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Abstract: Path planning and collision avoidance issues are key to the autonomous navigation of
unmanned surface vehicles (USVs). This study proposes an adaptive differential evolution algorithm
model integrated with the analytic hierarchy process (AHP-ADE). The traditional differential
evolution algorithm is enhanced by introducing an elite archive strategy and adaptively adjusting the
scale factor F and the crossover factor CR to balance global and local search capabilities, preventing
premature convergence and improving the search accuracy. Additionally, the collision risk index (CRI)
model is optimized and combined with the quaternion ship domain, enhancing the precision of CRI
calculations and USV autonomous collision avoidance capabilities. The improved CRI model, the In-
ternational Regulations for Preventing Collisions at Sea, and the optimal collision avoidance distance
were incorporated as evaluation factors in a fitness function assessment, with weights determined
through the AHP to enhance the rationality and accuracy of the fitness function. The proposed AHP-
ADE algorithm was compared with the improved particle swarm algorithm, and the performance
of the algorithm was comprehensively evaluated using safety, economy, and operational efficiency.
Simulation experiments on the MATLAB platform demonstrated that the proposed AHP-ADE algo-
rithm exhibited better performance in scenarios involving multiple ship encounters, thus proving
its effectiveness.

Keywords: unmanned surface vehicle; path planning; collision avoidance; elite archive strategy;
differential evolution algorithm

1. Introduction

Unmanned surface vehicles (USVs) are intelligent control systems that integrate
advanced technologies such as path planning, communication, autonomous decision-making,
and automatic target recognition [1]. With the continuous development in the level of tech-
nology, the application of USVs is increasingly expanding across various fields, such as envi-
ronmental protection [2] and monitoring [3,4], maritime rescue [5] and disaster response [6],
scientific research [7], and marine life conservation. Additionally, the role of USVs in the
military sector is also growing. In future conflicts, the strategic application of unmanned ships
and drones may become a critical factor in determining the outcome of wars.

Path planning is a critical component of autonomous navigation for USVs, and how
to find the optimal path is the focus of attention in the shipping industry. The path
planning process is not only limited by complex sea conditions and a ship’s maneuvering
performance, but also must follow the requirements of the International Regulations for
Preventing Collisions at Sea (COLREGs). Therefore, planning a path that is safe, economical,
and consistent with navigation practices faces great challenges.
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As intelligent algorithms continue to evolve, scholars have applied various heuristic
algorithms to the path planning of USVs, such as the A* algorithm [8] and Dijkstra [9].
At the same time, numerous intelligent optimization algorithms have emerged, such as ant
colony algorithms (ACO) [10,11], particle swarm algorithms (PSO) [12], genetic algorithms
(GA) [13,14], rapidly exploring random trees (RRT) [15], velocity obstacle methods, artificial
potential field methods (APF) [16], dynamic window approaches (DWA) [17], and deep
learning [18–20]. These algorithms employ specific operational strategies to obtain feasible
paths, thereby facilitating safe maritime navigation for USVs. However, traditional algo-
rithms also have some limitations in the process of path planning. For instance, algorithms
like A* and Dijkstra exhibit low computational efficiency in dynamic environments. The
ACO and PSO algorithms are prone to becoming trapped in local optima. The GA may
converge slowly in complex environments. The paths generated by RRT algorithms are
often not smooth enough. Velocity obstacle and APF methods may lead to oscillations or
fail to handle mixed environments with static and dynamic obstacles. The DWA underper-
forms in environments with high-density obstacles, and deep learning algorithms require
substantial training data and significant computational resources.

