Cybersecurity at Sea: A Literature Review of Cyber-Attack Impacts and Defenses in Maritime Supply Chains
<p>MSCN links, adapted from [<a href="#B2-information-15-00710" class="html-bibr">2</a>].</p> "> Figure 2
<p>SLR Methodology.</p> "> Figure 3
<p>Bibliometric Overview: Geographical Distribution, Recurring Research Topics, and Publication Trends.</p> "> Figure 4
<p>Proportion of papers according to the MSCN actor.</p> "> Figure 5
<p>Historical evidence of cyber-attacks reported by year.</p> "> Figure 6
<p>Countries where the reported cyber-attacks occurred.</p> "> Figure 7
<p>Cyber-attack Taxonomy for the MSCN.</p> "> Figure 8
<p>Industry 4.0 technologies identified in the literature review.</p> ">
Abstract
:1. Introduction
- RQ1: What cyber-attacks in the MSCN have been reported in the academic literature?
- 2.
- RQ2: What preventive and mitigating practices for cyber-attacks in the MSCN are reported in the literature?
- 3.
- RQ3: What emerging technologies address cyber-attacks in the MSCN?
PRISMA Statement
2. Cybersecurity in the Maritime Sector
2.1. Basic Concepts Related to Cyber Risk
2.2. Cyber Risk Management Systems
3. SLR Methodology
3.1. Identification
3.2. Screening
3.3. Included
4. Descriptive Statistics
5. Results and Discussion
5.1. RQ1: What Cyber-Attacks in the MSCN Have Been Reported in the Academic Literature?
5.1.1. Cyber-Attacks in the MSCN
5.1.2. Historical Evidence of Cyber-Attacks in the MSCN
5.1.3. Taxonomy
5.2. RQ2: What Preventive and Mitigating Practices for Cyber-Attacks in the MSCN Are Reported in the Literature?
5.2.1. Practices to Manage Information Security
Best Practices | Mitigation | Contingency | MSCN Actor | Frequency References | |
---|---|---|---|---|---|
Develop computational tools for risk management | X | X | All actors | 30 | [11,13,15,43,51,56,57,61,65,66,71,74,76,77,79,82,85,92,96,97,98,99,109,110,111,112,113,114,115,116]. |
Program digital tools to ensure IoT cybersecurity | X | X | All actors | 13 | [43,46,47,48,52,54,63,99,100,102,117,118,119]. |
Program digital tools to ensure IoT cybersecurity | X | X | All actors | 13 | [43,46,47,48,52,54,63,99,100,102,116,117,118]. |
Implement detection–blocking techniques to restrict network access to authorized systems | X | X | Shipping line | 13 | [48,53,57,61,73,75,102,107,108,120,121,122,123]. |
Secure email accounts with strong passwords and multi-factor authentication | X | All actors | 4 | [81,83,97,99]. | |
Install physical barriers, surveillance cameras, and rapid-response alarms in control rooms | X | Shipping line, Port operators | 6 | [28,35,57,84,109,124]. | |
Deploy advanced intrusion detection systems and antivirus software | X | All actors | 6 | [25,35,105,125,126,127]. | |
Monitor, control, or block access to communication interface port(s) | X | Port operators | 2 | [57,104]. | |
Manage RFID usage to protect the personal data of watchkeeping officers and captains | X | Shipping line | 5 | [59,70,72,92,128]. | |
Use VPNs on remote working laptops | X | All actors | 2 | [25,107]. |
5.2.2. Practices Towards an Information Security Policy
Best Practices | Mitigation | Contingency | MSCN Actor | Frequency references | |
---|---|---|---|---|---|
Collaborate among MSCN agents to share protocols and reduce cyber-attack impacts | X | X | All actors | 6 | [15,23,62,76,109,128]. |
Foster international collaboration among maritime stakeholders with aligned risk perceptions | X | X | All actors | 9 | [23,51,57,62,73,80,84,89,128]. |
Integrate standardized, clear cybersecurity practices | X | All actors | 15 | [22,28,44,49,61,66,73,75,77,83,109,116,128,130,131] | |
Establish a certification authority to oversee the creation of pseudonyms for ship MMSI to protect identities | X | Shipping line | 2 | [52,129]. |
