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Abstract: With the ever-increasing volume of maritime traffic, the risks of ship navigation
are becoming more significant, making the use of advanced multi-source perception strate-
gies and AI technologies indispensable for obtaining information about ship navigation
status. In this paper, first, the ship tracking system was optimized using the Bi-YOLO
network based on the C2f_BiFormer module and the OC-SORT algorithms. Second, to
extract the visual trajectory of the target ship without a reference object, an absolute position
estimation method based on binocular stereo vision attitude information was proposed.
Then, a perception data fusion framework based on ship spatio-temporal trajectory features
(ST-TF) was proposed to match GPS-based ship information with corresponding visual
target information. Finally, AR technology was integrated to fuse multi-source percep-
tual information into the real-world navigation view. Experimental results demonstrate
that the proposed method achieves a mAP0.5:0.95 of 79.6% under challenging scenarios
such as low resolution, noise interference, and low-light conditions. Moreover, in the
presence of the nonlinear motion of the own ship, the average relative position error of
target ship visual measurements is maintained below 8%, achieving accurate absolute
position estimation without reference objects. Compared to existing navigation assistance,
the AR-based navigation assistance system, which utilizes ship ST-TF-based perception
data fusion mechanism, enhances ship traffic situational awareness and provides reliable
decision-making support to further ensure the safety of ship navigation.

Keywords: data fusion; marine autonomous surface ships; ship traffic safety; ship recognition
and tracking; machine vision; AR navigation assistance

1. Introduction
With the rapid development of the shipping industry, the increasing number of ships

and the complexity of maritime traffic situations have highlighted the issue of navigation
safety. In 2021, the European Maritime Safety Agency published the “Annual Overview of
Marine Casualties and Incidents [1]”, which reported 15,481 maritime incidents between
2014 and 2020. The data indicates that approximately 53.5% of the investigated incidents
were caused by improper human manipulation. In this context, Maritime Autonomous
Surface Ships (MASSs) have emerged as the times require, utilizing advanced technologies
such as the Internet of Things, big data, artificial intelligence, etc., to swiftly respond to
maritime industry needs with little to no human intervention. The Maritime Safety Com-
mittee’s (MSC) 100th session [2] formally defines MASSs from a legislative perspective
as ships that can operate autonomously to varying degrees without human interaction,
offering advantages such as low costs, low risks, and easy maintenance, thus garnering
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widespread attention from scholars around the world [3]. To promote the development of
MASS technology, Rolls-Royce has proposed the vision of “smart ships”, emphasizing the
application of AR and data fusion technologies, which are believed to bring revolutionary
progress to ship navigation systems. In line with this trend, AR technology has gradually
become a key means to enhance the safety and operational efficiency of ships. Several
companies and research institutions have made significant progress in integrating AR
technology with the maritime sector. Specifically, the ClearCruise AR yacht navigation
system, developed by the UK-based Raymarine company, captures the forward view in
real time using high-definition cameras. It combines onboard sensor data and utilizes
AR technology to overlay virtual information, providing decision support to the oper-
ator [4]. The HiNAS 2.0 navigation system, developed by the South Korean company
Avikus, integrates AR technology. It has been successfully applied to the transoceanic
navigation of the LNG ship “Prism Courage”, significantly improving the safety and oper-
ational efficiency of autonomous ship navigation [5]. Although research on AR-assisted
navigation systems in the maritime field is still in its early stages, its potential has been
widely recognized. Researchers Laera et al. [6], in their study of 11 AR maritime solutions,
pointed out that AR technology holds significant research value in maritime applications
and is expected to further optimize ship navigation, situational awareness, and decision
support functions, thereby having a profound impact on the safety and efficiency of the
shipping industry.

Currently, mainstream ship navigation assistance systems mainly focus on visual
scenarios. These systems fuse real-time perceived environmental information with het-
erogeneous data, such as the Automatic Identification System (AIS) [7,8], and present key
navigation information in a visual format. However, these systems have shortcomings
in terms of insufficient perception means, insufficient accuracy, real-time performance,
single mutual communication information, and high demands on the operator’s ability to
interpret and understand the information, which make it difficult to meet the requirements
of efficient navigation assistance in complex waterways. Therefore, many scholars have
actively pursued strategies for integrating multiple perception methods, such as radar,
sonar, Synthetic Aperture Radar (SAR), remote sensing, cameras, etc. [9–12], in order to
comprehensively and accurately acquire information about the navigation environment.
However, an effective and intelligent data fusion mechanism has not yet been proposed in
the existing research, and at the same time, the method of expressing and understanding
the sensing information is more demanding for the crew. Specifically, for the perception
of ship target positions, existing research predominantly focuses on methods utilizing
shore-based fixed-view cameras to project AIS position coordinates onto image coordinates
for matching and fusion. However, this approach fails to address the issue of matching
and fusion for ships with a deactivated AIS, as their specific position coordinates cannot be
obtained [13]. Furthermore, current multi-source perception data fusion methods primarily
concentrate on the relationship between target image positions and AIS positions at a single
moment [14], neglecting the long-term trajectory characteristics of ships. Consequently, in
busy waters with high ship density or when AIS signals are subject to interference, ensuring
high-quality association and fusion of perception data becomes challenging. Additionally,
the expression and interpretation methods of perceived information in existing navigation
assistance systems impose high cognitive demands on crew members [15], potentially
leading to decision-making errors. To address these challenges, in this study, a percep-
tion data fusion framework based on ship spatio-temporal trajectory features (ST-TF) was
proposed. This framework was designed for application in ship AR navigation assistance
systems, offering a more reliable and efficient solution for navigation and surveillance in
complex waterways.
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The main contributions of this paper are summarized as follows:

• Fusion Location Ship (FLShip) dataset: The FLShip dataset has been constructed
based on data collected from six self-developed MASSs, which includes stereo and
monocular image sequences, as well as high-frequency attitude and GPS data from
the MASSs. A variety of navigational scenarios and environmental conditions are
encompassed by the dataset, providing essential support for ship target detection,
multi-source information fusion, and autonomous navigation research.

• Optimization of ship tracking system: To improve the detection performance of small
targets while reducing the model’s parameter count, a Bi-YOLO network based on
BiFomer has been proposed, achieving more efficient and accurate ship identification.
In response to complex navigational environments, the more powerful OC-SORT
algorithm has been incorporated to ensure stable tracking of targets. The superiority
of this method has been validated through comparative experiments with several
advanced detection and tracking algorithms.

• Ship target absolute position estimation: In order to realize the position estimation of
the target ship in the state of no reference, a visual localization model based on binoc-
ular imaging was constructed. By fusing the attitude information from a binocular
camera, absolute position estimation of maritime targets at the moving end of a ship is
successfully realized.

• Perception data fusion based on ship ST-TF: To effectively integrate information from
multiple perception sources, a novel perception data fusion method based on ship ST-
TF was proposed. This approach employs a dynamic time warping (DTW) algorithm
to align multi-source perception data, achieving spatio-temporal synchronization
between different sensory inputs, while aiming to ensure the accuracy and reliability
of the fused perception information.

The rest of the paper is organized as follows. Section 2 begins with a review of state-
of-the-art research on ship perception methods, visual target detection and tracking, and
multi-sensor data fusion. In Section 3, the proposed perception data fusion framework
based on ship ST-TF is described in detail. Then, in Section 4, field experiments are
conducted to evaluate and validate the system performance to demonstrate the effectiveness
of our framework. Finally, Section 5 summarizes the main contributions of this paper and
discusses future perspectives. The organization of the sections is shown in Figure 1.

Figure 1. Organization diagram of the sections of this paper.
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2. Literature Review
This section focuses on recent research related to our work, namely ship perception

methods, visual target detection and tracking, and multi-sensor data fusion.

2.1. Different Sensors for Ship Perception

Currently, ship perception methods are mainly divided into two categories: active
perception and passive perception. Active perception methods include mariner radar,
sonar, SAR, etc., while passive perception methods include optical remote sensing, cameras,
AISs, etc.

Various maritime perception methods have their own advantages and limitations.
Mariner radar is virtually unaffected by visibility, lighting, and noise but it is expensive,
has blind spots, and may experience reduced detection accuracy in the presence of sea
clutter. In contrast, sonar performs well in detecting, positioning, and tracking underwater
targets [16]. However, sonar images often suffer from poor quality, low contrast, and low
resolution, requiring additional image enhancement processing for target identification and
localization. Simultaneously, SAR systems have unique advantages in ship detection [17].
However, when dealing with both stationary and moving targets, SAR systems may
exhibit image distortion and blurring [18], which makes the extraction of target behavior
information more complicated. Optical remote sensing technology has garnered significant
attention in recent years, especially in target identification and situational awareness [19].
However, remote sensing images are influenced by factors such as noise, seasonal climate,
and light intensity, making them unable to work reliably in all weather conditions. In
comparison to other sensors, cameras, as passive sensors similar to the human eye, operate
by capturing information about the color, contours, and textures of objects. Cameras are
widely used in areas such as driverless and target recognition [20]. Additionally, cameras
can be used to measure the distance to the target and determine the direction and position
of the target. Due to their advantages of high-precision measurement and not revealing
the position of the detection system, cameras have demonstrated high application value
in many fields [21]. AIS data contains a wealth of information to ensure the safety of
maritime navigation. It is widely used in ship behavior analysis, route planning, and
collision avoidance decision-making research [22,23].

