A Shannon-Theoretic Approach to the Storage–Retrieval Trade-Off in PIR Systems
Abstract
:1. Introduction
2. Preliminaries
2.1. Problem Definition
2.2. Some Relevant Known Results
2.3. Multiple Description Source Coding
3. A Special Case: Slepian–Wolf Coding for Minimum Retrieval Rate
- At database-1, compress and store losslessly;
- At database-2, encode using a Slepian–Wolf code (or more precisely Sgarro’s code with uncertainty side information [29]), with either or at the decoder, whose resulting code index is denoted as ; encode in the same manner, independent of , whose code index is denoted as .
4. Main Result
4.1. A General Inner Bound
- There exist deterministic functions , , , and such that
- There exist non-negative coding rates
- There exist non-negative storage rates such that
- The normalized average retrieval and storage rates
4.2. Outer Bounds
4.3. Specialization of the Inner Bound
- The distribution factorizes as follows
- There exist deterministic functions , , , and such that
- A set of rates
- The normalized average retrieval and storage rates
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chor, B.; Goldreich, O.; Kushilevitz, E.; Sudan, M. Private information retrieval. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science, Milwaukee, WI, USA, 23–25 October 1995; pp. 41–50. [Google Scholar]
- Shah, N.; Rashmi, K.; Ramchandran, K. One extra bit of download ensures perfectly private information retrieval. In Proceedings of the 2014 IEEE International Symposium on Information Theory (ISIT), Honolulu, HI, USA, 29 June–4 July 2014; pp. 856–860. [Google Scholar]
- Fazeli, A.; Vardy, A.; Yaakobi, E. Codes for distributed PIR with low storage overhead. In Proceedings of the 2015 Proceedings of IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, 14–19 June 2015; pp. 2852–2856. [Google Scholar]
- Rao, S.; Vardy, A. Lower bound on the redundancy of PIR codes. arXiv 2016, arXiv:1605.01869. [Google Scholar]
- Blackburn, S.R.; Etzion, T. PIR array codes with optimal virtual server rate. IEEE Trans. Inf. Theory 2019, 65, 6136–6145. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, S.R.; Etzion, T.; Paterson, M.B. PIR schemes with small download complexity and low storage requirements. IEEE Trans. Inf. Theory 2019, 66, 557–571. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, X.; Wei, H.; Ge, G. On private information retrieval array codes. IEEE Trans. Inf. Theory 2019, 65, 5565–5573. [Google Scholar] [CrossRef] [Green Version]
- Vajha, M.; Ramkumar, V.; Kumar, P.V. Binary, shortened projective Reed Muller codes for coded private information retrieval. In Proceedings of the 2017 IEEE International Symposium on Information Theory (ISIT), Aachen, Germany, 25–30 June 2017; pp. 2648–2652. [Google Scholar]
- Asi, H.; Yaakobi, E. Nearly optimal constructions of PIR and batch codes. IEEE Trans. Inf. Theory 2018, 65, 947–964. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.H.; Ho, S.W.; Yamamoto, H. Private information retrieval for coded storage. In Proceedings of the 2015 IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, 14–19 June 2015; pp. 2842–2846. [Google Scholar]
- Sun, H.; Jafar, S.A. The capacity of private information retrieval. IEEE Trans. Inf. Theory 2017, 63, 4075–4088. [Google Scholar] [CrossRef]
- Tajeddine, R.; Gnilke, O.W.; El Rouayheb, S. Private information retrieval from MDS coded data in distributed storage systems. IEEE Trans. Inf. Theory 2018, 64, 7081–7093. [Google Scholar] [CrossRef] [Green Version]
- Banawan, K.; Ulukus, S. The capacity of private information retrieval from coded databases. IEEE Trans. Inf. Theory 2018, 64, 1945–1956. [Google Scholar] [CrossRef]