5.2.3. Practices to Raise Awareness and Training on Cybersecurity
5.3. RQ3: What Emerging Technologies Address Cyber-Attacks in the MSCN?
5.3.1. Industry 4.0 Technologies in Maritime Cybersecurity
5.3.2. Future Trends in Maritime Cybersecurity
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Canepa, M.; Ballini, F.; Dalaklis, D.; Vakili, S.; Colmenares Hernandez, L.M. CR CyberMar as a solution path towards Cybersecurity soundness in maritime logistics domain. Trans. Marit. Sci. 2021, 10, 147–153. [Google Scholar] [CrossRef]
- Valentin, L. What Is the Maritime Supply Chain? SINAY Maritime Data Solution: Caen, France, 2022. [Google Scholar]
- Senarak, C. Cybersecurity knowledge and skills for port facility security officers of international seaports: Perspectives of IT and security personnel. Asian J. Shipp. Logist. 2021, 37, 345–360. [Google Scholar] [CrossRef]
- Kanwal, K.; Shi, W.; Kontovas, C.; Yang, Z.; Chang, C.H. Maritime cybersecurity: Are onboard systems ready? Marit. Policy Manag. 2024, 51, 484–502. [Google Scholar] [CrossRef] [PubMed]
- Alop, A. The main challenges and barriers to the successful “smart shipping”. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2019, 13, 521–528. [Google Scholar] [CrossRef]
- Hemminghaus, C.; Bauer, J.; Padilla, E. BRAT: A BRidge attack tool for cyber security assessments of maritime systems. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2021, 15, 35–44. [Google Scholar] [CrossRef]
- Meland, P.H.; Bernsmed, K.; Wille, E.; Rødseth, Ø.J.; Nesheim, D.A. A retrospective analysis of maritime cyber security incidents. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2021, 15, 519–530. [Google Scholar] [CrossRef]
- Lloyd’s Register. Building Resilience Against New Risks—Cyber Security for an Era of Innovation; Lloyd’s Register: London, UK, 2018. [Google Scholar]
- Mraković, I.; Vojinović, R. Maritime cyber security analysis—how to reduce threats? Trans. Marit. Sci. 2019, 8, 132–139. [Google Scholar] [CrossRef]
- Bocayuva, M. Cybersecurity in the European Union port sector in light of the digital transformation and the COVID-19 pandemic. WMU J. Marit. Aff. 2021, 20, 173–192. [Google Scholar] [CrossRef]
- British Ports Association. Managing Ports’ Cyber Risks—White Paper; British Ports Association: London, UK, 2020. [Google Scholar]
- INMARSAT. Cyber Security Requirements for IMO 2021—White Paper; INMARSAT: London, UK, 2020. [Google Scholar]
- Xing, B.; Jiang, Y.; Liu, Y.; Cao, S. Risk data analysis based anomaly detection of Ship Information System. Energies 2018, 11, 3403. [Google Scholar] [CrossRef]
- Kessler, G.C.; Craiger, P.; Haass, J.C. A taxonomy framework for maritime cybersecurity: A demonstration using the automatic identification system. TransNav Int. J. Mar. Navig. Saf. Sea. Transp. 2018, 12, 429–437. [Google Scholar] [CrossRef]
- Ashraf, I.; Park, Y.; Hur, S.; Kim, S.W.; Alroobaea, R.; Zikria, Y.B.; Nosheen, S. A survey on cyber security threats in IoT-enabled maritime industry. IEEE Trans. Intell. Transp. Syst. 2022, 24, 2677–2690. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Q. A comprehensive review study of cyber-attacks and cyber security; Emerging trends and recent developments. Energy Rep. 2021, 7, 8176–8186. [Google Scholar] [CrossRef]
- Tyagi, A.K.; Sreenath, N. Cyber Physical Systems: Analyses, challenges and possible solutions. Internet Things Cyber-Phys. Syst. 2021, 1, 22–33. [Google Scholar] [CrossRef]
- Hopcraft, R. Developing Maritime Digital Competencies. IEEE Commun. Stand. Mag. 2021, 5, 12–18. [Google Scholar] [CrossRef]
- Sardi, A.; Rizzi, A.; Sorano, E.; Guerrieri, A. Cyber risk in health facilities: A systematic literature review. Sustainability 2020, 12, 7002. [Google Scholar] [CrossRef]
- Arghandeh, R.; von Meier, A.; Mehrmanesh, L.; Mili, L. On the definition of cyber-physical resilience in power systems. Renew. Sustain. Energy Rev. 2016, 58, 1060–1069. [Google Scholar] [CrossRef]
- Pallis, P.L. Port risk management in container terminals. Transp. Res. Procedia. 2017, 25, 4411–4421. [Google Scholar] [CrossRef]
- Eichenhofer, J.O.; Heymann, E.; Miller, B.P.; Kang, A. An in-depth security assessment of maritime container terminal software systems. IEEE Access 2020, 8, 128050–128067. [Google Scholar] [CrossRef]
- Karamperidis, S.; Kapalidis, C.; Watson, T. Maritime cyber security: A global challenge tackled through distinct regional approaches. J. Mar. Sci. Eng. 2021, 9, 1323. [Google Scholar] [CrossRef]
- IMO. Maritime Cyber Risk Management in Safety Management Systems. Resolution MSC.428(98); IMO: London, UK, 2017. [Google Scholar]
- Yoo, Y.; Park, H.-S. Qualitative risk assessment of cybersecurity and development of vulnerability enhancement plans in consideration of digitalized ship. J. Mar. Sci. Eng. 2021, 9, 565. [Google Scholar] [CrossRef]
- Hopcraft, R.; Tam, K.; Dorje Palbar Misas, J.; Moara-Nkwe, K.; Jones, K. Developing a maritime cyber safety culture: Improving safety of operations. Marit. Technol. Res. 2022, 5, 258750. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology. Framework for Improving Critical Infrastructure Cybersecurity, Version 1.1; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2018. [Google Scholar]
- Progoulakis, I.; Rohmeyer, P.; Nikitakos, N. Cyber physical systems security for maritime assets. J. Mar. Sci. Eng. 2021, 9, 1384. [Google Scholar] [CrossRef]