Consequently, many scholars have made improvements to various algorithms.
For example, an improved A* algorithm [21] adopted a bi-directional search strategy
and an enhanced heuristic function to reduce node traversal and applied path smooth-
ing to eliminate inflections and address path folding. The modified RRT algorithm [22]
incorporates the dynamic constraints of USVs into the RRT framework, utilizing calculated
movement state information to enhance path search rules. An improved velocity obstacle
method [23] optimized the heading angle, reducing the risk of capsizing due to large
heading angles at high speeds. The enhanced genetic algorithm [24] adaptively adjusts
the direction of mutation and the magnitude of mutation of individuals by introducing
several genetic factors, increasing the convergence speed. Considering the limitations
of single algorithms, scholars have combined various algorithms to fully leverage their
strengths. For instance, the integration of the A* algorithm with the DWA [25] enables
ships to generate adaptive, collision-free routes, while adhering to the COLREGs. The
combination of the APF method with the A* algorithm [26] takes different ocean currents
into account, ensuring that a ship consistently maintains a safe position. The integration of
deep reinforcement learning (DRL) with the APF method [27] leverages the APF to enhance
the motion space and objective function within the DRL algorithm, effectively achieving
autonomous collision prevention and path planning. However, in complex marine environ-
ments, current algorithms often do not manage to maintain both the safety and economic
efficiency of paths, resulting in planned routes that do not align with nautical practices.

Differential evolution (DE) is an evolutionary algorithm for solving multi-dimensional
real-number optimization problems. Differential evolution exhibits strong robustness and
adaptability, presenting substantial advantages in handling multi-dimensional, complex op-
timization problems, and can find optimal solutions in a variety of complex environments,
as well as uncertain environments, which provides a better solution for ships navigating in
complex marine environments. Due to its effectiveness, the DE algorithm has increasingly
gained favor among scholars, and various improvement strategies for the algorithm have
been proposed. For instance, the SAF-DE algorithm [28] utilizes a perturbation formula to
disturb individuals, increasing the diversity of the population. To improve its differential
strategy, Tien [29] introduced new mutation mechanisms to enhance the performance of
the algorithm. A combination of the grey wolf optimization algorithm and differential evo-
lution algorithm [30] improved the effectiveness of solving continuous global optimization
problems. However, applications of the differential evolution algorithm integrated with
collision avoidance decision models remain limited in the field of USV path planning.

In light of the numerous challenges faced by existing algorithms, such as the planned
path not taking into account path safety and economy, being too close to obstacles or target
ships in the process of collision avoidance, and failing to return to the original route in a
timely manner at the end of avoidance actions, and so on, this paper innovatively improves
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upon the traditional differential evolution algorithm by proposing an adaptive differential
evolution algorithm that integrates the analytic hierarchy process (AHP-ADE ), applied to
the path planning and collision avoidance of USVs. The ability of the algorithm to find the
optimal solution is enhanced by introducing an elite archiving strategy and a parameter
adaptive adjustment mechanism. Meanwhile, combining the quaternion ship domain with
an optimized collision risk model makes the calculation of the collision risk index (CRI)
more in line with nautical practice. In addition, a fitness function is constructed based
on factors such as the COLREGs and the optimal collision avoidance distance, and the
hierarchical analysis method is utilized to determine the weights of the factors, so as to
improve the quality of the path points. The main contributions of this paper are as follows:

(1) Unlike the improved DE algorithms proposed by HuChunAn [28], Tien [29],
Jitkongchuen [30], an elite archiving strategy is introduced for the mutation operation
in the differential evolution algorithm, so that the individual mutation process has
both the accuracy of local search and the extensiveness of global search. In addition,
the control factors F and CR are adaptively adjusted, so as to dynamically optimize
the search capability of the algorithm and finely tune the quality of the solution.

(2) With respect to the collision avoidance decision models used by Seo [31] and Hu [32],
this paper integrates a quaternion ship domain model [33] with the CRI [34]. Improve-
ments are made to the CRI model by adding constraint factors when determining
the membership function for the distance of the closest point of approach (DCPA),
thereby improving the ship’s collision avoidance capabilities.