- Tian, C.; Sun, H.; Chen, J. Capacity-achieving private information retrieval codes with optimal message size and upload cost. IEEE Trans. Inf. Theory 2019, 65, 7613–7627. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Tian, C.; Sun, H.; Liu, T. Capacity-achieving private information retrieval codes from MDS-coded databases with minimum message size. IEEE Trans. Inf. Theory 2020, 66, 4904–4916. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Jafar, S.A. The capacity of robust private information retrieval with colluding databases. IEEE Trans. Inf. Theory 2018, 64, 2361–2370. [Google Scholar] [CrossRef]
- Ulukus, S.; Avestimehr, S.; Gastpar, M.; Jafar, S.; Tandon, R.; Tian, C. Private retrieval, computing and learning: Recent progress and future challenges. IEEE J. Sel. Areas Commun. 2022, 40, 729–748. [Google Scholar] [CrossRef]
- Attia, M.A.; Kumar, D.; Tandon, R. The capacity of private information retrieval from uncoded storage constrained databases. IEEE Trans. Inf. Theory 2020, 66, 6617–6634. [Google Scholar] [CrossRef]
- Sun, H.; Jafar, S.A. Multiround private information retrieval: Capacity and storage overhead. IEEE Trans. Inf. Theory 2018, 64, 5743–5754. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Tian, C. Breaking the MDS-PIR capacity barrier via joint storage coding. Information 2019, 10, 265. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Zhou, R.; Tian, C. New results on the storage-retrieval tradeoff in private information retrieval systems. IEEE J. Sel. Areas Inf. Theory 2021, 2, 403–414. [Google Scholar] [CrossRef]
- Tian, C.; Sun, H.; Chen, J. A Shannon-theoretic approach to the storage-retrieval tradeoff in PIR systems. In Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT), Vail, CO, USA, 17–20 June 2018; pp. 1904–1908. [Google Scholar]
- Gamal, A.; Cover, T. Achievable rates for multiple descriptions. IEEE Trans. Inf. Theory 1982, 28, 851–857. [Google Scholar] [CrossRef] [Green Version]
- Tian, C. On the storage cost of private information retrieval. IEEE Trans. Inf. Theory 2020, 66, 7539–7549. [Google Scholar] [CrossRef]
- Venkataramani, R.; Kramer, G.; Goyal, V.K. Multiple description coding with many channels. IEEE Trans. Inf. Theory 2003, 49, 2106–2114. [Google Scholar] [CrossRef]
- Wyner, A.; Ziv, J. The rate-distortion function for source coding with side information at the decoder. IEEE Trans. Inf. Theory 1976, 22, 1–10. [Google Scholar] [CrossRef]
- Pradhan, S.S.; Puri, R.; Ramchandran, K. n-channel symmetric multiple descriptions-part I: (n,k) source-channel erasure codes. IEEE Trans. Inf. Theory 2004, 50, 47–61. [Google Scholar] [CrossRef]
- Tian, C.; Chen, J. New coding schemes for the symmetric K-description problem. IEEE Trans. Inf. Theory 2010, 56, 5344–5365. [Google Scholar] [CrossRef]
- Sgarro, A. Source coding with side information at several decoders. IEEE Trans. Inf. Theory 1977, 23, 179–182. [Google Scholar] [CrossRef]
(00) | 1/2 | |||
(10) | p | |||
(01) | p | |||
(11) | 1/2 | 1/2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, C.; Sun, H.; Chen, J. A Shannon-Theoretic Approach to the Storage–Retrieval Trade-Off in PIR Systems. Information 2023, 14, 44. https://doi.org/10.3390/info14010044
Tian C, Sun H, Chen J. A Shannon-Theoretic Approach to the Storage–Retrieval Trade-Off in PIR Systems. Information. 2023; 14(1):44. https://doi.org/10.3390/info14010044
Chicago/Turabian StyleTian, Chao, Hua Sun, and Jun Chen. 2023. "A Shannon-Theoretic Approach to the Storage–Retrieval Trade-Off in PIR Systems" Information 14, no. 1: 44. https://doi.org/10.3390/info14010044
APA StyleTian, C., Sun, H., & Chen, J. (2023). A Shannon-Theoretic Approach to the Storage–Retrieval Trade-Off in PIR Systems. Information, 14(1), 44. https://doi.org/10.3390/info14010044