- Veritas, D.N.; Lloyd, G. Cyber Security Resilience Management for Ships and Mobile Offshore Units in Operation; DNVGL-RP-0496; DNV-GL: Bærum, Norway, 2016. [Google Scholar]
- Drazovich, L.; Brew, L.; Wetzel, S. Advancing the state of maritime cybersecurity guidelines to improve the resilience of the maritime transportation system. In Proceedings of the IEEE International Conference on Cyber Security and Resilience (CSR), Rhodes, Greece, 26–28 July 2021. [Google Scholar]
- Tuomala, V. Maritime Cybersecurity. Before the Risks Turn into Attacks; South-Eastern Finland University of Applied Sciences: Kouvola, Finland, 2021. [Google Scholar]
- ABS. Guide for Cybersecurity Implementation for the Marine and Offshore Industries; ABS CyberSafety: Spring, TX, USA, 2021; Volume 2. [Google Scholar]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Ann. Intern. Med. 2009, 151, W65–W94. [Google Scholar] [CrossRef] [PubMed]
- Booth, A.; Sutton, A.; Papaioannou, D. Systematic Approaches to a Successful Literature Review; Sage Publications: Oaks, CA, USA, 2016. [Google Scholar]
- Bolbot, V.; Theotokatos, G.; Boulougouris, E.; Vassalos, D. A novel cyber-risk assessment method for ship systems. Saf. Sci. 2020, 131, 104908. [Google Scholar] [CrossRef]
- Alshehri, J.; Alhamed, A.; Hafizur Rahman, M.M. A systematic literature review on cybersecurity risk management in smart cities. In Proceedings of the Internationl Conference on Artificial Intelligence in Information and Communication (ICAIC), Osaka, Japan, 19–22 February 2024. [Google Scholar] [CrossRef]
- Sardi, A.; Sorano, E.; Cantino, V.; Garengo, P. Big data and performance measurement research: Trends, evolution and future opportunities. Meas. Bus. Excell. 2023, 27, 531–548. [Google Scholar] [CrossRef]
- Clarivate Analytics. Journal Citation Reports; Clarivate: Philadelphia, PA, USA, 2024. [Google Scholar]
- Yuan, Z.; Yu, X.; Jiang, Y.; Sun, J.; Liu, Z.; Li, B. Current status and governance of data assets monetization in the global maritime industry: A comparative study of the United States, Europe, and China. Ocean Coast Manag. 2024, 251, 107078. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, H.; Hu, C. China’s competition regulation in the maritime industry: Regulatory concerns, problems and potential implications. Ocean Coast Manag. 2024, 251, 107082. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Hossain, N.U.I.; Nur, F.; Hosseini, S.; Jaradat, R.; Marufuzzaman, M.; Puryear, S.M. A Bayesian network based approach for modeling and assessing resilience: A case study of a full service deep water port. Reliab. Eng. Syst. Saf. 2019, 189, 378–396. [Google Scholar] [CrossRef]
- Juvonen, A.; Costin, A.; Turtiainen, H.; Hamalainen, T. On Apache Log4j2 Exploitation in Aeronautical, Maritime, and Aerospace Communication. IEEE Access 2022, 10, 86542–86557. [Google Scholar] [CrossRef]
- Park, C.; Kontovas, C.; Yang, Z.; Chang, C.-H. A BN driven FMEA approach to assess maritime cybersecurity risks. Ocean. Coast. Manag. 2023, 235, 106480. [Google Scholar] [CrossRef]
- Hu, C.; Pu, Y.; Yang, F.; Zhao, R.; Alrawais, A.; Xiang, T. Secure and efficient data collection and storage of IoT in smart ocean. IEEE Internet Things J. 2020, 7, 9980–9994. [Google Scholar] [CrossRef]
- Kumar, P.; Gupta, G.P.; Tripathi, R.; Garg, S.; Hassan, M.M. DLTIF: Deep learning-driven cyber threat intelligence modeling and identification framework in IoT-enabled maritime transportation systems. IEEE Trans. Intell. Transp. Syst. 2021, 24, 2472–2481. [Google Scholar] [CrossRef]
- Mouratidis, H.; Diamantopoulou, V. A security analysis method for industrial internet of things. IEEE Trans. Ind. Inform. 2018, 14, 4093–4100. [Google Scholar] [CrossRef]
- Liu, W.; Xu, X.; Wu, L.; Qi, L.; Jolfaei, A.; Ding, W.; Khosravi, M.R. Intrusion detection for maritime transportation systems with batch federated aggregation. IEEE Trans. Intell. Transp. Syst. 2022, 24, 2503–2514. [Google Scholar] [CrossRef]
- Gunes, B.; Kayisoglu, G.; Bolat, P. Cyber security risk assessment for seaports: A case study of a container port. Comput. Secur. 2021, 103, 102196. [Google Scholar] [CrossRef]
- Ben Farah, M.A.; Ukwandu, E.; Hindy, H.; Brosset, D.; Bures, M.; Andonovic, I.; Bellekens, X. Cyber security in the maritime industry: A systematic survey of recent advances and future trends. Information 2022, 13, 22. [Google Scholar] [CrossRef]
- Potamos, G.; Stavrou, E.; Stavrou, S. Enhancing maritime cybersecurity through operational technology sensor data fusion: A comprehensive survey and analysis. Sensors 2024, 24, 3458. [Google Scholar] [CrossRef]
- Khandker, S.; Turtiainen, H.; Costin, A.; Hamalainen, T. Cybersecurity attacks on software logic and error handling within AIS implementations: A systematic testing of resilience. IEEE Access 2022, 10, 29493–29505. [Google Scholar] [CrossRef]
- Song, Z.; Skuric, A.; Ji, K. A recursive watermark method for hard real-time industrial control system cyber-resilience enhancement. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1030–1043. [Google Scholar] [CrossRef]
- Liu, P.M.; Guo, X.G.; Wang, J.L.; Xie, X.P.; Yang, F.W. Fully distributed hierarchical ET intrusion-and fault-tolerant group control for MASs with application to robotic manipulators. IEEE Trans. Autom. Sci. Eng. 2024, 21, 2868–2881. [Google Scholar] [CrossRef]
