Hydrodynamic Measurements of Propagating Waves at Different Nearshore Depths in Hujeong Beach, Korea
<p>(<b>a</b>) Google map of Korean peninsula with location of Hujeong Beach, (<b>b</b>) aerial photo over Hujeong Beach in 1980 when the beach was in equilibrium before construction of Hanul Nuclear Power Plant (NPP), (<b>c</b>) locations of deployed instruments (L1 & L2 for Exp#1, L3 & L4 for Exp#2) on google map of Hujeong Beach. The red dot marks the location where the VMS was installed, and the red rectangle marks the coverage of the VMS. The map also shows that crescentic sandbars are actively developed in the nearshore areas of the beach.</p> "> Figure 2
<p>Comparison of shoreline positions in Hujeong Beach measured by VMS. Black solid line marks the shoreline measured on 19 December 2016 and black dashed marks the shoreline on 29 December 2016. The difference between these two lines is colored with red or blue as it denote the accretion or retreat area during the period respectively.</p> "> Figure 3
<p>Image on Hujeong Beach measured by Sentinel-II on December 11, 2016, downloaded from Creodias platform (creodias.eu). The red rectangle marks the coverage of the VMS shown in <a href="#jmse-08-00690-f002" class="html-fig">Figure 2</a>.</p> "> Figure 4
<p>Wave and hydrodynamic parameters from 22 December 2016 to 7 January 2017 of Exp#1. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>s</mi> </msub> </mrow> </semantics></math> significant wave height, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>p</mi> </msub> </mrow> </semantics></math>: peak wave direction, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>p</mi> </msub> </mrow> </semantics></math>: peak wave period, (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>g</mi> </mrow> </msub> </mrow> </semantics></math>: velocity magnitude, (<b>e</b>) <math display="inline"><semantics> <mover accent="true"> <mi>u</mi> <mo>¯</mo> </mover> </semantics></math>: cross-shore velocity (+ onshore), (<b>f</b>) <math display="inline"><semantics> <mover accent="true"> <mi>v</mi> <mo>¯</mo> </mover> </semantics></math>: longshore velocity (+ NW, left in the figure), (<b>g</b>) <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>k</mi> </msub> </mrow> </semantics></math>: wave skewness, (<b>h</b>) <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mi>s</mi> </msub> </mrow> </semantics></math>: wave asymmetry. The data of <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>s</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>p</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>p</mi> </msub> </mrow> </semantics></math> in L1 are taken from [<a href="#B19-jmse-08-00690" class="html-bibr">19</a>].</p> "> Figure 5
<p>Wave and hydrodynamic parameters from January 7 to 21, 2017 of Exp#1. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>s</mi> </msub> </mrow> </semantics></math>: significant wave height, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>p</mi> </msub> </mrow> </semantics></math>: peak wave direction, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>p</mi> </msub> </mrow> </semantics></math>: peak wave period, (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>g</mi> </mrow> </msub> </mrow> </semantics></math>: velocity magnitude, (<b>e</b>) <math display="inline"><semantics> <mover accent="true"> <mi>u</mi> <mo>¯</mo> </mover> </semantics></math>: cross-shore velocity (+ onshore), (<b>f</b>) <math display="inline"><semantics> <mover accent="true"> <mi>v</mi> <mo>¯</mo> </mover> </semantics></math>: longshore velocity (+ NW, left in the figure), (<b>g</b>) <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>k</mi> </msub> </mrow> </semantics></math>: wave skewness, (<b>h</b>) <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mi>s</mi> </msub> </mrow> </semantics></math>: wave asymmetry.</p> "> Figure 6