(3) Differently from the fitness function constructed by Kang [35] and Tsou [34], this
paper incorporated the CRI, COLREGs, and optimal collision avoidance distance
as evaluation factors in the assessment of the fitness function. The weights of each
evaluation factor were determined by the analytic hierarchy process, thus enhancing
the rationality and accuracy of the fitness function.

The structure of the remainder of this paper is as follows: Section 2 provides an
overview of the theoretical background of the relevant algorithms, Section 3 details the
adaptive differential evolutionary algorithm model combined with the analytic hierarchy
process proposed in this paper, Section 4 conducts comparative experiments through
scenarios involving multiple ships encounters, and Section 5 summarizes the research
findings of this paper and discusses potential directions for future research.

2. Algorithm Background and Collision Avoidance Decision Model
2.1. Differential Evolution Algorithm

Differential evolution (DE) [36] is a population-difference-based algorithm for solv-
ing continuous optimization problems and searches for optimal solutions by modeling
mechanisms such as natural selection and cross-breeding during biological evolution.
A differential evolution algorithm primarily comprises five steps: population initial-
ization, fitness evaluation, differential mutation, crossover operation, and selection of
new individuals.

2.1.1. Population Initialization

First, an initial population of size M is randomly generated within the solution space,
where each individual consists of an n-dimensional vector. The population size M is
typically chosen between 5n and 10n, but it should not be less than 4n.

Xi(0) = (Xi,1(0), Xi,2(0), Xi,3(0), . . . , Xi,n(0)) (1)

Xi,j(0) = Xi min + rand(0, 1)(Xi max − Xi min) (2)

Here, Xi(0) denotes a randomly generated individual, and Xi,j(0) represents the j-th
dimensional vector of the individual.
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2.1.2. Fitness Evaluation

The fitness function typically needs to be defined according to the specific optimization
problem. In this study, the fitness function is used to evaluate the quality of path points,
with lower fitness values indicating better individual fitness. Although the fitness value only
reflects the quality of the individual, it contains rich population information, which reflects
the evolutionary state of the population and information about the optimization problem to a
certain extent, and thus guides the search process of the algorithm to a certain extent.

2.1.3. Differential Mutation

The following are some common mutation strategies:

DE/rand/2

Vi(G) = Xr1(G) + F× (Xr2(G)− Xr3(G)) + F× (Xr4(G)− Xr5(G)) (3)

DE/best/2

Vi(G) = Xbest(G) + F× (Xr1(G)− Xr2(G)) + F× (Xr3(G)− Xr4(G)) (4)

DE/current-to-rand/1

Vi(G) = Xi(G) + rand[0, 1)× (Xr1(G)− Xi(G)) + F× (Xr2(G)− Xr3(G)) (5)

Taking DE/rand/2 as an example, Xr1(G), Xr2(G), and Xr3(G) are three different
vectors randomly selected from the parent generation, where r1 ̸= r2 ̸= r3 ̸= i ∈
{1, 2, 3 . . . , M}, M is the population size, and F is the scaling factor with a range of [0–2],
typically set to 0.5. Vi(G) is the new vector generated through differential mutation. Dif-
ferent mutation strategies exhibit varying optimization capabilities for the population. To
better understand the common properties of the various mutation strategies, Feoktistov
summarized them in a general form: Vi = βi + F× δi, where βi is the base vector and δi is
the differential vector.

2.1.4. Crossover Operation

There are two main types of crossover operations: binomial crossover and exponential
crossover. Binomial crossover can independently make decisions for each dimension,
providing better diversity. Therefore, this paper chose binomial crossover.

Ui,j(G) =

{
Vi,j(G), rand[0, 1) < CR or j = jrand
Xi,j(G), otherwise

(6)

CR is the crossover factor, with a value range of [0–1]. For each dimension of the
current individual, if rand[0, 1) is less than the crossover factor CR, the corresponding
dimension of the new individual comes from the mutant individual; otherwise, it comes
from the initial individual. j is the current dimension of the vector, and jrand is a randomly
generated dimension within a range of 1 to n. Adding the condition j = jrand prevents
the new individual from being identical to the initial individual. The crossover process is
illustrated in Figure 1.