- Sahay, R.; Estay, D.A.S.; Meng, W.; Jensen, C.D.; Barfod, M.B. A comparative risk analysis on CyberShip system with STPA-Sec, STRIDE and CORAS. Comput. Secur. 2023, 128, 103179. [Google Scholar] [CrossRef]
- Aerts, G.; Mathys, G. Discovering trends in the digitalization of shipping: An exploratory study into trends using natural language processing. J. Mar. Sci. Eng. 2024, 12, 618. [Google Scholar] [CrossRef]
- Caprolu, M.; Pietro, R.D.; Raponi, S.; Sciancalepore, S.; Tedeschi, P. Vessels cybersecurity: Issues, challenges, and the road ahead. IEEE Commun. Mag. 2020, 58, 90–96. [Google Scholar] [CrossRef]
- Sharma, L. Maritime cybersecurity in the Indo-Pacific: Envisioning a role for the Quad. J. Indian Ocean. Reg. 2024, 1–23. [Google Scholar] [CrossRef]
- Leite Junior, W.C.; de Moraes, C.C.; de Albuquerque, C.E.P.; Machado, R.C.S.; de Sá, A.O. A triggering mechanism for cyber-attacks in naval sensors and systems. Sensors 2021, 21, 3195. [Google Scholar] [CrossRef] [PubMed]
- Kampourakis, V.; Gkioulos, V.; Katsikas, S. A systematic literature review on wireless security testbeds in the cyber-physical realm. Comput. Secur. 2023, 133, 103383. [Google Scholar] [CrossRef]
- Kavallieratos, G.; Diamantopoulou, V.; Katsikas, S.K. Shipping 4.0: Security requirements for the cyber-enabled ship. IEEE Trans. Industr. Inform. 2020, 16, 6617–6625. [Google Scholar] [CrossRef]
- Tusher, H.M.; Munim, Z.H.; Notteboom, T.E.; Kim, T.E.; Nazir, S. Cyber security risk assessment in autonomous shipping. Marit. Econ. Logist. 2022, 24, 208–227. [Google Scholar] [CrossRef]
- Tabish, N.; Chaur-Luh, T. Maritime autonomous surface ships: A review of cybersecurity challenges, countermeasures, and future perspectives. IEEE Access 2024, 12, 17114–17136. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, P.; Wu, B.; Wan, C.; Yang, Z. A trustable architecture over blockchain to facilitate maritime administration for MASS systems. Reliab. Eng. Syst. Saf. 2022, 219, 108246. [Google Scholar] [CrossRef]
- Yoo, J.; Jo, Y. Formulating cybersecurity requirements for autonomous ships using the SQUARE methodology. Sensors 2023, 23, 5033. [Google Scholar] [CrossRef] [PubMed]
- Longo, G.; Martelli, M.; Russo, E.; Merlo, A.; Zaccone, R. Adversarial waypoint injection attacks on Maritime Autonomous Surface Ships (MASS) collision avoidance systems. J. Mar. Eng. Technol. 2024, 23, 184–195. [Google Scholar] [CrossRef]
- Longo, G.; Russo, E.; Armando, A.; Merlo, A. Attacking (and defending) the maritime radar system. IEEE Trans. Inf. Forensics Secur. 2023, 18, 3575–3589. [Google Scholar] [CrossRef]
- Awan, M.S.K.; Al Ghamdi, M.A. Understanding the vulnerabilities in digital components of an integrated bridge system (IBS). J. Mar. Sci. Eng. 2019, 7, 350. [Google Scholar] [CrossRef]
- Androjna, A.; Brcko, T.; Pavic, I.; Greidanus, H. Assessing cyber challenges of maritime navigation. J. Mar. Sci. Eng. 2020, 8, 776. [Google Scholar] [CrossRef]
- Sciancalepore, S.; Tedeschi, P.; Aziz, A.; Di Pietro, R. Auth-AIS: Secure, flexible, and backward-compatible authentication of vessels AIS broadcasts. IEEE Trans. Dependable Secure Comput. 2022, 19, 2709–2726. [Google Scholar] [CrossRef]
- Enoch, S.Y.; Lee, J.S.; Kim, D.S. Novel security models, metrics and security assessment for maritime vessel networks. Comput. Netw. 2021, 189, 107934. [Google Scholar] [CrossRef]
- Wimpenny, G.; Šafář, J.; Grant, A.; Bransby, M. Securing the Automatic Identification System (AIS): Using public key cryptography to prevent spoofing whilst retaining backwards compatibility. J. Navig. 2022, 75, 333–345. [Google Scholar] [CrossRef]
- Longo, G.; Orlich, A.; Musante, S.; Merlo, A.; Russo, E. MaCySTe: A virtual testbed for maritime cybersecurity. SoftwareX 2023, 23, 101426. [Google Scholar] [CrossRef]
- Lee, C.; Lee, S. Overcoming the DDoS attack vulnerability of an ISO 19847 shipboard data server. J. Mar. Sci. Eng. 2023, 11, 1000. [Google Scholar] [CrossRef]
- Erbas, M.; Khalil, S.M.; Tsiopoulos, L. Systematic literature review of threat modeling and risk assessment in ship cybersecurity. Ocean Eng. 2024, 306, 118059. [Google Scholar] [CrossRef]
- Kayisoglu, G.; Bolat, P.; Tam, K. A novel application of the CORAS framework for ensuring cyber hygiene on shipboard RADAR. J. Mar. Eng. Technol. 2024, 23, 67–81. [Google Scholar] [CrossRef]
- Afenyo, M.; Caesar, L.D. Maritime cybersecurity threats: Gaps and directions for future research. Ocean. Coast. Manag. 2023, 236, 106493. [Google Scholar] [CrossRef]
- Longo, G.; Lupia, F.; Pugliese, A.; Russo, E. Physics-aware targeted attacks against maritime industrial control systems. J. Inf. Secur. Appl. 2024, 82, 103724. [Google Scholar] [CrossRef]
- Fenton, A.J. Preventing catastrophic cyber–physical attacks on the global maritime transportation system: A case study of hybrid maritime security in the Straits of Malacca and Singapore. J. Mar. Sci. Eng. 2024, 12, 510. [Google Scholar] [CrossRef]
- Uflaz, E.; Sezer, S.I.; Tunçel, A.L.; Aydin, M.; Akyuz, E.; Arslan, O. Quantifying potential cyber-attack risks in maritime transportation under Dempster–Shafer theory FMECA and rule-based Bayesian network modelling. Reliab. Eng. Syst. Saf. 2024, 24. [Google Scholar] [CrossRef]
