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Abstract: Object tracking in thermal video is challenging due to noise, blur, and low
contrast. We present TVEMamba, a Mamba-based enhancement framework with near-
linear complexity that improves tracking in these conditions. Our approach uses a State
Space 2D (S52D) module integrated with Convolutional Neural Networks (CNNs) to filter,
sharpen, and highlight important details. Key components include (i) a denoising module
to reduce background noise and enhance image clarity, (ii) an optical flow attention module
to handle complex motion and reduce blur, and (iii) entropy-based labeling to create a
fully labeled thermal dataset for training and evaluation. TVEMamba outperforms existing
methods (DCRGC, RLBHE, IE-CGAN, BBCNN) across multiple datasets (BIRDSAI FLIR,
CAMEL, Autonomous Vehicles, Solar Panels) and achieves higher scores on standard
quality metrics (EME, BDIM, DMTE, MDIMTE, LGTA). Extensive tests, including ablation
studies and convergence analysis, confirm its robustness. Real-world examples, such as
tracking humans, animals, and moving objects for self-driving vehicles and remote sensing,
demonstrate the practical value of TVEMamba.

Keywords: Thermal video enhancement; Mamba model; motion deblurring; video processing

1. Introduction

Visually appealing videos are essential not only for human perception but also for
advanced computer vision tasks. Unfortunately, many videos are captured under chal-
lenging conditions that cause poor visibility, structural degradation, and unpredictable
noise. These issues significantly reduce the performance of automated image analysis
systems and object-tracking algorithms used in surveillance [1], monitoring [2], intelligent
transportation [3], and remote sensing [4]. Object tracking involves identifying and fol-
lowing objects across visible and thermal video frame sequences. Traditional methods
often rely on the Kalman filter, assuming linear motion. However, these methods struggle
when objects exhibit complex, non-linear motions or when videos suffer from uneven
illumination, motion blur, and noise.

Many algorithms have been developed to enhance videos in the visible spectrum
(VIS) [5], yet they still face challenges in varying illumination and low-light conditions.
Improving low-light or nighttime imagery requires a deep understanding of how light
interacts with the scene and how images are formed. In response, thermal imaging has
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emerged as a reliable solution, especially in environments where VIS images perform poorly.
For real-world applications, sensors that operate in different spectrums are often necessary
to accommodate changing lighting conditions. Studies have shown that thermal infrared
data can improve the accuracy of object tracking, semantic segmentation, saliency detection,
and object detection. Thermal videos are also widely used in wildlife monitoring [6],
surveillance [7], military operations [8], security [9], and remote sensing [10]. Nevertheless,
they pose their own difficulties, such as low contrast, motion blur, and loss of fine details,
making it harder to detect targets or enhance infrared imaging technologies, as shown in
Figure 1a.
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Figure 1. (a,c) Challenging thermal video frames. (b,d) Successful recovery and enhancement by
TVEMamba.

Thermal Video Enhancement (TVE) techniques aim to improve the visual quality of
thermal footage for automated processing tasks, such as analysis, detection, segmentation,
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and recognition. Existing thermal video enhancement methods can be broadly categorized
into three main approaches, each with specific limitations: Single-frame Enhancement
Methods: Recent works like MdNet [11] and GAPANet [12] focus on enhancing individual
frames using multi-scale feature fusion and attention mechanisms. While these methods
effectively improve local contrast and details, they often introduce temporal inconsistencies
when applied to videos due to frame-by-frame processing. Additionally, they struggle with
motion-induced artifacts since they lack temporal context. Learning-based Hybrid Methods:
Recent advances include NSCT-based dual CNN models [13,14] and GAN-ViT [15,16],
which combine multiple architectural components to address various enhancement aspects.
While these approaches promise to handle noise and improve contrast, they often struggle
with computational efficiency and real-time processing requirements. Furthermore, their
enhancement quality can be inconsistent across different scenes and thermal conditions.
Multi-frame Methods: Approaches, such as Shift-Net [17] and AverNet [18], attempt to
leverage temporal information through frame alignment and spatial-temporal modules.
However, these methods face challenges in rapid motion or complex thermal patterns.
Their reliance on explicit frame alignment can fail when dealing with non-rigid motion or
thermal variations, resulting in ghosting artifacts and blur in the enhanced output.

Common limitations across existing methods include the following: (1) Loss of fine
details during denoising, particularly in regions with subtle thermal gradients, (2) Inabil-
ity to handle diverse scenarios with varying thermal patterns and motion complexities,
(3) Temporal inconsistencies in enhanced video sequences, and (4) Artifacts and distorted
features under challenging conditions (see Table 1).

Table 1. Comparative analysis of thermal image enhancement methods across key performance
metrics (v': Fully Performs, +: Partially Performs).

DCRGC RLBHE IE-CGAN BBCNN  AverNet Shift-Net IDTransformer TVEMamba

Noise reduction
Balanced contrast
Handles underexposed areas
Handles overexposed areas
Edge preservation
Maintains natural brightness
Handles complex textures
Artifact-free output

v +
v v +

+ v
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SHH
HSH HHH S
H S SHH RS
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Overcoming these challenges is crucial to achieve robust performance in real-world ap-
plications. One potential direction involves incorporating blur-resistant motion deblurring
methods that leverage the inherent properties of thermal scenes, providing more reliable
and adaptive enhancement.