Figure 1. Crossover operation.
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2.1.5. Selection of New Individuals

The differential evolution algorithm employs a greedy strategy for selection. This
selection process evaluates the fitness values of individuals, choosing those with better
fitness to be the initial individuals for the next generation, thereby guiding the population in
a better direction. After the initial individuals undergo mutation and crossover operations
to generate new individuals, the direction of the population evolution is determined using
the following formula:

Xi(G + 1) =
{

Ui(G), f (Ui(G)) ≤ f (Xi(G))
Xi(G), otherwise

(7)

2.2. Quaternion Ship Domain

In 1971, the concept of the ship domain was first introduced by Japanese scholars Fujii
and Tanaka [37], who developed an elliptical ship domain model and corresponding di-
mensions suitable for narrow waterways through traffic surveys and probabilistic statistical
methods. Since then, various scholars have proposed numerous ship domain models. For
instance, in 1973, Goodwin [38] proposed an approach for ascertaining the ship domain
based on radar simulator performance and North Sea traffic surveys. In 2010, Wang [33]
introduced a fuzzy quaternion ship domain model that comprehensively considers various
factors, such as ship length, fundamental maneuvering performance, and real-time speed.
This ship domain model consists of four ellipses with varying major and minor axes, and
it calculates the scale of the ship domain based on maneuverability parameters such as
the ship’s advance distance and tactical diameter. Therefore, the model can adaptively
adjust under the control of the ship’s motion state. Compared to traditional circular or
elliptical models, the quaternion ship domain can more accurately assess collision risks.
Therefore, this study adopted the quaternion ship domain proposed by Wang, as illustrated
in Figure 2. R f ore and Ra f t represent the fore and aft radii of the ship domain, respectively,
while Rport and Rstarb represent the port and starboard radii, respectively. Equation (8) is
the boundary equation for the ship domain.

f (x, y) =

(
2x

(1 + sngx)R f ore − (1− sngx)Ra f t

)2

+

(
2y

(1 + sngy)Rstarb − (1− sngy)Rport

)2
(8)

The radius equation is
R f ore = (1 + 1.34

√
k2

AD + (kDT/2)2)L

Ra f t = (1 + 0.67
√

k2
AD + (kDT/2)2)L

Rstarb = (0.2 + kDT)L
Rport = (0.2 + 0.75kDT)L

(9)

sngx =

{
−1, x < 0
1, x ≥ 0

sngy =

{
−1, y < 0
1, y ≥ 0

(10)

{
kAD = 100.3591 lg v+0.0952

kDT = 100.5441 lg v−0.0795 (11)

where v is the ship’s speed and L is the length of the ship.
Due to the lack of explicit standards for the minimum safe encounter distance in the

COLREGs, this study defines the minimum safe encounter distance based on the quaternion
ship domain model.
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r1 =



√
R2

f oreR2
starb/(R2

f ore sin α2
1 + R2

starb cos α2
1) y > 0, x ≥ 0√

R2
starbR2

a f t/(R2
starb sin α2

2 + R2
a f t cos α2

2) y ≥ 0, x < 0√
R2

portR
2
a f t/(R2

port sin α2
3 + R2

a f t cos α2
3) y < 0, x ≥ 0√

R2
f oreR2

port/(R2
f ore sin α2

4 + R2
port cos α2

4) y ≥ 0, x > 0

(12)

where α1, α2, α3, and α4 represent the angles between the line connecting the ship to the
nearest encounter and R f ore, Rstarb, Rport, and R f ore, respectively.

Figure 2. Quaternion ship domain model.