- Hopcraft, R.; Harish, A.V.; Tam, K.; Jones, K. Raising the standard of maritime voyage data recorder security. J. Mar. Sci. Eng. 2023, 11, 267. [Google Scholar] [CrossRef]
- Guo, J.; Guo, H. Real-time risk detection method and protection strategy for intelligent ship network security based on cloud computing. Symmetry 2023, 15, 988. [Google Scholar] [CrossRef]
- Soner, O.; Kayisoglu, G.; Bolat, P.; Tam, K. Risk sensitivity analysis of AIS cyber security through maritime cyber regulatory frameworks. Appl. Ocean Res. 2024, 142, 103855. [Google Scholar] [CrossRef]
- Paraskevas, A.; Madas, M.; Zeimpekis, V.; Fouskas, K. Smart ports in industry 4.0: A systematic literature review. Logistics 2024, 8, 28. [Google Scholar] [CrossRef]
- Algarni, A.; Acarer, T.; Ahmad, Z. An edge computing-based preventive framework with machine learning- integration for anomaly detection and risk management in maritime wireless communications. IEEE Access 2024, 12, 53646–53663. [Google Scholar] [CrossRef]
- Bolbot, V.; Kulkarni, K.; Brunou, P.; Banda, O.V.; Musharraf, M. Developments and research directions in maritime cybersecurity: A systematic literature review and bibliometric analysis. Int. J. Crit. Infrastruct. Prot. 2022, 39, 100571. [Google Scholar] [CrossRef]
- Cimpean, D.; Meire, J.; Bouckaert, V.; Stijn, V.C.; Pelle, A.; Hellebooge, L. Analysis of Cyber Security Aspects in the Maritime Sector; ENISA: Attiki, Greece, 2011. [Google Scholar]
- Anderson, L.W.; Peter, W.; Airasian, K.; Cruikshank, D.R. A Taxonomy for Learning, Teaching, and Assessing; Longman: Harlow, UK, 2001. [Google Scholar]
- Karim, M.S. Maritime cybersecurity and the IMO legal instruments: Sluggish response to an escalating threat? Mar. Policy 2022, 143, 105138. [Google Scholar] [CrossRef]
- BIMCO. The Guidelines on Cyber Security Onboard Ships; BIMCO: Bagsværd, Denmark, 2021. [Google Scholar]
- Larsen, M.H.; Lund, M.S. Cyber risk perception in the maritime domain: A systematic literature review. IEEE Access 2021, 9, 144895–144905. [Google Scholar] [CrossRef]
- Svilicic, B.; Rudan, I.; Frančić, V.; Mohović, D. Towards a cyber secure shipboard radar. J. Navig. 2020, 73, 547–558. [Google Scholar] [CrossRef]
- Kapalidis, C.; Karamperidis, S.; Watson, T.; Koligiannis, G. A vulnerability centric System of Systems Analysis on the maritime transportation sector most valuable assets: Recommendations for port facilities and ships. J. Mar. Sci. Eng. 2022, 10, 1486. [Google Scholar] [CrossRef]
- Oruc, A.; Amro, A.; Gkioulos, V. Assessing cyber risks of an INS using the MITRE ATT & CK framework. Sensors 2022, 22, 8745. [Google Scholar] [CrossRef]
- Soomro, Z.A.; Shah, M.H.; Ahmed, J. Information security management needs more holistic approach: A literature review. Int. J. Inf. Manag. 2016, 36, 215–225. [Google Scholar] [CrossRef]
- Puisa, R.; McNay, J.; Montewka, J. Maritime safety: Prevention versus mitigation? Saf. Sci. 2021, 136, 105151. [Google Scholar] [CrossRef]
- Xing, B.; Dai, J.; Liu, S. Enforcement of opacity security properties for ship information system. Int. J. Nav. Archit. Ocean Eng. 2016, 8, 423–433. [Google Scholar] [CrossRef]
- Kotis, K.; Stavrinos, S.; Kalloniatis, C. Review on semantic modeling and simulation of cybersecurity and interoperability on the Internet of Underwater Things. Future Internet 2022, 15, 11. [Google Scholar] [CrossRef]
- Polatidis, N.; Pavlidis, M.; Mouratidis, H. Cyber-attack path discovery in a dynamic supply chain maritime risk management system. Comput. Stand. Interfaces. 2018, 56, 74–82. [Google Scholar] [CrossRef]
- Mahmood, K.; Ferzund, J.; Saleem, M.A.; Shamshad, S.; Das, A.K.; Park, Y. A provably secure mobile user authentication scheme for big data collection in IoT-enabled maritime intelligent transportation system. IEEE Trans. Intell. Transp. Syst. 2022, 24, 2411–2421. [Google Scholar] [CrossRef]
- Gyamfi, E.; Ansere, J.A.; Kamal, M.; Tariq, M.; Jurcut, A. An adaptive network security system for IoT-enabled maritime transportation. IEEE Trans. Intell. Transp. Syst. 2022, 24, 2538–2547. [Google Scholar] [CrossRef]
- Sahay, R.; Meng, W.; Estay, D.A.S.; Jensen, C.D.; Barfod, M.B. CyberShip-IoT: A dynamic and adaptive SDN-based security policy enforcement framework for ships. Future Gener. Comput. Syst. 2019, 100, 736–750. [Google Scholar] [CrossRef]
- Amro, A.; Oruc, A.; Gkioulos, V.; Katsikas, S. Navigation data anomaly analysis and detection. Information 2022, 13, 104. [Google Scholar] [CrossRef]
- Solnør, P.; Volden, Ø.; Gryte, K.; Petrovic, S.; Fossen, T.I. Hijacking of unmanned surface vehicles: A demonstration of attacks and countermeasures in the field. J. Field Robot. 2022, 39, 631–649. [Google Scholar] [CrossRef]
- Duran, C.A.; Fernandez-Campusano, C.; Carrasco, R.; Vargas, M.; Navarrete, A. Boosting the decision-making in smart ports by using blockchain. IEEE Access 2021, 9, 128055–128068. [Google Scholar] [CrossRef]
- Albalawi, A.M.; Almaiah, M.A. Assessing and reviewing of cyber-security threats, attacks, mitigation techniques in IoT environment. J. Theor. Appl. Inf. Technol. 2022, 100, 2988–3011. [Google Scholar]
- Yi, C.G.; Kim, Y.G. Security testing for naval ship combat system software. IEEE Access 2021, 9, 66839–66851. [Google Scholar] [CrossRef]