Enhancing thermal videos is inherently more complex than working with visible
light footage. It involves dealing with low image contrast, sensor noise, rapid motion,
and limited spatial resolution, which vary with environmental factors, target types, and
imaging devices, as shown in Figure 1. Illumination inconsistencies, camera jitter, and
atmospheric effects further complicate the task, demanding algorithms that can adapt
to different conditions. Addressing these issues can support various applications, from
navigation and safety in autonomous systems to reliable object detection in surveillance
under unpredictable environments.

This paper addresses critical challenges in thermal video enhancement, where existing
methods often struggle with severe sensor noise, motion artifacts, and loss of fine details.
These issues are particularly pronounced in thermal imaging due to inherent sensor lim-
itations and the complex nature of infrared radiation capture. Traditional enhancement
approaches, primarily based on CNNS, face limitations in handling the temporal aspects
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of thermal videos and often produce results with temporal inconsistencies or motion blur.
The proposed Mamba-based architecture offers two key advantages. First, its selective
state space mechanism effectively models long-range dependencies in spatial and temporal
dimensions. This enables our model to process longer video sequences while capturing
subtle temporal patterns crucial for consistent enhancement. Second, unlike conventional
CNNs focusing on local features, Mamba’s state space formulation allows adaptive feature
extraction across varying temporal scales, which is essential for handling diverse motion
patterns in thermal videos [19].

We integrate this core architecture with two specialized modules: A Basic Denoising
(BD) module for addressing thermal sensor noise and an Optical Flow Attention (OFA)
module for precise motion handling. The OFA module targets complex motion patterns
by adaptively focusing on motion-relevant regions, ensuring temporal consistency even
under challenging conditions like rapid movement or varying thermal gradients. This
comprehensive approach enables our method to produce enhanced thermal videos with
improved clarity, reduced noise, and preserved temporal coherence, making it particularly
suitable for critical applications in surveillance, autonomous navigation, and industrial
monitoring. The main contributions are as follows:

1.  We introduce a novel Mamba model for thermal video enhancement that integrates
the SS2D module with CNNs to handle complex motions and challenging lighting
conditions. This model includes:

(@)  The Basic Denoising module, which reduces noise and improves image quality.
(b)  The Optical Flow Attention module, which provides blur-resistant motion
deblurring and preserves scene details even under challenging circumstances.

2. We create a labeled thermal video dataset using entropy-based measures to produce
meaningful labels for training and evaluation. This dataset includes over three video
sequence pairs, with 4k frame pairs.

3. We evaluate the proposed framework on real-world scenarios like wildlife monitoring
and autonomous systems. Our experiments cover diverse thermal video datasets,
including BIRDSAI [20], FLIR [21], CAMEL [22], Autonomous Vehicles [23], and Solar
Panel [24], each presenting unique challenges. Compared to two traditional meth-
ods, DCRGC [25] and RLBHE [26], as well as five deep learning-based approaches,
IE-CGAN [13], BBCNN [27], IDTransformer [28], AverNet [18], and Shift-Net [17],
the presented Mamba model consistently outperforms existing solutions. This is
demonstrated through qualitative improvements and quantitative assessments us-
ing state-of-the-art thermal image quality measures, such as EME [29], BDIM [30],
DMTE [31], MDIMTE [31], LGTA [32] and BIE [33].

The integrated design of the Mamba network combines the adaptability of deep
learning with the stability of state space modeling, resulting in enhanced robustness,
efficiency, and applicability. This makes it well suited for complex real-world tasks, such
as reliable perception for navigation and safety, effective surveillance under challenging
conditions, and improved imaging for security, military, and remote sensing applications.

The rest of the paper is organized as follows. Section 2 provides background informa-
tion on thermal video enhancement and its challenges and reviews related work on existing
thermal video enhancement methods, including traditional and deep learning approaches.
Section 3 details the proposed TVEMamba framework, outlining its architecture and de-
scribing the data generation process. Section 4 presents experimental results, including
qualitative and quantitative comparisons across datasets, with an ablation study and object
detection performance. Finally, Section 5 summarizes the contributions of this work and
highlights potential future research directions.
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2. Related Works
2.1. Thermal Imaging Enhancement Models

Thermal image enhancement algorithms are generally divided into two main categories:
traditional methods and learning-based methods. Traditional approaches [11-17,25,26]
rely exclusively on patterns learned from unlabeled data. A fundamental technique in
this category is Histogram Equalization (HE) [34], which approximately equalizes the
cumulative distribution function of the histogram to map pixel intensities. However, HE
often over enhances image contrast because it does not have a way to control the level
of enhancement. To address this, Adaptive Histogram Equalization (AHE) [26,35] was
developed to preserve more image details compared to standard HE techniques. Despite
its advantages, AHE can still cause over enhancement in certain image regions due to
homogeneous blocks. Contrast adjustment techniques [25] aim to enhance visibility by
adjusting intensity values and improving overall contrast. These methods are effective but
may perform poorly on images with uneven illumination. Wavelet-based methods [36]
decompose an image into different frequency components, allowing separate processing to
enhance details and reduce noise. Discrete stationary wavelets are often used in this process.
However, these methods require careful parameter selection and can be computationally
intensive. Improper management may introduce artifacts into the image. Gradient Field
Equalization [37] focuses on improving contrast and reducing noise. While effective in
some scenarios, these methods often struggle in complex situations and can sometimes
over enhance images, leading to noise amplification and brightness distortion. Frequency-
domain-based thermal infrared image enhancement algorithms [38] have also been widely
employed. These techniques transform images into the frequency domain, utilize high-pass
filters to extract high-frequency components, enhance them, and then convert the images
back to the spatial domain.