2.3. Ship Encounter Situations and Allocation of Responsibilities

The evaluation of encounter situations is crucial for determining the responsibilities
of ships in giving way and the evasive actions to be taken. It is also a key component
of automatic collision avoidance decision-making in intelligent ships. Numerous ship
accidents have shown that one of the main causes of uncoordinated maritime traffic, and
even collisions, is the failure to correctly evaluate an encounter situation between ships.
When ships are in sight of one another, the ships’ collision avoidance behavior should
strictly adhere to rules 8, 13, 14, and 15 of the COLREGs. These rules specify the evasive
actions ships should take in different encounter situations. Rule 8 stipulates that ships
must take appropriate action to avoid collisions when encountering potential collision
risks. This includes reducing speed, altering course, and maintaining vigilance to ensure
effective communication and observation. Rule 13 addresses overtaking situations, stating
that the overtaking ship must prioritize avoiding collisions with the ship being overtaken,
ensuring safety during the maneuver. Rule 14 defines head-on encounters, emphasizing
that when ships are on a direct course toward each other, both should take appropriate
evasive actions according to the rules to ensure safe passage. Rule 15 pertains to crossing
encounters, requiring ships to take evasive measures based on their respective courses and
speeds to prevent collisions. Therefore, this paper takes the COLREGs into account, fully
considering the impact of ship encounter situations on collision avoidance behavior. Ship
encounter situations and responsibility allocations are shown in Table 1.

Table 1. Ship encounter situations and responsibility allocations.

True Bearing of TS to OS/° Course Difference/° Encounter Situation OS TS

354 ≤ θr ≤ 6 174 ≤ ∆C ≤ 186 Head-on Give-way Give-way
247.5 ≤ θr < 354 67.5 ≤ ∆C < 174 Left-Crossing Stand-on Give-way

6 < θr ≤ 112.5 186 < ∆C ≤ 292.5 Right-Crossing Give-way Stand-on
112.5 < θr < 247.5 ∆C < 67.5∪ ∆C > 292.5 Overtaking Stand-on Give-way
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3. Improved Adaptive Differential Evolution Algorithm Model

This section introduces an adaptive DE algorithm model that incorporates the analytic
hierarchy process. Initially, an elite archive strategy [39] is integrated into the mutation
operation of the DE, and the control factors F and CR are adaptively improved [40],
enhancing the population diversity and avoiding local optima. Simultaneously, a penalty
mechanism is introduced to address new vectors that do not meet the boundary constraints,
ensuring their effectiveness. Furthermore, the CRI, COLREGs, and the optimal collision
avoidance distance are incorporated into the assessment of the fitness function, constituting
an evaluation set with safety, economy, the COLREGs, and optimal collision avoidance
distance as the evaluating factors, where the safety is determined using the CRI, and
optimized for the traditional CRI model. Finally, the weights of these evaluation factors
are determined using the AHP, further enhancing the rationality and accuracy of the
fitness function.

3.1. Algorithm Improvements
3.1.1. Elite Archive Strategy

In this study, the selected mutation strategy is DE/rand/2, which performs mutation
operations using two different differential vectors. Compared to other mutation strategies,
this enables a broader exploration of the search space, making the algorithm more likely to
escape local optima. Additionally, this strategy offers strong flexibility and adaptability, and
it is relatively simple to implement. However, the strategy lacks the tendency of searching
for better solutions during the mutation process. Therefore, to overcome this drawback, an
elite archive strategy is added to DE/rand/2, offering both the precision of local search and
the breadth of global search.

First, classify the M individuals in the current population based on their fitness. The
OR individuals with better fitness are placed in set P to form the elite population, while
the (M −OR) individuals with poorer fitness are placed in set Q to form the non-elite
population. P and Q should satisfy P ∪ Q = M and P ∩ Q = ∅. The improvement to
DE/rand/2 is as follows:

Vi(G) = XP
r1(G) + F× (XP

r2(G)− XQ
r3(G)) + F× (XP

r4(G)− XQ
r5(G)) (13)