- Kechagias, E.P.; Chatzistelios, G.; Papadopoulos, G.A.; Apostolou, P. Digital transformation of the maritime industry: A cybersecurity systemic approach. Int. J. Crit. Infrastruct. Prot. 2022, 37, 100526. [Google Scholar] [CrossRef]
- Kalogeraki, E.M.; Apostolou, D.; Polemi, N.; Papastergiou, S. Knowledge management methodology for identifying threats in maritime/logistics supply chains. Knowl. Manag. Res. Pract. 2018, 16, 508–524. [Google Scholar] [CrossRef]
- Kavallieratos, G.; Katsikas, S.; Gkioulos, V. SafeSec Tropos: Joint security and safety requirements elicitation. Comput. Stand. Interfaces 2020, 70, 103429. [Google Scholar] [CrossRef]
- Svilicic, B.; Kamahara, J.; Rooks, M.; Yano, Y. Maritime cyber risk management: An experimental ship assessment. J. Navig. 2019, 72, 1108–1120. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Liu, Z.J.; Wang, F.W.; Wu, Z.L. A system-theoretic approach to safety and security co-analysis of autonomous ships. Ocean Eng. 2021, 222, 108569. [Google Scholar] [CrossRef]
- Dghaym, D.; Hoang, T.S.; Turnock, S.R.; Butler, M.; Downes, J.; Pritchard, B. An STPA-based formal composition framework for trustworthy autonomous maritime systems. Saf. Sci. 2021, 136, 105139. [Google Scholar] [CrossRef]
- Jo, Y.; Choi, O.; You, J.; Cha, Y.; Lee, D.H. Cyberattack models for ship equipment based on the MITRE ATT&CK framework. Sensors 2022, 22, 1860. [Google Scholar] [CrossRef]
- Nganga, A.; Nganya, G.; Lützhöft, M.; Mallam, S.; Scanlan, J. Bridging the gap: Enhancing maritime vessel cyber resilience through security operation centers. Sensors 2023, 24, 146. [Google Scholar] [CrossRef] [PubMed]
- Palbar Misas, J.D.; Hopcraft, R.; Tam, K.; Jones, K. Future of maritime autonomy: Cybersecurity, trust and mariner’s situational awareness. J. Mar. Eng. Technol. 2024, 23, 224–235. [Google Scholar] [CrossRef]
- Autsadee, Y.; Jeevan, J.; Mohd Salleh, N.H.B.; Othman, M.R.B. Digital tools and challenges in human resource development and its potential within the maritime sector through bibliometric analysis. J. Int. Marit. Saf. Environ. Aff. Shipp. 2023, 7, 2286409. [Google Scholar] [CrossRef]
- Lee, C.; Lee, S. Evaluating the vulnerability of YOLOv5 to adversarial attacks for enhanced cybersecurity in MASS. J. Mar. Sci. Eng. 2023, 11, 947. [Google Scholar] [CrossRef]
- Schinas, O.; Metzger, D. Cyber-seaworthiness: A critical review of the literature. Mar. Policy 2023, 151, 105592. [Google Scholar] [CrossRef]
- Kavallieratos, G.; Katsikas, S. Managing cyber security risks of the cyber-enabled ship. J. Mar. Sci. Eng. 2020, 8, 768. [Google Scholar] [CrossRef]
- Fischer-Hübner, S.; Alcaraz, C.; Ferreira, A.; Fernandez-Gago, C.; Lopez, J.; Markatos, E.; Islami, L.; Akil, M. Stakeholder perspectives and requirements on cybersecurity in Europe. J. Inf. Secur. Appl. 2021, 61, 102916. [Google Scholar] [CrossRef]
- Oruc, A.; Gkioulos, V.; Katsikas, S. Towards a Cyber-Physical Range for the Integrated Navigation System (INS). J. Mar. Sci. Eng. 2022, 10, 107. [Google Scholar] [CrossRef]
- Freire, W.P.; Melo Jr, W.S.; do Nascimento, V.D.; Nascimento, P.R.; de Sá, A.O. Towards a secure and scalable Maritime Monitoring System using blockchain and low-cost IoT technology. Sensors 2022, 22, 4895. [Google Scholar] [CrossRef]
- Spravil, J.; Hemminghaus, C.; von Rechenberg, M.; Padilla, E.; Bauer, J. Detecting maritime GPS spoofing attacks based on NMEA sentence integrity monitoring. J. Mar. Sci. Eng. 2023, 11, 928. [Google Scholar] [CrossRef]
- Söner, Ö.; Kayisoglu, G.; Bolat, P.; Tam, K. Cybersecurity risk assessment of VDR. J. Navig. 2023, 76, 20–37. [Google Scholar] [CrossRef]
- Lim, J.H.; Kim, J.H.; Huh, J.H. Recent trends and proposed response strategies of international standards related to shipbuilding equipment big data integration platform. Qual. Quant. 2023, 57, 863–884. [Google Scholar] [CrossRef]
- Illiashenko, O.; Kharchenko, V.; Babeshko, I.; Fesenko, H.; Di Giandomenico, F. Security-informed safety analysis of autonomous transport systems considering AI-powered cyberattacks and protection. Entropy 2023, 25, 1123. [Google Scholar] [CrossRef]
- Svilicic, B.; Rudan, I.; Jugović, A.; Zec, D. A study on cyber security threats in a shipboard integrated navigational system. J. Mar. Sci. Eng. 2019, 7, 364. [Google Scholar] [CrossRef]
- De la Peña Zarzuelo, I.; Soeane, M.J.F.; Bermúdez, B.L. Industry 4.0 in the port and maritime industry: A literature review. J. Ind. Inf. Integr. 2020, 20, 100173. [Google Scholar] [CrossRef]
- Creech, J.A.; Ryan, J.F. AIS the cornerstone of national security? J. Navig. 2003, 56, 31–44. [Google Scholar] [CrossRef]
- Bueger, C.; Liebetrau, T. Critical maritime infrastructure protection: What’s the trouble? Mar. Policy 2023, 155, 105772. [Google Scholar] [CrossRef]
- Kayisoglu, G.; Bolat, P.; Tam, K. Evaluating SLIM-based human error probability for ECDIS cybersecurity in maritime. J. Navig. 2022, 75, 1364–1388. [Google Scholar] [CrossRef]
- Hareide, O.S.; Jøsok, Ø.; Lund, M.S.; Ostnes, R.; Helkala, K. Enhancing navigator competence by demonstrating maritime cyber security. J. Navig. 2018, 71, 1025–1039. [Google Scholar] [CrossRef]
- Liu, J.; Li, C.; Bai, J.; Luo, Y.; Lv, H.; Lv, Z. Security in IoT-enabled digital twins of maritime transportation systems. IEEE Trans. Intell. Transp. Syst. 2021, 1–9. [Google Scholar] [CrossRef]
