensembling convolutional and long short-term memory networks for electrocardiogram arrhythmia detection. Physiol. Meas. 2018, 39, 114002. [Google Scholar] [CrossRef] [PubMed]
Layer | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Type | Co | Max | Co | Co | Max | Co | Global | F | F | |
Filters | 16 | 32 | 64 | 128 | ||||||
Kernal Size | 3 | 2 | 3 | 2 | 3 | 2 | 3 | |||
Neurons | 128 | 2 | ||||||||
Activation | ReLU | ReLU | ReLU | ReLU | ReLU | SoftMax |
Algorithms | Parameters |
---|---|
MLP | Max iteration = 300 |
SVM | Kernel Linear |
CNN, ResNet | Adam Optimizer, 10 Layer |
LSTM, Convolutional LSTM | 2-LSTM Layer, 0.2 probability |
XGBoost | Kernel Linear |
Logistic Regression | Random-state = 0 |
Models | F1-Score | ||||||
---|---|---|---|---|---|---|---|
Training Accuracy | Testing Accuracy | N | A | O | ∼ | Average | |
SVM | 0.9652 | 0.737 | 0.836 | 0.700 | 0.527 | 0.333 | 0.722 |
MLP | 0.9596 | 0.664 | 0.764 | 0.643 | 0.518 | 0.373 | 0.673 |
Logistic Regression | 0.9686 | 0.712 | 0.756 | 0.691 | 0.521 | 0.356 | 0.701 |
XGBoost | 0989 | 0.764 | 0.852 | 0.688 | 0.608 | 0.585 | 0.765 |
CNN | 0.9905 | 0.865 | 0.90 | 0.865 | 0.809 | 0.675 | 0.860 |
LSTM | 0.9949 | 0.875 | 0.921 | 0.869 | 0.812 | 0.681 | 0.863 |
Convolutional LSTM | 0.8652 | 0.811 | 0.78 | 0.75 | 0.71 | 0.70 | 0.81 |
ResNet | 0.8352 | 0.792 | 0.77 | 0.76 | 0.75 | 0.72 | 0.75 |
Models | F1-Score | ||||||
---|---|---|---|---|---|---|---|
Training Accuracy | Testing Accuracy | N | B | O | ∼ | Average | |
SVM | 0.923 | 0.712 | 0.786 | 0.697 | 0.56 | 0.486 | 0.78 |
MLP | 0.915 | 0.657 | 0.709 | 0.65 | 0.534 | 0.431 | 0.699 |
Logistic Regression | 0.92 | 0.708 | 0.741 | 0.684 | 0.54 | 0.472 | 0.70 |
XGBoost | 09525 | 0.682 | 0.711 | 0.677 | 0.56 | 0.481 | 0.74 |
CNN | 0.982 | 0.812 | 0.835 | 0.781 | 0.733 | 0.718 | 0.826 |
LSTM | 0.984 | 0.829 | 0.84 | 0.793 | 0.762 | 0.751 | 0.788 |
Convolutional LSTM | 0.972 | 0.801 | 0.80 | 0.79 | 0.79 | 0.772 | 0.78 |
ResNet | 0.953 | 0.784 | 0.77 | 0.76 | 0.74 | 0.72 | 0.74 |
Accuracy | Precision | Recall | F1-Score | Time | |
---|---|---|---|---|---|
SVM | 0.737 | 0.72 | 0.71 | 0.722 | 2 min 24 s |
MLP | 0.664 | 0.67 | 0.66 | 0.673 | 1 min 40 s |
Logistic Regression | 0.712 | 0.70 | 0.69 | 0.701 | 1 min 38 s |
XGBoost | 0.764 | 0.76 | 0.75 | 0.765 | 2 min 3 s |
CNN | 0.865 | 0.86 | 0.85 | 0.860 | 5 min 32 s |
LSTM | 0.875 | 0.86 | 0.85 | 0.86 | 6 min 28 s |
Convolutional LSTM | 0.811 | 0.81 | 0.80 | 0.81 | 5 min 02 s |
ResNet | 0.792 | 0.78 | 0.78 | 0.79 | 13 min 21 s |
Accuracy | Precision | Recall | F1-Score | Time | |
---|---|---|---|---|---|
SVM | 0.712 | 0.78 | 0.77 | 0.78 | 2 min 2 s |
MLP | 0.657 | 0.69 | 0.68 | 0.699 | 1 min 37 s |
Logistic Regression | 0.708 | 0.70 | 0.70 | 0.70 | 1 min 12 s |
XGBoost | 0.682 | 0.74 | 0.73 | 0.74 | 2 min 28 s |
CNN | 0.812 | 0.82 | 0.81 | 0.826 | 5 min 2 s |
LSTM | 0.829 | 0.78 | 0.77 | 0.788 | 5 min 31 s |
Convolutional LSTM | 0.8012 | 0.80 | 0.79 | 0.80 | 4 min 32 s |
ResNet | 0.784 | 0.78 | 0.77 | 0.78 | 14 min 18 s |
Layer | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
Layer 1 | 79.29 | 0.79 | 0.78 | 0.79 |
Layer 2 | 81.54 | 0.81 | 0.80 | 080 |
Layer 3 | 82.67 | 0.82 | 0.81 | 0.82 |
Layer 4 | 86.5 | 0.86 | 0.85 | 0.86 |
Layer 5 | 83.91 | 0.83 | 0.82 | 0.83 |
Layer | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
Layer 1 | 76.18 | 0.76 | 0.75 | 0.76 |
Layer 2 | 78.21 | 0.78 | 0.77 | 0.78 |
Layer 3 | 80.04 | 0.80 | 0.78 | 0.78 |
Layer 4 | 81.2 | 0.82 | 0.81 | 0.82 |
Layer 5 | 79.31 | 0.79 | 0.78 | 0.79 |
Layer | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
Layer 1 | 75.89 | 0.75 | 0.74 | 0.75 |
Layer 2 | 87.5 | 0.86 | 0.85 | 0.86 |
Layer 3 | 83.96 | 0.83 | 0.82 | 0.83 |
Layer | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
Layer 1 | 75.89 | 0.75 | 0.74 | 0.75 |
Layer 2 | 87.5 | 0.86 | 0.85 | 0.86 |
Layer 3 | 83.96 | 0.83 | 0.82 | 0.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liaqat, S.; Dashtipour, K.; Zahid, A.; Assaleh, K.; Arshad, K.; Ramzan, N. Detection of Atrial Fibrillation Using a Machine Learning Approach. Information 2020, 11, 549. https://doi.org/10.3390/info11120549
Liaqat S, Dashtipour K, Zahid A, Assaleh K, Arshad K, Ramzan N. Detection of Atrial Fibrillation Using a Machine Learning Approach. Information. 2020; 11(12):549. https://doi.org/10.3390/info11120549
Chicago/Turabian StyleLiaqat, Sidrah, Kia Dashtipour, Adnan Zahid, Khaled Assaleh, Kamran Arshad, and Naeem Ramzan. 2020. "Detection of Atrial Fibrillation Using a Machine Learning Approach" Information 11, no. 12: 549. https://doi.org/10.3390/info11120549
APA StyleLiaqat, S., Dashtipour, K., Zahid, A., Assaleh, K., Arshad, K., & Ramzan, N. (2020). Detection of Atrial Fibrillation Using a Machine Learning Approach. Information, 11(12), 549. https://doi.org/10.3390/info11120549