Table 1 presents the characteristics of the primary ship perception methods. From this,
we can conclude that relying solely on a single sensor has significant limitations. It fails to
provide sufficient accuracy and completeness in capturing ship navigation dynamic data. In
contrast, a multi-source data fusion framework leverages the strengths of multiple sensors,
enabling a more comprehensive and precise perception of the navigation environment.
This approach is particularly well suited for diverse and complex application scenarios.



J. Mar. Sci. Eng. 2025, 13, 366 5 of 34

Table 1. Comparison of different sensor perception methods.

Perception Methods
Target

Recognition
Rate

Spatial
Resolu-

tion

Perception
Range Robustness

Real-
Time

Perfor-
mance

Data
Fusion

Compati-
bility

Power
Con-

sumption
Cost

Radar

J. Mar. Sci. Eng. 2025, 13, x FOR PEER REVIEW 5 of 35 
 

 

ensure the safety of maritime navigation. It is widely used in ship behavior analysis, route 
planning, and collision avoidance decision-making research [22,23]. 

Table 1 presents the characteristics of the primary ship perception methods. From 
this, we can conclude that relying solely on a single sensor has significant limitations. It 
fails to provide sufficient accuracy and completeness in capturing ship navigation dy-
namic data. In contrast, a multi-source data fusion framework leverages the strengths of 
multiple sensors, enabling a more comprehensive and precise perception of the naviga-
tion environment. This approach is particularly well suited for diverse and complex ap-
plication scenarios. 

Table 1. Comparison of different sensor perception methods. 

2.2. Visual Object Detection and Tracking 
With the continuous advancement of computer vision technology, visual detection 

and tracking methods based on deep learning have been widely applied in the field of 

Perception Methods 
Target  

Recognition Rate 

Spatial 

Resolution 

Perception 

Range 
Robustness 

Real-Time 

Performance 

Data Fusion 

Compatibility 

Power 

Consumption 
Cost 

A

C

T

I

V

E 

Radar High Medium Large High High Medium Medium High 

Sonar Medium Medium Medium Medium Medium Medium Medium Low 

SAR Medium Low Medium High High High Low Medium 

P

A

S

S

I

V

E 

Remote 

Sensing 
Medium Medium Medium Medium High High Low Medium 

Camera High High Small Low Low Low High High 

AIS High Low Large High Low Low Medium High 

High Medium Large High High Medium Medium High

Sonar

J. Mar. Sci. Eng. 2025, 13, x FOR PEER REVIEW 5 of 35 
 

 

ensure the safety of maritime navigation. It is widely used in ship behavior analysis, route 
planning, and collision avoidance decision-making research [22,23]. 

Table 1 presents the characteristics of the primary ship perception methods. From 
this, we can conclude that relying solely on a single sensor has significant limitations. It 
fails to provide sufficient accuracy and completeness in capturing ship navigation dy-
namic data. In contrast, a multi-source data fusion framework leverages the strengths of 
multiple sensors, enabling a more comprehensive and precise perception of the naviga-
tion environment. This approach is particularly well suited for diverse and complex ap-
plication scenarios. 

Table 1. Comparison of different sensor perception methods. 

2.2. Visual Object Detection and Tracking 
With the continuous advancement of computer vision technology, visual detection 

and tracking methods based on deep learning have been widely applied in the field of 

Perception Methods 
Target  

Recognition Rate 

Spatial 

Resolution 

Perception 

Range 
Robustness 

Real-Time 

Performance 

Data Fusion 

Compatibility 

Power 

Consumption 
Cost 

A

C

T

I

V

E 

Radar High Medium Large High High Medium Medium High 

Sonar Medium Medium Medium Medium Medium Medium Medium Low 

SAR Medium Low Medium High High High Low Medium 

P

A

S

S

I

V

E 

Remote 

Sensing 
Medium Medium Medium Medium High High Low Medium 

Camera High High Small Low Low Low High High 

AIS High Low Large High Low Low Medium High 

Medium Medium Medium Medium Medium Medium Medium Low
ACTIVE

SAR

J. Mar. Sci. Eng. 2025, 13, x FOR PEER REVIEW 5 of 35 
 

 

ensure the safety of maritime navigation. It is widely used in ship behavior analysis, route 
planning, and collision avoidance decision-making research [22,23]. 

Table 1 presents the characteristics of the primary ship perception methods. From 
this, we can conclude that relying solely on a single sensor has significant limitations. It 
fails to provide sufficient accuracy and completeness in capturing ship navigation dy-
namic data. In contrast, a multi-source data fusion framework leverages the strengths of 
multiple sensors, enabling a more comprehensive and precise perception of the naviga-
tion environment. This approach is particularly well suited for diverse and complex ap-
plication scenarios. 

Table 1. Comparison of different sensor perception methods. 

2.2. Visual Object Detection and Tracking 
With the continuous advancement of computer vision technology, visual detection 

and tracking methods based on deep learning have been widely applied in the field of 

Perception Methods 
Target  

Recognition Rate 

Spatial 

Resolution 

Perception 

Range 
Robustness 

Real-Time 

Performance 

Data Fusion 

Compatibility 

Power 

Consumption 
Cost 

A

C

T

I

V

E 

Radar High Medium Large High High Medium Medium High 

Sonar Medium Medium Medium Medium Medium Medium Medium Low 

SAR Medium Low Medium High High High Low Medium 

P

A

S

S

I

V

E 

Remote 

Sensing 
Medium Medium Medium Medium High High Low Medium 

Camera High High Small Low Low Low High High 

AIS High Low Large High Low Low Medium High 

Medium Low Medium High High High Low Medium

Remote
Sensing

J. Mar. Sci. Eng. 2025, 13, x FOR PEER REVIEW 5 of 35 
 

 

ensure the safety of maritime navigation. It is widely used in ship behavior analysis, route 
planning, and collision avoidance decision-making research [22,23]. 

Table 1 presents the characteristics of the primary ship perception methods. From 
this, we can conclude that relying solely on a single sensor has significant limitations. It 
fails to provide sufficient accuracy and completeness in capturing ship navigation dy-
namic data. In contrast, a multi-source data fusion framework leverages the strengths of 
multiple sensors, enabling a more comprehensive and precise perception of the naviga-
tion environment. This approach is particularly well suited for diverse and complex ap-
plication scenarios. 

Table 1. Comparison of different sensor perception methods. 

2.2. Visual Object Detection and Tracking 
With the continuous advancement of computer vision technology, visual detection 

and tracking methods based on deep learning have been widely applied in the field of 

Perception Methods 
Target  

Recognition Rate 

Spatial 

Resolution 

Perception 

Range 
Robustness 

Real-Time 

Performance 

Data Fusion 

Compatibility 

Power 

Consumption 
Cost 

A

C

T

I

V

E 

Radar High Medium Large High High Medium Medium High 

Sonar Medium Medium Medium Medium Medium Medium Medium Low 

SAR Medium Low Medium High High High Low Medium 

P

A

S

S

I

V

E 

Remote 

Sensing 
Medium Medium Medium Medium High High Low Medium 

Camera High High Small Low Low Low High High 

AIS High Low Large High Low Low Medium High 

Medium Medium Medium Medium High High Low Medium

Camera

J. Mar. Sci. Eng. 2025, 13, x FOR PEER REVIEW 5 of 35 
 

 

ensure the safety of maritime navigation. It is widely used in ship behavior analysis, route 
planning, and collision avoidance decision-making research [22,23]. 

Table 1 presents the characteristics of the primary ship perception methods. From 
this, we can conclude that relying solely on a single sensor has significant limitations. It 
fails to provide sufficient accuracy and completeness in capturing ship navigation dy-
namic data. In contrast, a multi-source data fusion framework leverages the strengths of 
multiple sensors, enabling a more comprehensive and precise perception of the naviga-
tion environment. This approach is particularly well suited for diverse and complex ap-
plication scenarios. 

Table 1. Comparison of different sensor perception methods. 

2.2. Visual Object Detection and Tracking 
With the continuous advancement of computer vision technology, visual detection 

and tracking methods based on deep learning have been widely applied in the field of 

Perception Methods 
Target  

Recognition Rate 

Spatial 

Resolution 

Perception 

Range 
Robustness 

Real-Time 

Performance 

Data Fusion 

Compatibility 

Power 

Consumption 
Cost 

A

C

T

I

V

E 

Radar High Medium Large High High Medium Medium High 

Sonar Medium Medium Medium Medium Medium Medium Medium Low 

SAR Medium Low Medium High High High Low Medium 

P

A

S

S

I

V

E 

Remote 

Sensing 
Medium Medium Medium Medium High High Low Medium 

Camera High High Small Low Low Low High High 

AIS High Low Large High Low Low Medium High 

High High Small Low Low Low High HighPASSIVE

AIS

J. Mar. Sci. Eng. 2025, 13, x FOR PEER REVIEW 5 of 35 
 

 

ensure the safety of maritime navigation. It is widely used in ship behavior analysis, route 
planning, and collision avoidance decision-making research [22,23]. 