- Amro, A.; Gkioulos, V. Evaluation of a cyber risk assessment approach for cyber–physical systems: Maritime- and energy-use cases. J. Mar. Sci. Eng. 2023, 11, 744. [Google Scholar] [CrossRef]
- Mohd Salleh, N.H.; Selvaduray, M.; Jeevan, J.; Ngah, A.H.; Zailani, S. Adaptation of Industrial Revolution 4.0 in a seaport system. Sustainability 2021, 13, 10667. [Google Scholar] [CrossRef]
- Sepehri, A.; Vandchali, H.R.; Siddiqui, A.W.; Montewka, J. The impact of shipping 4.0 on controlling shipping accidents: A systematic literature review. Ocean Eng. 2022, 243, 110162. [Google Scholar] [CrossRef]
- Luft, L.A.; Anderson, L.; Cassidy, F. NMEA 2000: A digital interface for the 21st century. In Proceedings of the 2002 National Technical Meeting of The Institute of Navigation, San Diego, CA, USA, 28–30 January 2002; pp. 796–807. [Google Scholar]
- Maturana, M.C.; De Abreu, D.; Martins, M.R. Preliminary hazard analysis of vessel maneuvers in access channels to port terminals. In Trends in Maritime Technology and Engineering; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Tang, C.S.; Veelenturf, L.P. The strategic role of logistics in the industry 4.0 era. Transp. Res. Part E Logist. Transp. Rev. 2019, 129, 1–11. [Google Scholar] [CrossRef]
- Chang, C.H.; Kontovas, C.; Yu, Q.; Yang, Z. Risk assessment of the operations of maritime autonomous surface ships. Reliab. Eng. Syst. Saf. 2021, 207, 107324. [Google Scholar] [CrossRef]
- Pleshakova, E.; Osipov, A.; Gataullin, S.; Gataullin, T.; Vasilakos, A. Next gen cybersecurity paradigm towards artificial general intelligence: Russian market challenges and future global technological trends. J. Comput. Virol. Hacking Tech. 2024. [Google Scholar] [CrossRef]
- Sridhar, S.; Govindarasu, M. Model-Based Attack Detection and Mitigation for Automatic Generation Control. IEEE Trans. Smart Grid 2014, 5, 580–591. [Google Scholar] [CrossRef]
- Tsapin, D.; Pitelinskiy, K.; Suvorov, S.; Osipov, A.; Pleshakova, E.; Gataullin, S. Machine learning methods for the industrial robotic systems security. J. Comput. Virol. Hacking Tech. 2023. [Google Scholar] [CrossRef]
- Grech, A.; Simpson, P.; Zammit, R. Exploring the opportunities of generative artificial intelligence in concept ship design. In Proceedings of the 15th International Marine Design Conference, Amsterdam, The Netherlands, 2–6 June 2024. [Google Scholar]
- Wolf, M.J.; Grodzinsky, F.; Miller, K.W. Generative AI and Its Implications for Definitions of Trust. Information 2024, 15, 542. [Google Scholar] [CrossRef]
- Alowibdi, J.S. Gender Prediction of Generated Tweets Using Generative AI. Information 2024, 15, 452. [Google Scholar] [CrossRef]
Organization | Year | Title | Description | Related Studies |
---|---|---|---|---|
IMO | 2017 | Resolution MSC.428(98)—Maritime Cyber Risk Management in Safety Management Systems [24]. | It exposes five functional elements that support effective cyber risk management: Identify—Protect—Detect—Respond—Recover. | Ref. [25] suggests incorporating a cyber risk management framework into maritime ship safety systems (SMS). |
Ref. [26] highlights the importance of adhering to IMO resolutions, focusing on usability, security, and functionality. | ||||
NIST | 2018 | Framework for Improving Critical Infrastructure Cybersecurity (NIST) [27]. | The framework is a set of guidelines for mitigating organizational cybersecurity risks and organizes basic cybersecurity activities regarding the five elements proposed by IMO. | Ref. [18] merges the NIST framework with STWC standards to identify crew competencies needed for NIST’s core functions. |
Ref. [28] blends IMO guidelines [24] with the NIST framework to differentiate cybersecurity needs between IT and OT systems in maritime assets. | ||||
DNV | 2016 | DNVGL-RP-0496 Cybersecurity resilience management for ships and mobile offshore units in operations [29]. | It is composed of four essential steps for cyber risk management: Assessment—Improvement—Verification—Validation. | Ref. [30] reviews eight cybersecurity guidelines and notes the DNV’s lack of operational best practices despite its detailed risk assessment guide. |
Ref. [31] emphasizes the DNV’s comprehensive cybersecurity suggestions spanning people, processes, and technology. | ||||
ABS | 2021 | Guide for Cybersecurity Implementation for the Marine and Offshore Industries [32]. | It contains 27 cybersecurity controls and the recommendations are based on three levels of cybersecurity urgency (Tier 1, Tier 2, and Tier 3). | Ref. [30] finds the ABS guidelines helpful for pinpointing operational best practices for maritime stakeholders. |
Group 1: Cybernetic Component | Group 2: Maritime Component |
---|---|
Cyber | Maritime |
Cybersecurity | Shipping |
Digital security | Sea transport |
Malware analysis | Marine industry |
Stage | Criteria | Description |
---|---|---|
1. Filtering process | Language | English language |
Peer-reviewed | Journals | |
Quality | Q1 or Q2 by JCR 2023 | |
2. Research Questions | Cyber-attack events | Does the paper mention cyber-attacks? |
Does the paper mention historical evidence of cyber-attacks? | ||
Risk analysis | Does the paper mention preventative solutions for cyber-attacks? | |
Does the paper mention mitigation solutions for cyber-attacks? | ||
Industry 4.0 | Does the paper apply any Industry 4.0-based technology? | |
Does the paper recommend the use of any Industry 4.0 technologies? |