In contrast, deep learning-based methods leverage neural networks to learn and apply
enhancement processes. By utilizing large datasets, these methods effectively address is-
sues like low contrast, noise, and blurred details, making thermal images more suitable for
analysis. For instance, MdNet [11] filters thermal radiation effects and enhances features at
different scales, addressing noise and low contrast in infrared images based on multi-scale
feature fusion. However, it cannot achieve fine processing of features, which limits its
ability to fully capture intricate details. Kuang et al. [13] developed a conditional generative
adversarial network designed to minimize the amplification of background noise while
improving contrast and detail clarity. Shen et al. [28] introduced the Infrared Image De-
noising Transformer, a symmetric encoder-decoder framework aimed at mitigating noise,
low contrast, and quality degradation in infrared images. The architecture integrates a
Convolutional Transposed Self-Attention Block to capture both long-range dependencies
and local context, along with Convolutional Gated Linear Units and a Channel Coordinate
Attention Block to enhance feature representation. Marnissi et al. [15] proposed the Ther-
mal Enhancement Vision Generative Adversarial Network, which combines a Generative
Adversarial Network (GAN) with a Vision Transformer (ViT). This approach uses a U-Net
model for image generation and incorporates two ViT modules as discriminators to effec-
tively capture global and local features, improving detail and contextual understanding.
The main properties of thermal image enhancement methods, including their strengths and
limitations, are summarized in Table 1. This table provides a systematic comparison across
key performance metrics.

2.2. Video Enhancement Models

Video enhancement techniques are crucial for improving the quality of low-quality
videos, making them clearer and more suitable for applications, such as surveillance,
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identity verification, traffic monitoring, and object recognition [39,40]. The primary goal is
to enhance the video’s visual appearance or provide better representations for automated
processing tasks [41]. Like thermal image enhancement methods, video enhancement
algorithms can be broadly classified into two main categories: traditional and context-based
fusion methods. Table 2 highlights the benefits and limitations of thermal video technology.

Table 2. Benefits and Limitations of Thermal Video Technology.

Benefits Limitations

Objects can be observed in no light conditions Difficulty distinguishing between objects in proximity or of

(dark environments).

similar temperatures.

High performance in all weather conditions (rain, fog,

snow, smoke).

Generally, lower resolution compared to visible light images.

Opportunities for surveillance over large distances and areas,
detecting motion over a wide range.

Cannot see through glass or water, as these materials reflect
infrared radiation, limiting use cases like capturing images of
individuals in cars.

Detection of objects even when partially hidden by vegetation. = More expensive than visible light cameras.

Promotes early detection of thermal anomalies (e.g., equipment
overheating, fire hazards), contributing to preventive

safety measures.

Cannot identify detected individuals, as infrared radiation does
not create detailed enough images.

Traditional methods include spatial-based domain and transform-based domain tech-
niques [42]. Spatial-based domain methods operate directly on the pixels of video frames
and encompass techniques like contrast enhancement, histogram equalization, and tone
mapping. Tone mapping is another approach used primarily for high-dynamic-range
(HDR) videos. It compresses the luminance levels to displayable ranges on standard
devices, enhancing visibility in underexposed areas [43].

Transform-based domain methods modify the frequency components of video frames
using techniques like the Discrete Cosine Transform (DCT) and wavelet transforms.
Compressed-domain enhancement enhances videos directly in the compressed domain
by manipulating transform coefficients, reducing computational complexity and storage
requirements [44]. Adjusting DCT coefficients can improve contrast and reduce noise
without fully decompressing the video. Wavelet-based methods decompose video frames
into different frequency components, allowing separate processing to enhance details and
reduce noise [45].

Another significant approach is context-based fusion enhancement, combining infor-
mation from multiple frames or integrating high-quality background data into low-quality
videos [46,47]. This method leverages additional contextual information to enhance video
quality, especially under challenging conditions like low light or uneven illumination.
Image fusion techniques use Retinex theory to separate illumination and reflectance com-
ponents, enabling better contrast and detail preservation [48]. By fusing images captured
under different lighting conditions, it is possible to enhance the visibility of important scene
elements. Motion detection and enhancement utilize algorithms like Gaussian Mixture
Models (GMM) to detect moving objects, allowing selective enhancement of these areas [49].
This improves overall visual quality and better detection of important scene elements. Shift-
Net [17] introduced an efficient framework leveraging grouped spatial-temporal shift
modules to implicitly combine inter-frame information. While the approach demonstrates
strong performance, it faces limitations in processing long-sequence videos and exhibits
high memory usage. EvLowLight [50] maintains temporal coherence by estimating motion
from both events and frames while aligning spatial details across their different resolu-
tions. However, it directly merges features from events and images without addressing
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noise variations in different local regions. ViWS-Net [16] utilizes degradation messenger
tokens to capture specific degradation characteristics and guide the restoration process,
effectively addressing unknown types of degradations. In comparison, AverNet [18] intro-
duces a video restoration network specifically designed to handle time-varying unknown
degradations. It employs a Prompt-Guided Alignment module for frame alignment and a
Prompt-Conditioned Enhancement module for restoring diverse degradations, effectively
addressing not only unknown degradation types but also their temporal variations.

Ensuring temporal coherence between frames is crucial to avoid flickering and main-
taining visual consistency [51]. In summary, video enhancement techniques play a vital
role in improving the clarity and usability of videos.