Table 1 presents the characteristics of the primary ship perception methods. From 
this, we can conclude that relying solely on a single sensor has significant limitations. It 
fails to provide sufficient accuracy and completeness in capturing ship navigation dy-
namic data. In contrast, a multi-source data fusion framework leverages the strengths of 
multiple sensors, enabling a more comprehensive and precise perception of the naviga-
tion environment. This approach is particularly well suited for diverse and complex ap-
plication scenarios. 

Table 1. Comparison of different sensor perception methods. 

2.2. Visual Object Detection and Tracking 
With the continuous advancement of computer vision technology, visual detection 

and tracking methods based on deep learning have been widely applied in the field of 

Perception Methods 
Target  

Recognition Rate 

Spatial 

Resolution 

Perception 

Range 
Robustness 

Real-Time 

Performance 

Data Fusion 

Compatibility 

Power 

Consumption 
Cost 

A

C

T

I

V

E 

Radar High Medium Large High High Medium Medium High 

Sonar Medium Medium Medium Medium Medium Medium Medium Low 

SAR Medium Low Medium High High High Low Medium 

P

A

S

S

I

V

E 

Remote 

Sensing 
Medium Medium Medium Medium High High Low Medium 

Camera High High Small Low Low Low High High 

AIS High Low Large High Low Low Medium High High Low Large High Low Low Medium High

2.2. Visual Object Detection and Tracking

With the continuous advancement of computer vision technology, visual detection
and tracking methods based on deep learning have been widely applied in the field of ship
detection and tracking, owing to their outstanding performance. The use of neural networks
as the basis of algorithms has become a mainstream trend for classification and detection
tasks, and such algorithms are divided into two main routes. The first comprises two-stage
algorithms based on region recommendation, including R-CNN [24], Fast R-CNN [25],
and Faster R-CNN [26]. This route essentially inherits the idea of traditional detection
algorithms, where regions that may contain targets are first screened, followed by feature
extraction and classification. The second route comprises end-to-end one-stage algorithms,
such as the YOLO series [27–30] and SSD [31]. These algorithms directly transform the
bounding box location problem into a regression problem, thus reducing computational
complexity and enabling the network to detect targets with a lightweight architecture.
Specifically, D. Zhang et al. used the Mask R-CNN algorithm and Faster R-CNN algorithm,
respectively, to construct ship target feature extraction and a recognition model, and
compared the accuracy and performance of these two algorithms in target detection and
classification by classifying warships and civilian ships [32]. Aiming at the problem of
traditional shipboard radar having difficulty performing the task of detecting near-small
ships, Chen, Z et al. proposed a small-ship detection method based on an improved GAN
and CNN, and the experimental results show that their method significantly improved
the detection effect of small ships [33]. To address the challenges of missed detection and
misidentification in ship target detection within SAR images under complex scenes, Chen,
Z. et al. proposed a CSD-YOLO model based on YOLOv7. This model was validated
on the SSDD and HRSID datasets, demonstrating significant improvements over Faster
R-CNN, FCOS, YOLOv3, YOLOv5s, and YOLOv7 algorithms, with marked enhancements
in multi-scale ship target feature extraction [34]. To address the challenges of low-visibility
weather scenarios, Liu et al. developed an enhanced Convolutional Neural Network (CNN)
to improve ship detection under different weather conditions, and experimental results
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under different monitoring conditions showed that their method outperforms SSD, Faster
R-CNN, YOLOv2, and YOLOv3 in terms of detection accuracy [35].

In recent years, scholars have explored the application of visual detection and tracking
technology for information mining in maritime videos. Zheng et al. applied binocular
stereo vision technology to the recognition and estimation of the depth of inland waterway
ships and used the MobileNetV1 network as the feature extraction module of the YOLOv4
model for ship detection, greatly reducing the amount of computation while ensuring
accuracy. In addition, a sub-pixel-level feature point detection and matching algorithm
was used for depth estimation, which enriched the ship’s perception of the navigation
environment [36]. Zhou et al. proposed a deep learning-based framework for extracting
ship speeds in haze environments, used the YOLOv5 detector and Deep SORT tracker
to detect and track the ship, and estimated the ship speed by calculating the mapping
relationship between image space and real space, which provided important value for
guaranteeing the safety of ship navigation [37].

2.3. Multi-Sensor Data Fusion

To obtain more accurate and consistent ship motion perception data, multi-source data
fusion methods have become a focus of attention in the academic community [38,39]. Maritime
radars, AISs, and cameras are the most widely used sensors in maritime transportation
systems, each possessing distinct advantages and limitations. Therefore, effectively integrating
data from these sensors to enhance ship detection and tracking accuracy has become a key
research focus.

In previous studies, scholars have made a lot of effort in the fusion of maritime
radars, AISs, and video surveillance cameras. For example, to improve the accuracy of
AIS visual target association, Ding et al. proposed a three-step calibration method that
projects image coordinates onto geographic coordinates [14]. By employing the Hungarian
algorithm, they identified the optimal matches, effectively integrating AIS data with ship
trajectories. Gülsoylu et al. introduced an image–AIS data fusion approach for fixed
and periodically panning cameras [40]. This method utilizes the YOLOv5 model for ship
detection, applies homography transformation for coordinate conversion, and assigns AIS
messages to the nearest bounding box in the image using k-dimensional tree-based nearest
neighbor search. The accuracy of the fusion framework was further validated. To improve
ship tracking efficiency, Chen et al. integrated the AIS with maritime video surveillance.
They adjusted the camera’s attitude and focus based on AIS-reported positions to achieve
stable tracking of specific ships [41]. Although this method performs well in single-target
scenarios, it faces significant limitations in multi-ship scenarios and cannot achieve efficient
multi-target tracking. Additionally, maritime radar images often contain false echoes, and
AIS data transmission may experience loss, leading to uncertainties in estimating ship
speed and heading. To address this issue, Xu et al. proposed a method that integrates
radar sequence images with AIS data for estimating ship speed and heading [42]. This
method was applied in the Yangtze River Basin, effectively reducing the uncertainty in
ship speed and heading estimation. To improve waterway traffic monitoring in inland
waterways, Lu et al. proposed a framework for ship identification through the fusion of
visual detection and AIS data [43]. This method estimates the distance from the camera
and the azimuth relative to the camera of the identified ship target based on the bounding
box size in the shore-based monocular camera image and the ship length in the AIS
data. However, this approach is only applicable for the distance estimation of ships
with a side-facing orientation to the camera. Moreover, due to the effects of marine
background, occlusion, and weather conditions, the bounding box size often varies, further
impacting the accuracy of the estimation. For the fusion of ship trajectories, Qu et al.
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proposed a vision-based framework for fusing ship and AIS trajectories [13] that uses
the YOLOX detector and optimized Deep SORT tracker to extract ship image trajectories,
preprocesses AIS data, and projects AIS coordinates to the image coordinate system. The
Hungarian algorithm then associates AIS and visual data for intelligent maritime traffic
monitoring in inland waterways. However, this method does not fully consider the limited
computing resources of onboard devices, and the use of original YOLOX may result in
slower inference speed. Zhang et al. proposed a method for matching AIS and video data
by combining region division and an improved Kalman filter [44]. The method utilizes an
enhanced LSTM network for accurate trajectory prediction of AIS data and applies a single-
stage object detection model to analyze video data collected from buoys. This approach
enables fast and efficient data fusion, significantly improving the accuracy and flexibility of
channel detection.

The aforementioned studies indicate that, despite significant research focused on
fusing multiple data sources for ship target perception, two unresolved issues remain.
First, existing studies often fail to fully consider the limitations of onboard computational
resources, leading to bottlenecks in inference speed, which affect system real-time perfor-
mance and efficiency. Second, most research focuses on fusion perception methods for
shore-based or fixed-angle cameras, while less attention is given to the challenges posed
by onboard cameras in real-world navigation environments, such as the effects of fog
interference and AIS data instability. Therefore, from the perspective of practical ship
applications, optimizing the inference speed of perception models and the data fusion
mechanism to improve the accuracy and usability of multi-source perception methods is
an urgent problem that needs to be addressed.