<p>Wave and hydrodynamic parameters from 21–28 December 2018 of Exp#2. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mi>s</mi> </msub> </mrow> </semantics></math>: significant wave height, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>p</mi> </msub> </mrow> </semantics></math>: peak wave direction, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>p</mi> </msub> </mrow> </semantics></math>: peak wave period, (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>g</mi> </mrow> </msub> </mrow> </semantics></math>: velocity magnitude, (<b>e</b>) <math display="inline"><semantics> <mover accent="true"> <mi>u</mi> <mo>¯</mo> </mover> </semantics></math>: cross-shore velocity (+ onshore), (<b>f</b>) <math display="inline"><semantics> <mover accent="true"> <mi>v</mi> <mo>¯</mo> </mover> </semantics></math>: longshore velocity (+ NW, left in the figure), (<b>g</b>) <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>k</mi> </msub> </mrow> </semantics></math>: wave skewness, (<b>h</b>) <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mi>s</mi> </msub> </mrow> </semantics></math>: wave asymmetry.</p> "> Figure 7
<p>Comparison of shoreline positions in Hujeong Beach measured by VMS between 19 December 2016, 29 December 2016, 10 January 2017 and 19 January 2017 for Exp#1. The google map shows the corresponding locations of the retreat/accretion areas along the beach.</p> "> Figure 8
<p>Comparison of shoreline positions in Hujeong Beach measured by VMS between 20 December 2018, 2 January 2019 for Exp#2. The google map shows the corresponding locations of the retreat/accretion areas along the beach.</p> "> Figure 9
<p>Converted Sentinel-II image of rater <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>a</mi> </msub> <mo>=</mo> <msub> <mi>b</mi> <mi>r</mi> </msub> <mo>×</mo> <msub> <mi>b</mi> <mi>g</mi> </msub> <mo>×</mo> <msub> <mi>b</mi> <mi>b</mi> </msub> </mrow> </semantics></math> on 11 December 2016 where <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mi>r</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mi>g</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mi>b</mi> </msub> </mrow> </semantics></math> represent the bands of red, green and blue respectively. The black dots in the sea area denote the locations of crescentic sandbar crest extracted following the algorithm by [<a href="#B21-jmse-08-00690" class="html-bibr">21</a>].</p> "> Figure 10
<p>Comparison of crescentic sandbar crest positions between the Sentinel-II images on 11 December 2016 (<b>red dots</b>), 31 December 2016 (<b>blue dots</b>) and 30 January 2017 (<b>green dots</b>) extracted using the algorithm by [<a href="#B21-jmse-08-00690" class="html-bibr">21</a>]. It shows that, in most parts of the sandbars, the crests moved offshore for maximum 70 m for 20 days between 11 December 2016 and 31 December 2016. Since then, the bar positions became stable without showing severe cross-shore movement until 30 January 2017. The data were not estimated at the profiles where the peak was not detected by the algorithm.</p> "> Figure 11
<p>Comparison of crescentic sandbar crest positions between the Sentinel-II images on November 26, 2018 (<b>blue dots</b>) and December 26, 2018 (<b>red dots</b>), extracted using the algorithm by [<a href="#B21-jmse-08-00690" class="html-bibr">21</a>]. The sandbar crest positions showed no clear difference between the three dates except some parts, indicating the seabed morphology was stable during the period. The data were not estimated at the profiles where the peak was not detected by the algorithm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Video Monitoring System
2.3. Sentinel-II Satellite Images
3. Results