2.3. State Space Models

The Mamba [52] model is an advanced dynamic state space model (SSM) featuring
efficient selection mechanisms, gaining popularity in computer vision. Its main advantage
is handling long-range dependencies in data while maintaining linear computational
complexity. This significantly improves over traditional transformers, which suffer from
quadratic complexity as image sizes increase. Mamba has shown promising results in
various visual tasks, such as image classification, feature enhancement, and multi-modal
fusion [53]. Due to its efficiency, it is poised as a strong candidate to potentially replace
CNNs and transformers as the foundational architecture in visual applications.

Recently, Mamba has been successfully applied to various applications, including
image enhancement, video analysis, and object detection [54]. These applications highlight
its versatility and significant potential to enhance the accuracy and efficiency of computer
vision systems. By effectively managing long-range dependencies and keeping computa-
tional demands low, Mamba offers a robust solution for modern visual tasks, paving the
way for advancements in the field.

Our work integrated the SSM into visual tasks by following the approach outlined
in [55]. The SS2D module in our model consists of three primary operations: Scan Expand-
ing, S6 blocks, and Scan Merging. Initially, the input images undergo the Scan Expanding
operation, which systematically unfolds the image from its four corners toward the center.
This rearrangement of the spatial structure allows the model to capture features from
different spatial regions more effectively. Then, the image is flattened, and the sequence
is fed into the S6 module responsible for feature extraction. The operations within the S6
module can be expressed as:

hy = Axh;_1+ Bx*xx; (1)

Yt :C*ht (2)

where, I; represents the latent state at time £, x; represents the input variable, y; is the
output, and A, B, and C are learnable parameters. The features extracted from the four
directions are then summed and merged, and the dimensions of the merged output are
adjusted to match the original input size. After processing through the S6 blocks, the Scan
Merging operation restores the spatial structure by reorganizing the flattened sequence
back into its two-dimensional form. This combination of scan operations enables the SS2D
module to effectively capture both local and global features in the image, enhancing feature
extraction for our visual tasks.

3. Materials and Methods
3.1. Network Structure

Figure 2 illustrates the presented TVEMamba framework, which consists of three
modules: a sharpening and denoising network (SD-Net), a blur-resistant motion estimation
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network (BRME-Net), and a motion deblurring network (MD-Net). This framework follows
three steps to enhance clarity, contrast, and detail in thermal videos.
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Figure 2. (a) Overall architecture of TVEMamba, (b) Basic denoising state space model and attention-
based state space model, and (c) Basic denoising module and optical flow attention module.

Step 1: SD-Net (see Figure 2a) improves the sharpness of thermal images and removes
noise using a Mamba-based network with an encoder-decoder structure, capturing local
and long-range contextual features. Both processes are symmetric and divided into two
levels. Each downsampling level consists of a Basic Denoising State Space Model (BDSSM),
a downsampling operation, and a convolutional layer with a kernel size of 3 x 3. Similarly,
upsampling involves two levels: an upsampling operation, a 1 X 1 convolution applied to
the merged features from the corresponding downsampling layer, and a BDSSM. Finally,
a 3 x 3 convolution is applied to the image to reduce dimensionality and restore it to
grayscale with a single channel. The BDSSM block includes a Basic Denoising (BD) module
consisting of four consecutive convolutional layers followed by a residual connection (see
Figure 2¢), an SS2D module, a normalization layer, and a feed-forward network (FEN), as
shown in Figure 2b.

Step 2: Then BRM-Net (see Figure 2a) takes three consecutive input frames from the
previous step, T;_1, T¢, and T;1, where T; is the t-th input frame, then estimates the optical
flow W;_q from T;_; to Ty and W; from T; to Ty, 1. The BRM-Net architecture is based on
NeuFlow [56], which computes optical flow between two images. We adopt NeuFlow
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for BRM-Net due to its comparable accuracy to NeuFlowV2 [57] but with significantly
fewer parameters. The architecture follows a global-to-local scheme: global matching is
performed on a 1/16 resolution to capture large displacements, followed by refinement at
1/8 resolution using lightweight CNN layers for improved accuracy.

NeuFlow was chosen over traditional non-learning-based methods, such as Lucas—
Kanade [58], and TV-L1 [59], because these approaches rely heavily on gradient or intensity
differences, which often struggle with challenging scenarios like significant motion blur.
While methods like TV-L1 incorporate Total Variation regularization, making them more ro-
bust to noise and mild blur compared to simpler methods like Lucas—Kanade, they are still
limited in handling significant motion blur and large displacements. Additionally, tradi-
tional methods are computationally intensive for high-resolution data due to their iterative
optimization processes and rely on fixed mathematical models that require manual tuning
to adapt to diverse data distributions. NeuFlow, in contrast, demonstrates robustness in
handling large displacements and ambiguities while maintaining computational efficiency.
Its ability to capture global motion through low-resolution matching and refine details
using lightweight CNN layers makes it particularly suitable for challenging environmental
conditions, where images often exhibit significant blur and complex motion.

Step3: The MD-Net (see Figure 2a) is applied in the final stage of the enhancement
process. It takes as input the frames T;_1, Tt, T;41, and the optical flows W;_; and W;
to generate a blur-free, corrected T; frame (see Figure 1b). Both stages of TVEMamba
are built on a U-Net-based encoder—decoder architecture with the integration of vision
Mamba. Similar to SD-Net, MD-Net employs a two-level encoder-decoder structure;
however, instead of BDSSM, we apply an Attention-Based State Space Model (ABSSM),
which includes an Optical Flow Attention (OFA) module, an SS2D module, a normalization
layer, and a feed-forward network (FFN) (see Figure 2b). The OFA module uses two
branches to generate attention weights based on both local and global features. The
branches share a similar structure, utilizing convolutional layers, but the global branch
uses dilated convolutions to capture more global features. The outputs from both branches
are concatenated, and the final convolution layer generates a weight map for Ty_1, T, Ty14
frames, as shown in Figure 2c.