3. Materials and Methods
This section provides a detailed description of the perceptual data fusion framework

based on ship ST-TF, as shown in Figure 2. The framework includes ship detection and
tracking, ship trajectory extraction based on binocular vision, and multi-source spatio-
temporal data fusion. For the video data captured by the shipboard camera, the Bi-YOLO
network is first used for ship target detection, and to address the ship occlusion problem in
complex navigation environments, the more powerful OC-SORT algorithm is introduced to
achieve stable target tracking. In the visual trajectory extraction stage, a visual localization
model is constructed based on the principle of binocular imaging. This model is then
integrated with the attitude information of the camera, enabling the shipborne terminal
to perform absolute position estimation of ship targets. Subsequently, in the multi-source
spatio-temporal data fusion, the visual trajectory is pre-processed to suppress the measure-
ment noise, and then the DTW algorithm is used to match the visual trajectory with the
GPS trajectory and align the spatio-temporal data points. After the trajectory matching,
the data storage area is redesigned to jointly store the navigation information of the host
ship and the target ship, thus improving the efficiency of the trajectory association. Finally,
based on the results of multi-source perception data fusion, a ship AR navigation assistance
system is developed, which improves the overall navigation experience of ship driving and
enhances safety in the maritime field.
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3.1. Deep Learning-Based Visual Detection and Tracking of Target Ship
3.1.1. Target Ship Detection

YOLO (You Only Look Once) is a single-stage deep learning object detection algorithm.
It has revolutionized real-time object detection by combining region proposals and classifi-
cation into a unified neural network, significantly reducing computation time. Its unique
design has made it highly popular in the deep learning community, offering superior
accuracy and faster detection speeds compared to other object detection algorithms. The
strength of YOLO is that it is not only limited to the original task, that is, the detection of
80 categories defined by the MS-COCO dataset, but also widely used in various detection
fields, becoming the backbone model or benchmark for many tasks. YOLO11, the latest
iteration of this series [45], represents the state-of-the-art in object detection technology,
providing a solid and cutting-edge technical foundation for our research. In this study, the
accuracy of ship target identification plays a crucial role in the final data fusion results.
However, limited computational resources on the shipborne edge devices constrain this
process. Furthermore, existing ship target detection models primarily focus on medium-
to large-sized targets, and their performance for small targets is suboptimal. This makes
them unsuitable for scenarios in open waters or nighttime navigation, where small, incon-
spicuous targets may be present. To enhance the detection of small targets while reducing
the model’s parameter count, a Bi-YOLO network has been proposed. This network in-
corporates the C2f_BiFormer module, which combines convolutional operations with the
BiFormer block [46] into the backbone layer of YOLOv11, achieving more efficient and
accurate ship identification. The structure of the Bi-YOLO network is shown in Figure 3.
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In YOLO11 network, the backbone utilizes Conv and C3k2 modules for downsam-
pling, this can lead to the loss of contextual features to some extent, thereby reducing the
resolution of the feature maps and losing important contextual information. The intro-
duction of the C2f_BiFormer module helps mitigate the loss of small target information
during downsampling, enabling the model to focus more on task-relevant information
when processing inputs. This module employs a dual-level routing attention strategy to
enhance feature representation through two key mechanisms: routing between regions
via a directed graph, which helps the model focus on specific areas of the image; and
token-to-token attention, which further refines the model’s attention to these regions.

BiFormer block: The overall architecture of the BiFormer block is shown in Figure 4a.
The BiFormer block is a transformer-based vision network architecture composed of several
submodules, including deep convolution, layer normalization, Bi-Level Routing Attention
(BRA), and MLP. The plus sign indicates the merging of two feature vectors. The submod-
ules are executed sequentially to optimize the input features within each BiFormer block.
The process begins with a 3 × 3 depthwise convolution, which slightly encodes positional
information. Then, the BRA module is combined with a two-layer MLP with an expan-
sion rate of e, further optimizing the features by capturing and modeling relationships
across positions.
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BRA module: The operating principle of the BRA module is shown in Figure 4b. BRA
is an advanced attention mechanism that employs a bi-level routing strategy to achieve
dynamic, query-aware sparsity. The main steps of BRA include the following:

a. Region partition and input projection: Given a 2D input feature map X ∈ RH×W×C,
where H is the height, W is the width, and C is the number of channels. We divide it
into S×S nonoverlapping regions, such that each region contains HW

S2 feature vectors.

This is achieved by reshaping X into Xr ∈ RS2× HW
S2 ×C. We then derive the query Q,

key K, and value tensor V ∈ RS2× HW
S2 ×C, using linear projections.

Xr ∈ reshape(X, S2,
HW
S2 , C) (1)

Q = XrWq, K = XrWk, V = XrWv (2)

where Wq, Wk, and Wv represent the learnable weight matrices.
b. Region-to-region routing with a directed graph: We then find the attending relation-

ship by constructing a directed graph. Specifically, we first compute region-level
queries and keys by applying an average to Q and K within each region, resulting in
Qr and Kr ∈ RS2×C. Subsequently, we derive the adjacency matrix Ar ∈ RS2×S2

for
the region-to-region affinity map by performing matrix multiplication between Qr

and the transposed Kr:

Qr = mean(Q, 1), Kr = mean(K, 1) (3)

Ar = QrKT
r (4)

The values in the adjacent matrix, Ar, quantify the semantic relationships between
pairs of regions. The core step that we perform next is to prune the affinity graph by
keeping only top-k connections for each region. To achieve this, we construct a routing
index matrix, Ir ∈ NS2×k, using a row-wise top-k selection operation:

Ir = topIndex(Ar) (5)

c. Token-to-token attention: Finally, token-to-token attention is performed within the spec-
ified regions. Each query token selectively attends to the query and context pairs corre-
sponding to the defined routing areas. The attention function is then applied to these
refined feature pairs to generate the final output. This process is expressed as follows:

Kg = gather(K, Ir), Vg = gather(V, Ir) (6)
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O = Atttention(Q, Kg, Vg) + LCE(V) (7)

In this, Kg, Vg are the gathered key and value tensor, Attention(·) represents the at-
tention function, and LCE(·) denotes the term that enhances local context, parameterized
through deep convolution. The BiFormer block significantly reduces computational com-
plexity by adopting a BRA strategy. Under a proper region partition factor S, its complexity
is O(S2·k·d). In contrast, the traditional global attention mechanism has a complexity of

O((HW)2), while the axial attention mechanism has a complexity of O((HW)
3
2 ). This

sparse computation strategy not only improves computational efficiency but also effec-
tively reduces interference from irrelevant regions, thereby enhancing the robustness and
accuracy of the model in handling small target detection tasks on the water surface.

3.1.2. Target Ship Tracking

Traditional motion-based tracking algorithms often use Kalman filters to predict the
motion of the target. However, when the target exhibits nonlinear motion or encounters
occlusion, long-term linear estimates may become highly inaccurate, leading to tracking fail-
ures. To address this problem, an Observation-Centric SORT (OC-SORT) [47] is used as the
main tracking algorithm in this paper. Ship targets are tracked in real-time independently
within the left and right images.

OC-SORT introduces three modules, namely Observation-Centric Online Smoothing
(OOS), Observation-Centric Momentum (OCM), and Observation-Centric Recovery (OCR)
to cope with the errors caused by target occlusion and nonlinear motion. Among them,
Observation-Centric Re-Update (ORU) is proposed to reduce the cumulative error when
an object is untracked and re-associated after a certain period of time, e.g., when the
last observation before untracking is denoted as zt1 , the observation that triggered the
re-association is denoted as zt2 , and the virtual trajectory Tvirtual is denoted as

ẑ = Tvirtual(zt1 , zt2 , t), t1 < t < t2 (8)

When the lost trajectory is re-associated along the virtual trajectory, OOS alternates
between the prediction and update stages, backchecking the parameters of the Kalman filter
back and forth, to prevent the accumulation of errors due to occlusion or missed detections.
When constructing the association cost matrix, most multi-object tracking methods typically
rely on two key points: motion features and appearance features. However, OC-SORT
introduces OCM into the association cost during the tracking process, by incorporating the
directional consistency of the trajectories into the association cost matrix. The association
cost matrix can be represented as follows:

C(X̂, Z) = CIoU(X̂, Z) + λCv(Z , Z) (9)

where (X̂, Z) is the set of estimated states and observations for the tracked object, λ is the
weight factor, Z includes the observed trajectories of all existing tracks, CIoU calculates the
Intersection over Union (IOU), and Cv calculates the consistency of the orientation of the
trajectory and the orientation of the historical and new observations of the trajectory.

Finally, after completing the association stage based on the predictions from the Kalman
filter, OC-SORT applies OCR techniques to attempt to correlate the observations of mismatched
trajectories with mismatched observations. This strategy helps reduce the generation of new
trajectories, thereby enhancing the overall accuracy of multi-object tracking.
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3.2. Target Ship Position Estimation Based on Binocular Imaging
3.2.1. Binocular Calibration and Stereoscopic Correction

Camera calibration is a prerequisite for stereo vision, where the imaging model typi-
cally assumes that the camera has no distortion under ideal conditions and describes the
imaging process using a linear model. However, in practical applications, lens errors can
cause distortion, affecting the imaging position of the images. Perspective, radial, and
tangential distortion are the main types of distortion, with radial and tangential distortion
having a significant impact on imaging. It has been shown that camera calibration [48] is an
effective way to solve the camera lens distortion problem. Through the calibration process,
we can obtain the parameters of the camera such as the distortion coefficients, rotation
matrix, and translation vectors, which can be used as important input data for the next
stereo correction. As the camera will be affected by the optical lens and its own process, the
imaging process is prone to distortion, resulting in the left and right images not achieving
coplanar and line alignment and requiring stereoscopic correction through left and right
camera image plane reprojection, so that it is coplanar and aligned, so as to improve the
accuracy of stereoscopic vision. Figure 5 shows a comparison of the effects before and after
calibration and stereo rectification of our onboard stereo camera.
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Figure 5. (a) to (b) illustrate the Driving-Leaves binocular camera before and after calibration and
stereo rectification, and (c) to (d) illustrate the Baymax binocular camera before and after calibration
and stereo rectification.