3.1. Wave and Hydrodynamic Measurements
3.2. Shoreline Positions Measured by VMS
3.3. Seabed Movement Detected by Satellite Images
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hoefel, F.; Elgar, S. Wave-induced sediment transport and sandbar migration. Science 2003, 299, 1885–1887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, R.-A. Introduction to Coastal Processes and Geomorphology; Cambridge University Press: Cambridge, UK, 2014; pp. 194–199. [Google Scholar]
- Hsu, T.J.; Hanes, D.M. Effects of wave shape on sheet flow sediment transport. J. Geophys. Res. Oceans 2004, 109. [Google Scholar] [CrossRef]
- Elfrink, B.; Hanes, D.M.; Ruessink, B. Parameterization and simulation of near bed orbital velocities under irregular waves in shallow water. Coast. Eng. 2006, 53, 915–927. [Google Scholar] [CrossRef]
- Sato, S. Sheetflow Sediment Transport Under Skewed-Asymmetric Waves and Currents. Coast. Eng. Proc. 2012, 1, 50. [Google Scholar]
- Walstra, D.J.R.; van Rijn, L.C.; van Ormondt, M.; Brière, C.; Talmon, A.M. The Effects of Bed Slope and Wave Skewness on Sediment Transport and Morphology. Coast. Sedim. 2007, 1, 137–150. [Google Scholar]
- Filipot, J.-F. Investigation of the bottom-slope dependence of the nonlinear wave evolution toward breaking using SWASH. J. Coast. Res. 2016, 32, 1504–1507. [Google Scholar]
- Chella, M.A.; Bihs, H.; Myrhaug, D. Characteristics and profile asymmetry properties of waves breaking over an impermeable submerged reef. Coast. Eng. 2015, 100, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Abreu, T.; Michallet, H.; Silva, P.A.; Sancho, F.; van der A, D.A.; Ruessink, B.G. Bed shear stress under skewed and asymmetric oscillatory flows. Coast. Eng. 2013, 73, 1–10. [Google Scholar] [CrossRef]
- Abreu, T.; Sancho, F.; Silva, P. Bottom Shear Stress Formulations to Compute Sediment Fluxes in Accelerated Skewed Waves. J. Coast. Res. 2009, 1, 453–457. [Google Scholar]
- Gonzalez-Rodriguez, D.; Madsen, O.S. Seabed shear stress and bedload transport due to asymmetric and skewed waves. Coast. Eng. 2007, 54, 914–929. [Google Scholar] [CrossRef]
- Elgar, S.; Guza, R.T. Observations of Bispectra of Shoaling Surface Gravity-Waves. J. Fluid Mech. 1985, 161, 425–448. [Google Scholar] [CrossRef]
- Doering, J.; Bowen, A. Parametrization of orbital velocity asymmetries of shoaling and breaking waves using bispectral analysis. Coast. Eng. 1995, 26, 15–33. [Google Scholar] [CrossRef]
- Elgar, S.; Guza, R.T.; Freilich, M.H. Eulerian Measurements of Horizontal Accelerations in Shoaling Gravity-Waves. J. Geophys. Res. Oceans 1988, 93, 9261–9269. [Google Scholar] [CrossRef]
- Crawford, A.M.; Hay, A.E. Linear transition ripple migration and wave orbital velocity skewness: Observations. J. Geophys. Res. Oceans 2001, 106, 14113–14128. [Google Scholar] [CrossRef]
- Crawford, A.M.; Hay, A.E. Wave orbital velocity skewness and linear transition ripple migration: Comparison with weakly nonlinear theory. J. Geophys. Res. Oceans 2003, 108, 361–366. [Google Scholar] [CrossRef]
- Stansell, P.; Wolfram, J.; Zachary, S. Horizontal asymmetry and steepness distributions for wind-driven ocean waves from severe storms. Appl. Ocean Res. 2003, 25, 137–155. [Google Scholar] [CrossRef]
- Poate, T.; Masselink, G.; Austin, M.J.; Dickson, M.; McCall, R. The role of bed roughness in wave transformation across sloping rock shore platforms. J. Geophys. Res. Earth Surf. 2018, 123, 97–123. [Google Scholar] [CrossRef]
- Do, J.D.; Jin, J.Y.; Jeong, W.M.; Chang, Y.S. Observation of Rapid Seabed Erosion Near Closure Depth During a Storm Period at Hujeong Beach, South Korea. Geophys. Res. Lett. 2019, 46, 9804–9812. [Google Scholar] [CrossRef]
- Chang, Y.S.; Jin, J.-Y.; Jeong, W.M.; Kim, C.H.; Do, J.D. Video Monitoring of Shoreline Positions in Hujeong Beach, Korea. Appl. Sci. 2019, 9, 4984. [Google Scholar] [CrossRef] [Green Version]