3.2. Training and Dataset
3.2.1. Dataset Generation

The experiments were conducted on the FLIR dataset [21]. Since no thermal video
dataset with ground-truth labels is available, we generated synthetic labels using two
methods, as shown in Figure 3. First, we applied a sharpening technique [60] with the
following parameters: patch radius r = 11, epsilon ¢ = 0.01, scale s = 1, and kappa k where
k was chosen from a range of 4 to 6, incremented in steps of 0.2, based on the entropy
measure for thermal images [33]. However, thermal images are inherently noisy, and the
sharpening process amplifies this noise. We applied a denoising method [61] to address
this, utilizing a recurrent network with non-local operations for image restoration. Two
denoising models were employed, using noise levels of 15 and 25. Images denoised at
noise level 15 retained a small amount of noise, while those at noise level 25 were noise-free
but lost small details. To balance noise reduction and detail preservation, we merged the
two denoised images using the following formula:

ILubel =C* Inoise:25 + (1 - C) * Inoise:15 (3)

where ¢ = 0.6. This approach allowed us to generate high-quality synthetic labels. The data
generation process took approximately six days. The dataset contains three videos, totaling
4224 image frames with a resolution of 640 x 512.
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Figure 3. This figure shows the original image from FLIR [40], the corresponding sharpened image,
denoised images with different noise levels, and the final merged result.

3.2.2. Sharpening and Denoising Network

SD-Net was trained for 250 epochs using the Adam optimizer with an initial learning
rate of 1 x 10~%. The experiments were conducted on the above-described dataset. Simple
augmentation techniques were applied to increase generalizability, such as horizontal
and vertical flips and random cropping to 256 x 256-pixel patches. All experiments were
performed on an NVIDIA RTX 4090 GPU with 24 GB of memory. The network was trained
using the following loss function:

LSD = MSE(IInputr ILabel) (4)

where MSE [62] is the Mean Squared Error, which minimizes the difference between the
predicted and labeled images, Ij;p,; represents the input image and I 4 represents the
sharp generated label image.

3.2.3. Blur-Resistant Motion Estimation Network

NeuFlow was initially trained using blur-free datasets that provide ground-truth
optical flow maps, such as Sintel [63], KITTI [64], and HD1K [65]. However, thermal
videos often contain blur, resulting in inaccurate optical flow estimations. Unfortunately,
no available datasets offer ground-truth optical flow maps for blurry images. To overcome
this limitation, we fine-tuned our BRM-Net using a blurred video dataset [66] that contains
pairs of sharp and blurred videos. The blurred video dataset was created by capturing
sharp videos at high frame rates and averaging adjacent frames to simulate blur. The
dataset contains 71 pairs of blurry videos and corresponding sharp versions, providing
6708 pairs of 1280 x 720 blurred and sharp frames. We generated optical flow maps for
training using only the sharp frames, employing the NeuFlow model. However, during
optical flow generation, the model failed to generate accurate flow for certain videos. The
accuracy of optical flow predictions can depend on the dataset on which the optical flow
method was initially trained. The failed images may have a different distribution than the
training dataset. After filtering out videos with inaccurate flow estimates, the final dataset
for training consisted of 46 videos, totaling 4369 frames. Inspired by [67], we used the same
estimated optical flow map for the following pairs:

(T, i), (i, T, (T, T, (T, T, (5)
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The network was trained for 300 epochs using the Adam optimizer, with an initial
learning rate of 1 x 10~%. The input images were cropped to 256 x 256 pixels. The network
was trained using the following loss function:

Lpr = MSE(Wtle’blw, Wt) + MSE (Wtblur,sharp, Wt)—I—MSE (Wtsharp,blur, Wt) + MSE (Wtshurp,shurpl Wt) (6)

where, Wt* ”*, is optical flow predicted by BRM-Net using (T}, T;) frames and W; is the
label generated by the same network using only sharp frames, where * o {blur, sharp}.

3.2.4. Motion Deblurring Network

The MD-Net was trained over 300 epochs using the Adam optimizer, with an initial
learning rate of 5 x 10~%. For training, we utilized the same dataset as in BRM-Net, which
consists of 46 pairs of blurry videos and their corresponding sharp videos. We used data
augmentation techniques, including horizontal and vertical flips and random cropping to
256 x 256 pixel patches. The network was trained using the following loss function:

Lup = MSE (Tt, Tf’“””) )

where MSE is the Mean Squared Error, which minimizes the difference between the pre-
dicted and target images, T; represents the network’s prediction, and Tf harp represents the
sharp ground-truth frame.

4. Results

This Section presents the experimental results of the proposed TVEMamba framework,
positioning it alongside several established enhancement methods. For comparison, we
selected two representative traditional approaches, DCRGC [25] and RLBHE [26], and
five deep learning-based methods, IE-CGAN [13], BBCNN [27], IDTransformer [28], Av-
erNet [18], and Shift-Net [17]. These methods were chosen due to their relevance in
addressing the common challenges of thermal imaging, such as low contrast and noise,
and their demonstrated effectiveness in various thermal image enhancement tasks.