3.2.2. Target Relative Coordinate Estimation Based on Binocular Imaging

Under ideal conditions, the camera imaging model is assumed to be a central projection
linear model. Based on the pinhole imaging model, visual target relative positioning can
be achieved. In this process, we need to consider the world coordinate system OW −
XwYwZw (which represents the reference coordinate system for the camera and object
position), the camera coordinate system OC − XCYCZC (with the camera optical center as
the origin and the optical axis direction as the Z-axis), the image coordinate system oi − xiyi

(corresponding to the camera coordinate system with the origin at the intersection of the
image plane and the optical axis of the camera), and the pixel coordinate system oP − uivi

(a two-dimensional plane with the origin at the top-left corner of the first pixel). These four
coordinate systems are interrelated, forming the transformation process from the world
coordinate system to the pixel coordinate system, providing the foundation for achieving
visual target localization. The relationships among the four coordinate systems and the
binocular imaging process are illustrated in Figure 6.
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Figure 6. Conceptual diagram of the binocular imaging process.

According to the pinhole imaging principle, the transformation relationship between
the pixel coordinate system and the world coordinate system is as follows:
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 is the intrinsic parameter matrix of the camera, which is obtained

from the camera calibration above. R and T are the rotation matrix and translation vector,
respectively.

Based on the binocular imaging principle (Figure 6) and the similarity of triangle
proportions, we can derive the following:

Zc =
f b

XL − XR
=

f b
(uL − uR)dx

=
b fx

uL − uR
(11)

Here, XL and XR represent the physical dimensions corresponding to the target’s uL

and uR in the pixel coordinate system. dx denotes the physical size of each pixel on the
horizontal axis. b is the baseline of the binocular camera system.

Assume that the origin of the world coordinate system is the optical center of the
left-eye camera. To transform from the camera coordinate system to the world coordinate
system, a counterclockwise rotation around the Xc axis of the camera coordinate system by
an angle α = 90◦ (viewed from the positive direction of the Xc axis towards the negative
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direction, rotating counterclockwise) is required. The transformation of the coordinate
system can be expressed as follows:

Zc

u
v
1

 =

 fx 0 cx

0 fy cy

0 0 1


 Xw

−Zw

Yw

 (12)

(Xw, Yw, Zw) are the relative coordinates of the target ship relative to the world coordi-
nate system with the optical center of the left-eye camera as the origin.

3.3. Absolute Coordinate Estimation of the Target Combined with Camera Attitude

The following study will provide a detailed description of the coordinate transforma-
tion process based on camera attitude. Through a multi-step transformation, the relative
coordinates obtained from stereo vision (i.e., coordinates in the carrier coordinate system)
will be converted to determine the precise position of the target on Earth. First, the relative
coordinates of the target ship are converted to the east—north—up (ENU) coordinate by
using the camera attitude information to accurately extract the target’s position information
relative to the carrier. Subsequently, through further coordinate mapping, it is converted
to the Earth-centered, Earth-fixed (ECEF) coordinate, and finally, the conversion to the
World Geodetic System 1984 (WGS-84) coordinate system is realized, i.e., the latitude and
longitude coordinates of the target are obtained, and each coordinate system is shown
in Figure 7. This conversion process can extract the accurate latitude and longitude co-
ordinates of the target on the Earth’s surface, which is the basis for realizing the global
positioning of the target location. This part will introduce this conversion process in detail.
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Specifically, the transformation from the carrier coordinate system (i.e., the world
coordinate system assumed in the previous text) to the ENU coordinate system is ac-
complished through the camera’s attitude angles. The ENU coordinate system is a local
coordinate system centered at the position of the camera, with the XENU-axis pointing east,
the YENU-axis pointing north, and the ZENU-axis pointing up. When there is an attitude
angle of the shipboard camera, it is necessary to rotate the point Pw(Xw, Yw, Zw) under the
carrier coordinate system around the Yw axis by the roll angle γ, around the Xw axis by the
pitch angle θ, and around the Zw axis by the yaw angle −ψ, in order to obtain the point
PENU(XENU , YENU , ZENU) under the ENU coordinate system. The transformation from the
carrier coordinate system to the ENU coordinate system can be expressed as follows:

RCN =

 cos ψ cos γ + sin ψ sin θ sin γ sin ψ cos θ cos ψ sin γ − sin ψ sin θ cos γ

− sin ψ cos γ + cos ψ sin θ sin γ cos ψ cos θ − sin ψ sin γ − cos ψ sin θ cos γ

− cos θ sin γ sin θ cos θ cos γ

 (13)
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Here, RCN represents the rotation matrix for transforming from the carrier coordinate
system to the ENU coordinate system.

The ECEF coordinate system has its origin at the center of the Earth, repre-
sented by mutually orthogonal X, Y, and Z axes. The transformation relationship
between point PENU(XENU , YENU , ZENU) in the ENU coordinate system and point
PECEF(XECEF, YECEF, ZECEF) in the ECEF coordinate system involves the real-time lati-
tude (lat) and longitude coordinates (lon) of the ship itself, as well as the coordinates of
the ship’s position in the ECEF coordinate system denoted as (LECEF, LECEF, LECEF). The
transformation relation is as follows:XECEF

YECEF

ZECEF

 =

− sin(lon) − cos(lon) sin(lat) cos(lon) cos(lat)
cos(lon) − sin(lon) sin(lat) sin(lon) cos(lat)

0 cos(lat) sin(lat)


XENU

YENU

ZENU

+

LECEF

LECEF

LECEF

 (15)

Finally, the WGS-84 coordinate system is used to express the position of a point on
Earth in terms of geodetic latitude B, geodetic longitude L, and geodetic height H. The
conversion process between point PECEF(XECEF, YECEF, ZECEF) in the ECEF coordinate
system and point PG(B, L, H) in the WGS-84 coordinate system can be obtained through
iterative calculations. The conversion relationship here is the following:

L = arctan YECEF
XECEF

B = arctan Z+Ne2 sin B√
X2

ECEF+Y2
ECEF

H = ZECEF
sin B − N(1 − e2)

(16)

In the equation, N represents the radius of curvature in prime vertical, e is the first
eccentricity of the reference ellipsoid, and B is the iterative quantity. Initially, the geodetic
latitude B is computed based on the initial latitude B1. Subsequently, B is updated itera-
tively until the convergence condition is met, resulting in the desired latitude and longitude
coordinates. These steps will provide us with accurate positional information for the target
on the Earth.

B1 = arctan
Z√

X2 + Y2
(17)

3.4. Fusion of Perception Data Based on Ship ST-TF
3.4.1. Preprocessing of Visual Trajectory Data

Due to factors such as ship navigation, camera shake, errors in bounding box size
during manual annotation, and interference from the horizontal plane background, there
may be small positional discrepancies between the detected bounding box size and the
actual outline of the target ship. This can lead to incorrect estimation of the image co-
ordinates for tracking the target ship, which subsequently affects the accuracy of visual
localization estimates. To address these challenges effectively, we employ Kalman filtering
to preprocess the position coordinates of the visual estimates, ensuring a smoother and
more reliable trajectory. Kalman filtering is able to effectively suppress noise in measure-
ments and processes, and better adapt to changes in the actual system, thereby improving
the accuracy and stability of position estimation.
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3.4.2. Visual Localization Frequency Synchronized with Target Ship GPS Frequency

When performing visual perceptual localization and GPS information fusion, it is
critical to ensure that camera and GPS outputs are acquired at the same time to avoid
significant errors in the information fusion results. Typically, the time for each sensor is
independent, and the sampling frequencies vary. In this experiment, the target ship’s GPS
operates at frequencies of 5 Hz and 10 Hz, while the camera’s operating frequency is set to
5 fps, meaning that it captures 5 frames per second with a 200 ms interval between each
frame, which is the same as the GPS working frequency of the host ship. Here, we use
the lower frequency camera sensor as a reference and apply systematic sampling to the
10 Hz GPS data to ensure synchronization between the world coordinates calculated by the
camera and the GPS coordinates. This frequency synchronization strategy helps effectively
integrate information from different sensors, enhancing the accuracy of visual perception
localization and GPS information fusion. The frequency synchronization process is shown
in Figure 8.
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3.4.3. Asynchronous Nonlinear Ship Trajectory Association and Storage Based on the DTW
Algorithm

The core of data fusion is the matching association between visual and GPS trajectories.
This section addresses the limitation of using cosine distance, which focuses solely on the
directional information of vectors without accounting for positional differences between
trajectory points. Therefore, Euclidean distance is employed as the similarity measure to
globally assess vector similarity. The data sources used for matching in this study consist
of two parts: First, high-frequency dynamic and static information uploaded to the server
by the edge computing device of the experimental ship, referred to as the enhanced AIS
(E-AIS). This information is collected through multi-sensors (e.g., GPS, IMU) with a high
update frequency, making it suitable for the experimental environment. Second, visual
positioning data of the target ship is computed in real time by the edge computing device
onboard the ship. It is important to note that there are significant differences between E-
AISs and traditional onboard AIS systems. While traditional AIS devices provide both static
and dynamic information about the ship, their transmission frequency is irregular, and data
loss may occur during communication, leading to delays or missing updates. Furthermore,
visual positioning may be affected by ship occlusion in certain scenarios, resulting in
trajectory loss and exhibiting nonlinear characteristics. To address these challenges, this
study employs a Euclidean distance-based DTW algorithm for matching and aligning GPS
data from the E-AIS or traditional AIS with the visual positioning data of the target ship,
thereby achieving precise alignment and integration of trajectory points.