In this context, XP
r1(G), XP

r2(G), and XP
r4(G) are individuals randomly selected from

the elite population P, while XQ
r3(G) and XQ

r5(G) are randomly selected from the non-elite
population Q. The principle of the strategy is simple: P is used to guide the mutant
individuals towards better solutions in the population, improving the convergence speed,
while Q is employed to adjust the diversity of the population. During the population
iteration process, if the fitness value of Ui(G) is greater than that of Xi(G), P and Q remain
unchanged. If the fitness value of Ui(G) is less than that of Xi(G), P and Q are dynamically
updated. The updates include the following two situations:

(1) If the individual corresponding to Ui(G) is in the elite population P, then Ui(G)
directly replaces the corresponding individual in P.

(2) If the individual corresponding to Ui(G) is not in P, and the fitness of Ui(G) is better
than the worst individual in P, then Ui(G) replaces the worst individual in P. The
worst individual from P is added to Q, and the corresponding individual of Ui(G) in
Q is removed.

3.1.2. Adaptive Factors

The scaling factor F can be viewed as a factor that regulates the degree of individual
perturbation, influencing the step length of an individual’s movement in space. When F is
large, the perturbation of individuals is greater, which increases the population diversity
and makes the algorithm more likely to escape local optima, thereby enhancing the global
search capabilities. However, this comes with a slower convergence. Conversely, when F
is small, the perturbation of individuals is reduced, leading to shorter movement steps in
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space. This enhances the local search capabilities and speeds up convergence. However, it
also increases the likelihood of becoming trapped in local optima. Therefore, this paper
proposes an adaptive F strategy that enhances the global search capabilities while increasing
the convergence speed, with improvements as follows:

FG =


F1, F0 ×

M
∑

i=1
f (xG

i )/
M
∑

i=1
f (x0

i ) ≤ F1

F0 ×

M
∑

i=1
f (xG

i )

M
∑

i=1
f (x0

i )
, F0 ×

M
∑

i=1
f (xG

i )/
M
∑

i=1
f (x0

i ) > F1

(14)

In this context, F0 and F1 represent the scaling factors during the first and second
iterations, respectively, while FG is the scaling factor during the G-th iteration. f (xG

i ) and
f (x0

i ) denote the fitness values of the individual during the G-th iteration and the first
iteration, respectively.

The crossover factor CR determines the likelihood that the vectors of the initial indi-
vidual will be replaced by those of the mutant individual during the crossover operation.
When CR is high, the information from the mutant individual is better transferred to the
initial individual. Conversely, when CR is low, less information is transferred from the
mutant to the initial individual, but this increases the independence among individuals.
Therefore, an adaptive CR mechanism is proposed to balance these two effects, with
improvements as follows:

CRn =

 CR1, f (xG
n ) > f (xG

avg)

CR0 ×
(CR1−CR0)( f (xG

avg)− f (xG
n ))

f (xG
avg)− f (xG

min)
, f (xG

n ) ≤ f (xG
avg)

(15)

f (xG
n ) and f (xG

avg) represent the fitness value of the n-th individual and the average
fitness value of all individuals, respectively, while f (xG

min) is the minimum fitness value.
To prevent newly generated individual vectors from violating the boundary con-

straints, a penalty mechanism is introduced, causing the individual vectors to change
according to the following formula:

Ui,j(G) = min(max(Ui,j(G), Umin
i,j ), Umax

i,j ) (16)

Here, j represents the dimension of the current vector, and Umin
i,j and Umax

i,j denote the
lower and upper bounds of the j-th dimensional vector, respectively. The individual vectors
are eventually made to satisfy the boundary constraints through this penalty mechanism.