Cyber-Attack | Description | Example of Historical Evidence | Frequency References | |
---|---|---|---|---|
DoS /DDoS | DoS attacks overwhelm a target with excessive traffic, thereby impeding functionality. Its variant, DDoS, uses multiple devices to severely disrupt services. | In May 2020, amid Persian Gulf tensions, a DDoS attack reportedly orchestrated by Israel led to the prolonged closure of Iran’s Shahid Raji Port. | 24 | [35,42,43,44,45,46,47,49,50,51,52,53,54,57,60,61,64,65,67,71,72,73,74,75]. |
Malware/Ransomware/Trojans | Malware harms or disables systems. Ransomware encrypts files, demanding a ransom, often via malicious downloads. Trojans, masquerading as legitimate software, steal data or cause damage. | In June 2017, the Petya attack targeted Maersk’s servers in Europe and India, encrypting data and disrupting 17 terminals with losses exceeding USD 200 million. | 28 | [15,19,35,42,44,47,49,50,53,55,56,57,58,59,65,67,69,75,76,77,78,79,80,81,82,83,84,85]. |
Social engineering/Tampering/Phishing/Spear phishing | These methods manipulate individuals to compromise security. Social engineering and tampering involve the misuse of information. Phishing deceives users to disclose sensitive details through misleading emails, whereas spear phishing targets specific users with tailored messages to steal data. | From June 2011 to 2013, hackers used social engineering and spear phishing to seize control of networks at Belgium’s Port of Antwerp, showcasing the sophistication of cyber threats. | 10 | [15,35,42,44,47,50,61,62,63,75]. |
Brute Force | This attack method involves testing all possible passwords or keys until the correct password is found and exploiting weak security to gain unauthorized access. | In October 2018, the Port of Vancouver was hit by a brute force attack, and the second such incident occurred within a few months, during which nearly 225,000 user accounts were probed. | 3 | [15,52,65]. |
Identity fraud | This involves illegally obtaining personal information to impersonate someone and conduct fraudulent activities, such as unauthorized transactions or misinformation. | In 2017, the vessel m/v Andrej Longov/Sea Breez 1/Ayda/STS-50 committed identity fraud in the Southern Ocean, falsifying its registry and generating fake signals to appear in nearly 100 different locations while conducting illegal fishing activities. | 2 | [15,64]. |
Watering hole | Targets specific groups by planting malware on legitimate websites visited by the group, making detection difficult because of the authenticity of the site. | Historical evidence was not presented in this reference. | 2 | [15,42]. |
Port scanning | Scans network ports to identify vulnerabilities and gather information by employing methods such as IP fragmentation to enhance stealth. | Historical evidence was not presented in this reference. | 1 | [50]. |
Hijacking/Jamming/Spoofing | Hijacking involves taking control of a ship’s systems. Jamming disrupts communications by interfering with signals, while spoofing deceives systems with false data, compromising navigation and safety. | In August 2017, the U.S. Maritime Administration reported an attack in which the GPS of a ship in the Russian port of Novorossiysk indicated incorrect localization. This incident is believed to be a test of a new GPS spoofing system manipulating the ship’s navigation signals. | 26 | [15,19,35,42,43,44,47,50,52,57,61,62,63,64,65,67,68,69,70,71,72,73,79,83,84,85]. |
Best Practices | Mitigation | Contingency | MSCN Actor | Frequency References | |
---|---|---|---|---|---|
Develop training courses and platforms to enhance operator knowledge in technology and attack prevention | X | X | All actors | 18 | [3,15,25,28,35,44,53,60,69,93,99,110,121,129,132,133,134]. |
Create a risk assessment library to share mitigating measures and risk experiences | X | All actors | 2 | [13,117]. | |
Define a common glossary of cyber terms to ensure clarity and precision in communication | X | All actors | 3 | [10,69,121]. | |
Introduce a ‘port cyber resilience officer’ role to enforce cybersecurity awareness in and around ports | X | Port operators | 1 | [129]. | |
Regular apply cyber hygiene practices | X | Forwarder, Port operators | 5 | [25,69,76,129,135]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clavijo Mesa, M.V.; Patino-Rodriguez, C.E.; Guevara Carazas, F.J. Cybersecurity at Sea: A Literature Review of Cyber-Attack Impacts and Defenses in Maritime Supply Chains. Information 2024, 15, 710. https://doi.org/10.3390/info15110710
Clavijo Mesa MV, Patino-Rodriguez CE, Guevara Carazas FJ. Cybersecurity at Sea: A Literature Review of Cyber-Attack Impacts and Defenses in Maritime Supply Chains. Information. 2024; 15(11):710. https://doi.org/10.3390/info15110710
Chicago/Turabian StyleClavijo Mesa, Maria Valentina, Carmen Elena Patino-Rodriguez, and Fernando Jesus Guevara Carazas. 2024. "Cybersecurity at Sea: A Literature Review of Cyber-Attack Impacts and Defenses in Maritime Supply Chains" Information 15, no. 11: 710. https://doi.org/10.3390/info15110710
APA StyleClavijo Mesa, M. V., Patino-Rodriguez, C. E., & Guevara Carazas, F. J. (2024). Cybersecurity at Sea: A Literature Review of Cyber-Attack Impacts and Defenses in Maritime Supply Chains. Information, 15(11), 710. https://doi.org/10.3390/info15110710