By conducting a comparative analysis, we aim to identify each technique’s unique
contributions and potential limitations, including their ability to maintain image integrity,
enhance critical features, and avoid common artifacts. While some existing methods may
offer marginal improvements in contrast, they often come at the cost of increased noise or
halo effects that undermine the overall image quality. In contrast, the TVEMamba achieves
a favorable balance between visual clarity and structural fidelity, providing a more stable
and versatile foundation for tasks like object detection. This combination of enhancement
quality and robustness under varying lighting conditions highlights the practical value of
TVEMamba in real-world thermal imaging scenarios.

4.1. Qualitative Comparision

Figure 4 presents a qualitative comparison of the TVEMamba framework against
several established thermal image enhancement methods applied to a variety of datasets,
including BIRDSAI [20], FLIR [21], CAMEL [22], Autonomous Vehicles [23] and Solar Pan-
els [24]. In some cases, DCRGC can achieve balanced contrast, but it frequently introduces
halo artifacts and amplifies noise (Figure 4a,c). These issues become especially noticeable
in images that are too dark or bright, ultimately reducing their overall visual quality and
usefulness. RLBHE applies smaller contrast adjustments but is highly sensitive to bright
areas, making already bright regions even more intense while failing to reduce existing
noise. IE-CGAN, while aiming to reduce noise in underexposed scenes, often produces
overly dark images that obscure subtle details critical for further analysis (Figure 4c,d).
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IE-CGAN

Conversely, when dealing with overexposed images, it tends to over brighten them, causing
the loss of important features (Figure 4b). BBCNN, on the other hand, does not sufficiently
highlight dark defects, resulting in the loss of essential information. It also struggles to
maintain consistent brightness and contrast across different scenes, occasionally introduc-
ing artifacts. Furthermore, its tendency to add excessive sharpness can distort the natural
appearance of the images, potentially leading to misinterpretation. AverNet can effectively
remove small amounts of noise without significantly changing the contrast (Figure 4c,d).
However, it struggles in more complex and challenging situations, where it fails to enhance
subtle details. This leaves more complicated noisy or hidden features untouched, reducing
its effectiveness under such conditions. Shift-Net and IDTransformer handle more complex
noise than AverNet and are capable of addressing some challenging scenarios. However,
both methods fail to improve contrast effectively and cannot manage motion blur ade-
quately. As seen in Figure 4a,b, this limitation results in images becoming blurrier and
losing critical details, particularly in scenes with dynamic elements or intricate textures.

DCRGC RLBHE - BBCNN AverNet ‘ Shift-Net IDTransformer TVEMamb

Figure 4. Visual comparison on (a) BIRDSAI [50], (b) FLIR [40], (¢) CAMEL [51], and (d) Autonomous
Vehicles [52] datasets.

In comparison, TVEMamba achieves a more balanced enhancement. It preserves
structural details, maintains natural brightness and contrast levels, and reduces noise
without introducing distracting artifacts. Even under difficult scenarios, such as low-light
conditions, moving elements, or complex textures, TVEMamba consistently produces
stable, clear, and visually coherent frames. Additionally, Figure 5 provides a detailed view
of how our TVEMamba framework preserves and refines subtle features in the image. The
improvement in edge sharpness, textural fidelity, and balance of contrast and brightness is
visible, underscoring the method’s ability to recover important scene details. Moreover,
a simple colorization technique enhances the image interpretability, allowing distinct
elements to stand out more clearly.
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Figure 5. Performance of TVEMamba on BIRDSAI dataset.

Finally, Figure 6 illustrates the effectiveness of our TVEMamba framework on a
low-quality solar panel video dataset. This figure displays five sequential frames from
the original video (top row) and their enhanced counterparts generated by TVEMamba
(bottom row). The input frames suffer from poor visibility and a lack of detail, making it
difficult to identify subtle structural features. In contrast, the enhanced frames significantly
improve clarity, contrast, and edge definition. TVEMamba highlights critical details and
ensures smooth temporal consistency across frames, an essential factor for video analysis
applications. This example further demonstrates the robustness and adaptability of our
model in handling challenging real-world scenarios.

Frame 2 Frame 3 Frame 4 Frame 5

Figure 6. Qualitative results of TVEMamba framework on Solar Panel video frames.
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4.2. Quantitative Comparision

To assess the effectiveness of the TVEMamba framework, we used six non-reference
image quality metrics as follows: (i) Measure of Enhancement (EME) [29], which evaluates
image contrast entropy on a block basis rather than individual pixels. This metric is essential
for assessing enhanced images and highlighting contrast variations within blocks. (ii) Block
Distribution-Based Information Measure (BDIM) [30], which quantifies the information in
image blocks by examining local contrast and structural details. It ensures that fine details
are preserved and enhanced effectively. (iii) Density-based Measure of Thermal-image
Enhancement (DMTE) [31], which incorporates elements of the human visual system with
density-based analysis. (iv) Global Contrast Measure of Enhancement (MDIMTE) [31],
which combines features related to human vision, information theory, and distribution-
based metrics. This measure provides a holistic assessment of enhancement quality by
focusing on overall contrast improvements that align with human perception and effective
information distribution. (v) Local and Global Thermal Assessment (LGTA) [32], which
integrates both local and global features to evaluate thermal image quality comprehen-
sively. By combining block-level analysis with global intensity distribution, it closely aligns
with human perception, offering nuanced insights into image clarity and enhancement.
(vi) Block-Wise Image Entropy (BIE) [33], which captures the informational content of
thermal images by combining local and global data, is specifically designed to assess ther-
mal images. Unlike traditional entropy-based measures, BIE evaluates image quality and
enhancement by preserving fine structural details and ensuring a balanced distribution of
information across the image.