The DTW algorithm is a method for measuring trajectory similarity. It can be employed
to compare the similarity between two nonlinear time series of varying lengths and to
achieve optimal alignment between them [49]. Let the coordinate sequence of visual
estimates be denoted as n(n = 1, . . . , N), while the edge computing device retrieves the
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historical GPS trajectory sequence m(m = 1, . . . , M) of surrounding ships by querying the
ship information database. In practical applications, in order to reduce the computational
burden, the edge computing device only retrieves the trajectory information of ships within
the monitoring area of the host ship for the past 5 min. When Euclidean distance is used to
measure similarity, a smaller distance indicates a higher similarity between two sequences.
The formula for calculating similarity is as follows:{

DTW(n, m) = d(n, m) , n = 1&m = 1
DTW(n, m) = d(n, m) + min{DTW(n − 1, m) , DTW(n, m − 1), DTW(n − 1, m − 1)}, n = 1, 2, · · ·, N&m = 1, 2, · · ·, M

(18)

DTW(n, m) is calculated as the sum of the Euclidean distance d(n, m) between cur-
rent elements and the cumulative distance to the nearest element that can be reached.
DTW(N, M) serves as the result of the similarity measurement between two sequences.
When the similarity measurement result between two trajectories falls below a preset
similarity threshold, the visual-based ship trajectory and the GPS-based ship trajectory
are directly associated, and data points are aligned. Figure 9 illustrates the asynchronous
nonlinear ship trajectory sequence association using the DTW algorithm.

 

Figure 9. Asynchronous nonlinear ship trajectory sequence association based on the DTW algorithm.

Referring to the fusion data storage design in [13], we have redefined the method for
storing correlated data based on our experimental approach. Specifically, after applying
the DTW algorithm, the associated results are used to retrieve the target ship’s static
information (IMO, Name, Length, Breadth—note that the IMO number is a virtual number,
as the experimental ship is a self-developed small MASS without an official IMO number,
used solely for experimental purposes) and dynamic information (Time, SOG, COG, HDG)
from the E-AIS database. These data are then integrated with the dynamic and static
information of the experimental ship for joint storage. This combined storage approach
aims to support AR-based ship navigation systems with multi-source data, as shown in
Figure 10. The blue table represents the navigation information of the own ship and the
estimated visual position of the target ship, while the purple table represents the correlated
navigation information of the target ship. To enhance the efficiency of trajectory association,
similarity measurements are conducted every 5 min for trajectories already associated
in the data storage area. During this period, the system retains the association status of
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these trajectories by default and refrains from performing similarity measurements with
other trajectories.
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4. Results
In this section, we conducted extensive experiments on ship target detection, tracking,

and fusion localization to evaluate the proposed methods and validate their practicality.
The experiments were conducted on the Ubuntu 20.04 operating system and Python version
3.8.10. The hardware configuration included an NVIDIA RTX 2080Ti GPU (manufactured by
NVIDIA Corporation, Santa Clara, California, USA), Intel(R) Xeon(R) Platinum 8255C CPU
(manufactured by Intel Corporation, Santa Clara, California, USA). The model framework
was based on PyTorch 2.0.0.

4.1. Experimental Data

In this section, a benchmark dataset (FLShip) was constructed for ship target detection,
tracking, and fused localization. Compared to existing open-source maritime datasets,
FLShip introduces multidimensional innovations in its design. It not only includes continu-
ous stereo and monocular image frames captured from a first-person perspective during
navigation but also introduces high-frequency E-AIS information corresponding closely to
the image data of both target and own MASSs for the first time. This feature significantly
enhances the dataset’s applicability in supporting multi-source information fusion research
for MASSs, providing crucial data support for research in maritime target detection, multi-
sensor data fusion, and autonomous navigation. The experiments utilized seven MASSs
developed by Tianjin University as test subjects. The E-AIS data from the MASSs, including
attitude and GPS information, are obtained by subscribing to the /mavros/imu/data topic
for attitude data and the /mavros/global_position/global topic for positional data via the
ROS system. These data are uploaded in real time to a server via 4G networks (which can
be replaced by satellite communication as needed), ensuring efficient data transmission
and storage. Figure 11 and Table 2 provide additional details about the MASSs used in this
experiment, including their ID, length, breadth, equipped equipment, and levels of auton-
omy navigation. Among them, the edge computing devices equipped on the experimental
ship include Raspberry Pi 4B (manufactured by Raspberry Pi Foundation, Cambridge, UK),
Jetson Orin Nano Developer Kit, and Jetson Nano (manufactured by NVIDIA Corporation,
Santa Clara, California, USA).
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Figure 11. The MASSs used in the experimental process.

Table 2. Details of the MASS.

ID
Equipped Equipment

Autonomy Level
GPS IMU Camera Edge Computing Box Controller

Roaring-Flame 2� 2� 4 Raspberry Pi 4B Manual Remote Control

Driving-Leaves 2� 2� Binocular Jetson Orin nano
developer kit CUAV V5+ Programmed Control

Baymax 2� 2� Binocular Jetson Orin nano
developer kit CUAV X7+ Programmed Control

Night-shade 2� 2� Monocular Raspberry Pi 4B CUAV V5+ Programmed Control
Marine 3i-1 2� 2� Monocular Jetson nano CUAV X7+ Programmed Control
Marine 3i-2 2� 2� Monocular Jetson nano CUAV X7+ Programmed Control

Dolphin-1 2� 2� Monocular and
Binocular

Jetson Orin nano
developer kit CUAV X7+ Programmed Control

To validate the effectiveness of the proposed method, seven scenes with varying
resolutions, noise levels, and visibility conditions were extracted from the dataset for ship
target detection, tracking, and fused localization experiments, as illustrated in Figure 12.
Table 3 presents additional details about the FLShip dataset, including the number of ships
(NOS), the number of ships with E-AISs (NOE), the frequency of ship E-AISs (FOE), video
quality, video frame rate, video resolution, and the average speed of the host ship.

Table 3. Detailed information of the FLShip dataset.

Video NOS NOE FOE Video Quality Video Frame Rate Video
Resolution (px)

Speed
(m/s)

Scene-1 2 2 5&10 Good 5 2560 × 720 0.65
Scene-2 3 2 5 Good 5 2560 × 720 0.42
Scene-3 2 2 5 Good 5 2560 × 720 0.11
Scene-4 2 2 1&5 Poor (Medium noise) 25 640 × 480 0.53

Scene-5 4 3 5 Poor (Fog and
waves) 30 1920 × 1080 2.1

Scene-6 3 3 5 Fair (Cool color tone
and low light) 5 4416 × 1242 0.41

Scene-7 3 3 5 Poor (Minimal light
and high contrast) 5 4416 × 1242 0.15
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4.2. Ship Target Detection Experiment

To evaluate the performance of the Bi-YOLO algorithm in complex scenarios, we
conducted comparative experiments on the FLShip dataset using various benchmark
algorithms. These included Deformable-DETR [50], RTMdet [51], YOLOv7 [52], YOLOv8s,
and the original YOLO11s. Evaluation metrics included mAP@0.5, mAP@0.5:0.95, GFLOPs,
Params, and model size.

The mAP is a comprehensive evaluation metric for object detection system perfor-
mance, allowing for reliable comparison between different algorithms or models across
various datasets. mAP@0.5 operates by calculating the average precision (AP) for all images
in the first class when the IoU threshold is set to 0.5, and then repeating the process for the
remaining classes. The average of these AP values gives the mAP score. mAP@0.5:0.95 is
an extension of mAP, which calculates multiple AP values within the IoU range from 0.5 to
0.95 (with a step size of 0.05) and averages them. Specifically, mAP@0.5:0.95 provides a
more comprehensive assessment of model performance across varying strictness conditions
by considering multiple IoU thresholds. Compared to the single mAP@0.5, mAP@0.5:0.95
demands that the model maintain high detection accuracy at higher IoU thresholds, thus
better reflecting the model’s robustness and accuracy in complex scenarios. In addition
to precision metrics, the computational efficiency of the model is an important factor in
assessing its practical value. GFLOPs reflect the computational complexity of the model,
while Params directly determine the model’s storage and memory usage. In practical
applications, especially on resource-constrained edge computing devices, achieving lower
GFLOPs and Params is crucial for improving deployment efficiency.