- Tătui, F.; Constantin, S. Nearshore sandbars crest position dynamics analysed based on Earth Observation data. Remote Sens. Environ. 2020, 237, 111555. [Google Scholar] [CrossRef]
- Abreu, T.A.M.d.A. Coastal Sediment Dynamics under Asymmetric Waves and Currents: Measurements and Simulations. Ph.D. Thesis, University of Coimbra, Coimbra, Portugal, 2011. [Google Scholar]
- Splinter, K.D.; Harley, M.D.; Turner, I.L. Remote sensing is changing our view of the coast: insights from 40 years of monitoring at Narrabeen-Collaroy, Australia. Remote Sens. 2018, 10, 1744. [Google Scholar] [CrossRef] [Green Version]
- Andriolo, U.; Sánchez-García, E.; Tarborda, R. Operational use of surfcam online streaming images for coastal morphodynamic studies. Remote Sens. 2019, 11, 78. [Google Scholar] [CrossRef] [Green Version]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Price, T.D.; Ruessink, B.G. State dynamics of double sandbar system. Cont. Shelf Res. 2011, 31, 659–674. [Google Scholar] [CrossRef]
- Babanin, A.V.; Chalikov, D.; Young, I.; Savelyev, I. Numerical and laboratory investigation of breaking of steep two-dimensional waves in deep water. J. Fluid Mech. 2010, 644, 433–463. [Google Scholar] [CrossRef]
- Almar, R.; Cienfuegos, R.; Cantalán, P.A.; Michallet, H.; Castelle, B.; Bonneton, P.; Marieu, V. A new breaking wave height direct estimator from video imagery. Coast. Eng. 2012, 61, 42–48. [Google Scholar] [CrossRef]
- Andriolo, U.; Mendes, D.; Tarborda, R. Breaking wave height estimation from Timex images: two methods for coastal video monitoring systems. Remote Sens. 2020, 12, 204. [Google Scholar] [CrossRef] [Green Version]
- Andriolo, U. Nearshore wave transformation domains from video imagery. J. Mar. Sci. Eng. 2019, 7, 186. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.J.; Andriolo, U.; Ferreira, J. Shoreline response to a sandy nourishment in a wave-dominated coast using video monitoring. Water 2020, 12, 1632. [Google Scholar] [CrossRef]
L1 | L2 | |
---|---|---|
Location (Lat, Lon) | 37°04′45.82″ N | 37°04′42.49″ N |
129°24′28.32″ E | 129°24′14.10″ E | |
Water depth | 8.1 m | 3.3 m |
Instruments | VECTOR (Nortek), ADCP (RD Instruments) | ADV (SonTek) |
Measurement height above seabed | 0.25 m | |
Time for t = 0 (day) | 20 December 2016 11:00 | |
Measurement burst interval | 60 min | |
Sampling frequency | 2 Hz | |
Burst duration | 20 min | |
Data points in one burst | 2400 |
L3 | L4 | |
---|---|---|
Location (Lat, Lon) | 37°04′42.90″ N | 37°04′38.19″ N |
129°24′27.39″ E | 129°24′22.22″ E | |
Water depth | 5.5 m | 3.5 m |
Instruments | VECTOR, Signature 500 (Nortek) | ADV (SonTek) |
Measurement height above seabed | 0.25 m | |
Time for t = 0 (day) | 21 December 2018 07:00 | |
Measurement burst interval | 60 min | |
Sampling frequency | 4 Hz | |
Burst duration | 10 min | |
Data points in one burst | 2400 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, J.D.; Chang, Y.S.; Jin, J.-Y.; Jeong, W.M.; Lee, B.; Ha, H.K. Hydrodynamic Measurements of Propagating Waves at Different Nearshore Depths in Hujeong Beach, Korea. J. Mar. Sci. Eng. 2020, 8, 690. https://doi.org/10.3390/jmse8090690
Do JD, Chang YS, Jin J-Y, Jeong WM, Lee B, Ha HK. Hydrodynamic Measurements of Propagating Waves at Different Nearshore Depths in Hujeong Beach, Korea. Journal of Marine Science and Engineering. 2020; 8(9):690. https://doi.org/10.3390/jmse8090690
Chicago/Turabian StyleDo, Jong Dae, Yeon S. Chang, Jae-Youll Jin, Weon Mu Jeong, Byunggil Lee, and Ho Kyung Ha. 2020. "Hydrodynamic Measurements of Propagating Waves at Different Nearshore Depths in Hujeong Beach, Korea" Journal of Marine Science and Engineering 8, no. 9: 690. https://doi.org/10.3390/jmse8090690