High scores across these metrics indicate superior enhancement and a more natural
visual appearance. Table 3 presents the comparative analysis, showcasing TVEMamba'’s
performance against existing methods. Our approach outperforms both traditional and
CNN-based methods, achieving the highest average scores across all metrics. These results
demonstrate TVEMamba'’s outstanding ability to enhance thermal images while preserving
critical details and maintaining a realistic appearance.

Table 3. Quantitative comparison of TVEMamba with the state-of-the-art methods.

BBCNN DCRGC IE-CGAN RLBHE AverNet Shift-Net IDTransformer TVEMamba
BIRDSAI
EME 10.060 20.264 17.748 18.377 9.721 8.772 9.929 22.942
DMTE 0.297 0.297 0.296 0.297 0.299 0.260 0.297 0.299
MDIMTE 45.060 42.620 31.620 46.001 44,994 43.784 46.824 47.132
BDIM 0.974 0.986 0.988 0.986 0.970 0.867 0.967 0.991
LGTA 1.158 1.167 1.423 1.154 1.119 1.122 1.151 1.172
BIE 0.085 0.098 0.076 0.088 0.086 0.084 0.099 0.109
CAMEL
EME 14.633 24.214 24.010 23.796 17.140 17.520 14.728 25.371
DMTE 0.293 0.292 0.290 0.294 0.296 0.295 0.293 0.296
MDIMTE 39.833 41.309 32.004 40.747 40.680 41.117 41.731 42.786
BDIM 0.990 0.988 0.992 0.990 0.984 0.983 0.981 0.994
LGTA 1.239 1.235 1.381 1.089 1.166 1.135 1.141 1.548
BIE 0.070 0.091 0.074 0.087 0.078 0.069 0.070 0.098
FLIR
EME 10.743 13.424 10.560 11.185 9.842 9.679 8.345 14.152
DMTE 0.295 0.296 0.295 0.294 0.298 0.297 0.297 0.298
MDIMTE 43.801 40.627 41.024 42.486 49.002 48.060 50.012 50.146
BDIM 0.972 0.977 0.965 0.971 0.963 0.961 0.958 0.982
LGTA 1.137 1.146 1.105 1.080 1.116 1.111 1.120 1.167
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BBCNN DCRGC IE-CGAN RLBHE AverNet Shift-Net IDTransformer TVEMamba

BIE 0.183 0.180 0.192 0.196 0.199 0.202 0.207 0.227
Autonomous Vehicles

EME 2.929 3.088 7.260 8.130 5.492 3.115 7.141 12.513
DMTE 0.299 0.298 0.297 0.297 0.299 0.298 0.300 0.310
MDIMTE 51.517 48.326 53.659 47.925 55.380 41.529 56.013 57.369
BDIM 0.937 0.959 0.943 0.957 0.937 0.922 0.923 0.963
LGTA 1.180 1.393 1.189 1.411 1.253 1.205 1.223 1.499
BIE 0.093 0.182 0.088 0.150 0.095 0.092 0.096 0.097

4.3. Evaluation Metrics for Object Detection

To validate our approach for thermal video enhancement, we employed object de-
tection methods and evaluated their performance using standard metrics: mAP(5 and
mAPg5.095. These metrics are widely used to assess object detection models’ localization
and classification accuracy. Precision and recall are fundamental components of these eval-
uations, where precision measures the proportion of true positive samples in all of the
predicted positive samples, and recall is used to measure the proportion of true positive
samples in all of the predicted positive samples. These can be mathematically expressed as:

. TP
precision = TP L EP (8)
TP
l=—+——
Tt = TP EN ©)

where, TP (True Positive) represents the number of objects that are correctly recognized as
belonging to the target class, FP (False Positives) refers to the number of instances where
non-target objects are incorrectly identified as belonging to the target class, and FN (False
Negatives) indicates the number of instances where target objects are incorrectly classified
as non-target objects.

We use Intersection over Union (IoU), which measures the overlap between the pre-
dicted bounding box and the ground-truth bounding box to assess the accuracy of the
predicted bounding boxes. Mathematically, IoU is defined as the ratio of the intersection of
the two bounding boxes to their union:

[Bg N By|

IoU =
|Bs U By|

(10)
where, By and B, represent the ground truth and predicted bounding boxes, respectively.
A prediction is a true positive if the IoU exceeds a predefined threshold, such as 0.5.
Building on these concepts, the mean average precision (mAP) is the primary eval-
uation metric for object detection. The mAP calculates the average precision (AP) for
each class and then averages the values across all classes. For mAP 5, the IoU threshold
is fixed at 0.5, meaning that predicted bounding boxes are required to have at least 50%
overlap with the ground truth. For a more rigorous evaluation, mAP 5,095 averages the
precision over multiple IoU thresholds, ranging from 0.5 to 0.95 in steps of 0.05, providing
a more comprehensive measure of detection accuracy. This approach ensures that both
the localization quality of the bounding boxes and the ability to classify objects correctly
are accounted for. A higher mAP value indicates better overall performance of the object
detection model. Using these metrics, we can effectively measure the improvements in
object detection accuracy achieved through our thermal video enhancement method.
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4.4. Ablation Study

We conducted a series of ablation experiments to assess the contribution of each
module in the proposed TVEMamba. Specifically, we trained the network with and without
the SD-Net, BRME-Net, and MD-Net to evaluate their individual impacts. Additionally, to
analyze the effects of the BD and OFA blocks, we trained the network with and without
incorporating these blocks to evaluate their impact on performance. Only the BD block was
retained in one variant, while the OFA block was removed with the optical flow estimation
module. In another variant, only the OFA block was retained while the BD block was
removed. As shown in Table 4, the highest values were achieved when all modules were
integrated, indicating that their combination significantly improves the model’s ability to
enhance overall image quality.