This study conducted object detection model training based on the FLShip dataset. The
dataset comprises 6286 images of MASSs captured in both inland and maritime environments.
To enhance the model’s generalization capability and reduce the risk of overfitting, data
augmentation techniques, including random brightness adjustment (±30%) and Gaussian
noise injection (σ = 0.05), were applied to improve the model’s adaptability in complex
environments. The dataset was split into training, validation, and test sets at a ratio of 76:16:8
to ensure sufficient training data. This experiment did not use external datasets for validation,
focusing instead on the unique characteristics of the FLShip dataset. This dataset is highly
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representative of real-world application scenarios, containing a rich variety of MASS target
information along with complementary E-AIS data, making the experimental results more
practically valuable. As shown in Figure 13, we analyzed the performance of Bi-YOLO and
mainstream detection models during training by examining the mAP@0.5 metric change
curve. The experimental results demonstrate that, in the early stages of training, Bi-YOLO
exhibited a performance improvement trend similar to YOLO11s and YOLOv8s, significantly
outperforming YOLOv7, Deformable-DETR, and RTMdet-l. As training progressed, Bi-
YOLO’s detection performance gradually surpassed that of other algorithms, with a 0.4% mAP
advantage over YOLO11s and a gap of more than 3.4% compared to traditional architectures
like Deformable-DETR. Overall, Bi-YOLO not only showed a faster convergence speed during
training but also demonstrated stronger competitiveness in final detection performance,
confirming its advantages in object detection tasks.
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To further demonstrate the effectiveness of the proposed method, we compared the
Bi-YOLO model with YOLO11s, YOLOv8s, YOLOv7, Deformable-DETR, and RTMdet on
the FLShip validation set. The experimental results are shown in Table 4. As observed,
Bi-YOLO outperforms the other models in both mAP@0.5 and mAP@0.5:0.95 metrics,
achieving 98.7% in mAP@0.5 and 79.6% in mAP@0.5:0.95, with improvements of 0.4 and
0.5 percentage points over YOLO11s, respectively, demonstrating the model’s comprehen-
sive capability in target detection under various conditions. As shown in Figure 14, we
present a comparison of the detection performance between YOLO11s and Bi-YOLO on the
same set of images. In Figure 14c, YOLO11s missed detection because the target ship was
far away and the light was dim, which caused the ship to be confused with the background;
in Figure 14b,d, YOLO11s also failed to detect the target due to fog interference and the
ship being far away. Bi-YOLO showed excellent robustness and adaptability when dealing
with complex environments, especially in the detection of small targets at long distances
in inland waters and in the sea environment due to interference caused by fog and waves.
Bi-YOLO can still accurately identify all targets in these complex environments. This
advantage is mainly attributed to the introduced C2f_BiFormer module, which enhances
feature representation and fine-grained target feature extraction, enabling the model to
perform more stably in detecting small, long-range targets, ensuring precise target capture
even in complex, low-visibility scenarios.
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Table 4. Evaluation results of ship detection algorithms on the FLShip validation set.

Models

Evaluation Metrics

mAP@0.5/%
(↑)

mAP@0.5:0.95/%
(↑)

Model
Size/MB (↓) Params/106 (↓) GFLOPs (↓)

Bi-YOLO
(ours) 98.7 79.6 17.4 8.9 19.4

YOLO11s 98.3 79.1 19.2 9.413187 21.3
YOLOv8s 97.8 78.3 21.3 11.135987 28.6
YOLOv7 97.7 75.5 71.3 36.479926 103.2

Deformable-
DETR 95 61.3 646.5 40.099 123

RTMdet-l 95.3 74.3 825.1 52.255 79.951
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Compared to the classic Deformable-DETR and RTMdet-l, Bi-YOLO has demonstrated
significant improvements in detection capabilities in complex scenarios. For instance, the
mAP@0.5:0.95 metric improved by 18.3 percentage points over Deformable-DETR. This
improvement is particularly important because mAP@0.5:0.95 better reflects the model’s
precision in locating small targets under high IoU conditions. Despite Bi-YOLO’s ex-
cellent performance across multiple accuracy metrics, model complexity and real-time
performance remain key considerations in practical applications, especially in embedded
hardware environments. In the experiments, Bi-YOLO achieved 19.4 GFLOPs, with 8.9 M
parameters and a model size of 17.4 MB, reaching an FPS of 120. Compared to the latest
YOLO11s, Bi-YOLO achieves significant optimizations in model size, number of parame-
ters, and computational complexity. Specifically, the model size of Bi-YOLO is reduced by
9.3%, the number of parameters is decreased by 5.4%, and the computational complexity is
lowered by 8.9%. These optimizations enhance Bi-YOLO’s application potential, making it
particularly suitable for environments with limited computing resources.

4.3. Ship Target Tracking Experiment

In the ship target tracking experiments, to validate the tracking performance of the
algorithm used in this study under complex scenarios, six scenes with varying resolutions,
noise levels, brightness, and contrast were selected from the FLShip dataset for extensive
tracking experiments.

Four state-of-the-art trackers, i.e., StrongSORT [53], OC-SORT, Byte Track [54], and
BOT-SORT [55], are selected for the comparative tracking experiments in this paper. The
performance of the trackers is evaluated using metrics such as Multi-Object Tracking
Accuracy (MOTA), Identification F1 (IDF1), and Identity Switches (IDs). Additionally,
we evaluated the speed of the tracker in terms of frames per second (FPS). Although the
runtime may vary significantly with different hardware, the specific details are shown
in Table 5. MOTA is calculated based on false positives (FPs), false negatives (FNs), and
identity switches (IDs), emphasizing detection performance. In contrast, IDF1 better
measures the consistency of ID matching, and IDs measure the performance of the multi-
object tracking model in handling target identity switches. An upward arrow ↑ indicates
that a higher value of the metric corresponds to better performance, while a downward
arrow ↓ indicates that a lower value of the metric corresponds to better performance.

From Table 5, it can be observed that, under the same detector, OC-SORT demonstrates
higher localization accuracy and tracking performance across different scenarios and
complex environments. Compared to StrongSORT, ByteTrack, and BOT-SORT, OC-SORT
maintains MOTA and IDF1 scores above 90%, even in conditions of severe noise interference
or insufficient lighting, accompanied by faster inference speeds, allowing it to perform real-
time perception updates at a higher frame rate. This implies that OC-SORT can handle input
images more frequently and provide real-time and accurate target tracking information,
thus providing reliable perception and decision support for subsequent applications.
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Table 5. Multi-ship tracking evaluation results in six scenarios.

Video Detector Tracker
Evaluation Metrics

MOTA/%
(↑) IDF1/% (↑) IDs (↓) FPS/Hz (↑)

Scene-1 Bi-YOLO

StrongSORT 90.4 95.7 0 31
OC-SORT

(ours) 96.3 98 0 65

ByteTrack 88.6 93.7 0 78
BOT-SORT 94.1 97.3 0 18

Scene-2 Bi-YOLO

StrongSORT 89.7 94.1 1 26
OC-SORT

(ours) 93.3 96.4 0 57

ByteTrack 91.8 95.9 0 75
BOT-SORT 90.9 94.9 0 15

Scene-3 Bi-YOLO

StrongSORT 93.7 95.1 0 29
OC-SORT

(ours) 97.7 98.5 0 41

ByteTrack 92.5 95.4 0 74
BOT-SORT 96.2 96.3 0 14

Scene-4 Bi-YOLO

StrongSORT 95 95.5 1 36
OC-SORT

(ours) 93.8 97.2 0 78

ByteTrack 93.6 96.7 0 86
BOT-SORT 94.7 94.2 2 28

Scene-5 Bi-YOLO

StrongSORT 90.8 93.7 0 24
OC-SORT

(ours) 92.7 91.8 0 55

ByteTrack 88.5 86.4 0 66
BOT-SORT 88 89.9 4 10

Scene-6 Bi-YOLO

StrongSORT 87.3 93.2 1 27
OC-SORT

(ours) 90.6 96.2 0 52

ByteTrack 85.1 91.5 0 67
BOT-SORT 86.7 89.3 6 12

Figures 15–17 present the tracking results of four different trackers in Scene-2, Scene-4
with noise interference, and Scene-6 with low lighting conditions. It can be observed
that the StrongSORT and BOT-SORT trackers experience multiple ID switches in Scene-2,
Scene-4, and Scene-6. Additionally, ByteTrack exhibits lower IOU at several time points
(e.g., T1 and T3 in Scene-4, and T4 in Scene-6), resulting in relatively lower bounding box
localization accuracy. Comparative experiments show that OC-SORT achieves more stable
tracking of the target ship while ensuring real-time performance, striking a good balance
between real-time processing and stability. The combination of the Bi-YOLO detector and
the OC-SORT tracker used in this study maintains high accuracy and stability in multi-ship
tracking tasks, providing a solid foundation for precise and stable target localization in
subsequent experiments.
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Figure 15. Tracking performance comparison of four state-of-the-art object trackers in Scene-2.
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Figure 16. Tracking performance comparison of four state-of-the-art object trackers in Scene-4. Figure 16. Tracking performance comparison of four state-of-the-art object trackers in Scene-4.

4.4. Visual-Based Ship Position Estimation Experiment

To validate the accuracy of the ship position estimation method in this study, we
also recorded the real-time position and attitude data of the host ship and the target ship
in real time during the video data collection and then uploaded them to the server for
storage. The actual GPS data uploaded by the target ship serves as a ground truth for
comparison. To facilitate the comparison between the real value of longitude and latitude
and the measured value extracted by vision, systematic sampling is performed according
to the GPS frequency of the target ship to ensure that the collected position information
can be matched frame by frame. To verify the robustness and accuracy of the position
estimation method, this paper selects videos recorded in different navigation states for
position estimation experiments. In addition, the mean absolute error (MAE), mean square
error (MSE), mean absolute percentage error (MAPE), and mean relative position error
(MRPE) are also introduced in the experiment to comprehensively evaluate the position
estimation method proposed in this paper.
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Figure 17. Tracking performance comparison of four state-of-the-art object trackers in Scene-6.
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target ship obtained using our framework through stereo images, while the blue trajectories
indicate the actual GPS data of the target ship (i.e., its ground truth positions). The pink
trajectories correspond to the GPS data of our own ship, which approximately represents
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latitude and longitude estimates across different scenes compared to the true values. In
Scene-1, the own ship performed reverse motion and large-angle turning maneuvers. These
movements caused significant vibrations and sensor noise, which notably impacted the ac-
curacy of visual position estimation. Consequently, this scenario imposed higher precision
requirements on the sensors. Under these conditions, the MRPE in Scene-1 was higher than
that in Scene-2. Additionally, since stereo vision-based localization relies on disparity, the
resolution of depth information decreases with increasing target distance as the disparity
angle diminishes. This limitation resulted in lower position estimation accuracy in Scene-3
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compared to other scenarios. Nevertheless, our framework demonstrated strong robustness
in Scene-3, achieving an MAE of 5.6403 × 10−6◦ and MSE of 4.0986 × 10−11◦ and keeping
the MRPE within 8.76%. These results indicate that the proposed framework can achieve
high-precision target position estimation even in complex scenarios, providing stable and
reliable trajectory features for subsequent multi-source data association.
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4.5. Multi-Source Data Fusion Experiment

In this section, we aim to verify the effectiveness of the proposed multi-source data
fusion method. Specifically, we utilize a Euclidean distance-based DTW algorithm to
associate the visual trajectory of the target ship (generated by fusing data from a camera,
GPS, and IMU) with the GPS trajectory in the E-AIS database. The dynamic and static
information of both the own ship and the target ship is then jointly stored. Considering the
crew’s sailing habits and information needs, we constructed a simple, intuitive, and easy-
to-understand human–computer interface, and constructed the AR navigation assistance
results in the left camera image, so that the crews can understand the ship’s navigation
status more comprehensively and intuitively and improve the efficiency of acquiring
and understanding the navigation information. Figure 21 visually demonstrates the AR
navigation assistance results for the ship based on the perceptual data fusion framework.
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In Figure 21, the results of AR navigation assistance provide comprehensive informa-
tion about the tracked ships, including static details (IMO, Name, Length, Breadth) and
dynamic information (Lat, Lon, SOG, COG, HDG), as well as navigation information for
the host ship (Lat, Lon, SOG, COG, HDG, etc.). The ship data fusion method proposed
in this paper successfully and accurately matches the visual and GPS trajectories. The
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dynamic information is updated in real time with the movement of the ship, allowing
the ship AR navigation system to more accurately reflect the current status. The naviga-
tion assistance system helps the crew to improve the efficiency of information acquisition
and understanding during navigation and also provides the crew with richer navigation
assistance information, so as to improve the overall navigation experience.

The unique feature of the perceptual data fusion method based on ship ST-TF is that it
can respond to possible emergencies such as communication or other equipment failures by
displaying the visual latitude and longitude coordinates (as shown by the left ship in Scene
2 of Figure 21) without being associated with the GPS trajectory. Even in these emergencies,
the system is still able to provide basic location information to the crew, providing critical
data support for emergency response, search, and rescue operations. In addition, for ships
not associated with a GPS track, displaying their visual latitude and longitude coordinates
can effectively monitor and identify illegal ship operations. In terms of maritime surveil-
lance, this feature can make up for the defects of communication equipment not configured
according to regulations or maliciously shut down, and enhance the maritime surveillance
capability, thereby strengthening the security of the entire maritime field.

5. Conclusions and Future Perspectives
In this paper, a perceptual data fusion framework based on ship ST-TF was proposed

for ship AR navigation assistance systems to ensure navigation safety and enhance maritime
surveillance efficiency. The main contributions of this paper are as follows. First, the ship
tracking system was optimized by introducing the Bi-YOLO network, which incorporates
the C2f_BiFormer module to enhance the detection performance of small targets while
reducing model parameters. Additionally, the more robust OC-SORT algorithm was
integrated to achieve real-time and stable tracking of moving ship targets. Second, a visual
localization model of maritime targets based on binocular imaging was constructed, and
the absolute position estimation of maritime targets in the absence of a reference was
achieved by fusing the attitude information of the camera. Subsequently, a perceptual data
fusion method based on ship ST-TF was proposed. This method temporally and spatially
fused the visual trajectory with the GPS trajectory from the E-AIS database. It also further
integrated other dynamic and static information. Finally, a ship AR navigation assistance
system was developed in conjunction with the proposed multi-source fusion perception
framework. Comprehensive experiments on multi-scene MASS tracking, visual position
estimation, and multi-source data fusion were conducted on the newly developed FLShip
dataset to validate the robustness and effectiveness of the proposed perceptual data fusion
framework based on ship ST-TF. The results of comparative experiments with various
advanced object detection and tracking algorithms demonstrate that even in low-resolution,
noisy, and low-brightness scenes, the framework achieves a mAP@0.5 of 98.7% in multi-
ship detection while maintaining a MOTA between 90% and 98%, all while reducing the
model’s parameter count. The framework successfully extracted reliable visual trajectories
of target ships and validated the accuracy of visual position estimation across multiple
scenes, ensuring the accurate association between visual detection and E-AISs. The ship
AR navigation assistance system based on the multi-source fusion perception framework
proposed in this paper is able to enhance the ability of MASS traffic situational awareness,
provide more comprehensive and intuitive navigation information for the crew, make it
easier to cope with the challenges of complex waterways and ensure the safety of ship
navigation. In addition, in the case of equipment failure or illegal operation of the target
ship, the navigation assistance system is still able to provide critical dynamic data support
for tasks such as emergency response, search and rescue, and maritime surveillance by
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presenting the visual latitude and longitude coordinates of the target, thus enhancing the
safety level of the entire maritime field.

Although the proposed framework performs well in scenarios with noise, wave
interference, and low visibility, vision-based perception strategies remain constrained by
imaging conditions. Additionally, with the integration of multi-sensor perception systems,
optimizing real-time performance and ensuring compatibility with existing ship navigation
systems are critical prerequisites for practical deployment. To address these challenges,
future research will focus on the following directions to enhance system robustness and
adaptability, thereby ensuring effectiveness and reliability in real-world applications:

• Multi-sensor fusion technology: In-depth research on the fusion mechanisms of multi-
source sensors, such as cameras, radars, and AISs, will be conducted. Dynamic
sensor weight adjustment based on the navigation environment will provide more
accurate ship motion information, further strengthening situational awareness in the
era of MASS autonomous navigation and offering advanced and reliable solutions for
maritime navigation.

• MASS self-organizing networks and data sharing: Research will focus on meeting
the shared needs of MASS autonomous navigation and the construction of maritime
spatial information. A highly efficient MASS self-organizing network architecture will
be established to enable real-time sharing and collaborative processing of perception
data, supporting comprehensive, multi-angle maritime environment awareness and
laying the foundation for building smarter, more collaborative maritime traffic systems.

• Overcoming deployment and implementation challenges: Through model compres-
sion and hardware acceleration technologies, the computational demands will be
reduced, and inference efficiency will be improved to ensure real-time performance
on low-power embedded platforms. At the same time, efforts will be made to resolve
compatibility issues between perception models and existing ship automation systems,
navigation software, and international maritime regulations. The development of
open interfaces compliant with IMO standards will facilitate seamless integration of
technology with existing navigation systems, ensuring the alignment of performance,
regulatory compliance, and safety, thus promoting stable and reliable deployment.
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