Table 4. Ablation study on BIRDSAI dataset.

EME DMTE MDIMTE BDIM LGTA BIE

w /o SD-Net 16.245 0.291 42.121 0.964 1.148 0.081
w /o MD-Net 20.187 0.295 46.345 0.981 1.159 0.093
w /o BRME-Net 21.145 0.298 46.899 0.989 1.168 0.101
TVEMamba 22.942 0.299 47.132 0.991 1.172 0.109

Also, Figure 7 shows that the highest values for each measure were achieved when
both blocks were integrated, indicating that their combination significantly improves the
model’s ability to enhance overall image quality. Additionally, Figure 8 provides qualitative
comparisons that illustrate the network’s performance for each module. Furthermore,
to evaluate the effectiveness of our TVEMamba framework on downstream computer
vision tasks, we utilized object detection experiments using two datasets: BIRDSAI and
FLIR. The BIRDSAI dataset contains thermal videos of elephants captured for wildlife
monitoring. To assess our enhancement method under different scenarios, we designed
two labeling schemes: first, with two classes, “Elephant” and “Unknown” (including
all non-elephant objects), and second, with three classes, “Elephant”, “Human”, and
“Unknown”. This allowed us to evaluate the model’s ability to distinguish between multiple
object categories in enhanced thermal videos. The FLIR dataset, commonly used for
autonomous driving and surveillance applications, focuses on two classes: “Pedestrian”
and “Car”. We employed two object detection architectures: YOLOR [68], which combines
implicit and explicit knowledge within a single model for efficient detection, and Hyper-
YOLO [69], incorporating hyperparameter optimization and architectural improvements.
For each dataset and model, we trained on both the original thermal images and the
enhanced images produced by the TVEMamba framework. As shown in Table 5, the notable
improvements observed on the BIRDSAI dataset suggest that our enhancement method
particularly benefits datasets with lower initial image quality due to low contrast and
noise. In addition, Figure 9 illustrates YOLOR predictions on both original and enhanced
BIRDSALI frames, clearly demonstrating improved detection accuracy after enhancement.
There was no significant improvement in object detection performance for the FLIR dataset.
However, the lack of deterioration confirms that our method does not introduce artifacts
or distortions that could negatively impact detection. These findings indicate that the
proposed TVEMamba framework benefits applications requiring reliable object detection
in challenging thermal environments, such as wildlife monitoring and surveillance under
adverse conditions.
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Figure 7. Evaluation of the contribution of OFA and BD Blocks in TVEMamba on the FLIR dataset.
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Figure 8. Details of intermediate results from the proposed TVEMamba, showing the effects of
each module.
Table 5. Object detection performance on the BIRDSAI and FLIR datasets. YOLOR; and Hyper-
YOLO; models are trained on original datasets, and YOLOR; and Hyper-YOLO, models are trained
on enhanced datasets produced by the TVEMamba framework.
Dataset BIRDSAI BIRDSAI BIRDSAI FLIR
Classes 2 3 2 2
Architecture YOLOR; YOLOR, YOLOR; YOLOR;, Hyper-YOLO; Hyper-YOLO,  Hyper-YOLO;  Hyper-YOLO,
mAPg5 38.1 44.2 25.0 29.7 38.0 43.9 89.8 89.9
mAPg 509 13.2 16.8 9.3 10.9 129 16.4 56.6 56.7
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Figure 9. Object detection results on original and enhanced Images using the YOLOR method.

5. Discussion

This paper introduces the Mamba model, a novel thermal video enhancement method
that leverages a State Space 2D module integrated with a Convolutional Neural Network.
The Mamba model addresses major challenges, such as low contrast, motion blur, and
noise by incorporating the Basic Denoising and Optical Flow Attention modules. Simu-
lation results demonstrated across multiple datasets, including BIRDSAI, FLIR, CAMEL,
Autonomous Vehicles, and Solar Panel, highlight the Mamba model’s ability to outperform
both traditional and deep learning-based methods, resulting in higher-quality thermal
videos suitable for a wide range of applications. Through this integration of state space
modeling and deep learning, the Mamba network adapts to diverse lighting conditions
and varying motion patterns, making it well suited for practical use cases. Applications
include surveillance, where robust detection and tracking under challenging conditions are
essential, autonomous systems, where reliable perception ensures safety and navigation,
and remote sensing, where improved thermal imaging can aid critical monitoring tasks.

Future research directions involve extending the Mamba model’s capabilities. First,
we aim to enhance data association in trackers by leveraging richer thermal information.
Second, we will explore the fusion of visible and non-visible spectral data to improve
tracking accuracy under different lighting and environmental conditions. Finally, optimiz-
ing the model for real-time performance will facilitate its deployment in time-sensitive
applications. Advancing state-of-the-art thermal video enhancement will unlock the full
potential of thermal imaging technologies, ultimately improving the performance and relia-
bility of a broad spectrum of computer vision tasks. Finally, we will develop a GUI-based
image enhancement, object detection, and tracking framework that can run through the
cloud environment.
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