3.2. Collision Risk Index

The CRI [34] is typically calculated through a quantitative analysis of the relative
positions, velocities, and headings of two or more ships, along with other environmental
factors such as weather and visibility. This index is used to assess the probability of
collisions between ships within a specified time and spatial range. When the value of
the CRI is high, ships must take emergency avoidance actions to prevent collisions with
other ships. This study selects DCPA, TCPA (the time to closest point of approach), the
distance between two ships (D), the relative bearing (A), and the speed ratio (K) as factors
to construct the collision risk model. Establishment of the collision risk index factor set is
U = {DCPA, TCPA, D, A, K}

Define the membership functions for each factor:

(1) Membership function for DCPA

Establish a coordinate system with the own ship (OS) as the origin, where the positive
x-axis points east and the positive y-axis points north. The coordinates of the own ship are
(xO, yO), with a speed of vO and a heading of φO. The target ship (TS)’s coordinates are
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(xT , yT), with a speed of vT and a heading of φT . The true bearings from the OS to the TS
and from the TS to the OS are aOT and aTO, respectively. The relative speed is vR.

Previously, when selecting the membership function for DCPA, only the influence of
the minimum safe encounter distance r1 and the safe passing distance r2 were considered,
without taking into account whether the ship domain of the OS and the TS are intruded
upon. Figure 3 illustrates several scenarios where the ship domains are intruded upon.
Therefore, an improvement is made to the membership function of DCPA to address
this issue.

Figure 3. Various situations of OS and the TS domains being intruded upon: (a) the TS does not
intrude into the OS’s domain, but the OS intrudes into the TS’s domain; (b) the OS does not intrude
into the TS’s domain, but the TS intrudes into the OS’s domain; (c) both ships intrude into each
other’s domains.

Establish a coordinate system with the TS as the origin, with the direction of the bow
serving as the positive y-axis and the direction perpendicular to the bow to the right as the
positive x-axis. Perform a coordinate transformation for the position of the OS:

xO1 = D sin β0, yO1 = D cos β0, β0 = aOT − φT + γ1, (17)

γ1 =

{
360, aOT − φT ≤ 0
0, aOT − φT > 0

(18)

Based on the transformed coordinates (xO1, yO1), derive the equation for the relative
motion line of the OS with respect to the TS:

y = cot(φR − φT)x + (yO1 − xO1 cot(φR − φT)) (19)

φR =


arctan vOTx

vOTy
+ θ, otherwise

90, vOTx ≥ 0, vOTy = 0
270, vOTx < 0, vOTy = 0

(20)

θ =


0 vOTx ≥ 0, vOTy > 0
180 vOTx ≥ 0, vOTy < 0 or vOTx < 0, vOTy < 0
360 vOTx < 0, vOTy > 0

(21)

Due to the change in the coordinate system, the equation for the relative motion line
also needs to be transformed:

x = cot(φR − φT)y + (yO1 − xO1 cot(φR − φT)) (22)

As illustrated in Figure 4, when the OS intrudes into the ship domain of the TS, the
relative motion line of the OS with respect to the TS will intersect with the boundary of the
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TS’s ship domain. Therefore, it is possible to determine whether the OS has intruded into
the TS’s domain by calculating if an intersection exists.

Similarly, by analyzing whether there are intersections between the relative motion
line of the TS with respect to the OS and the boundary of the OS’s domain, it can be
determined whether the TS has intruded into the domain of the OS.

The improved membership function is

kDCPA =


1, DCPA < r1||p1 > 0||p2 > 0
1
2 −

1
2 sin

(
180◦

r2−r1
(DCPA− r2+r1

2 )
)

, r1 < DCPA < r2

0, DCPA ≥ r2

(23)

Here, p1 is the number of intersections between the relative motion line of the OS with
respect to the TS and the boundary of the TS’s domain, and p2 is the number of intersections
between the relative motion line of the TS with respect to the OS and the boundary of the
OS’s domain.

Relative motion line

The boundary of  

ship domain

Relative motion line

The boundary of  

ship domain

Relative motion line

The boundary of  

ship domain

Figure 4. The relative motion lines intersect at the boundary of the ship domain.

(2) Membership function for TCPA

kTCPA =


1, TCPA ≤ T1(

T2−TCPA
T2−T1

)2
, T1 < TCPA ≤ T2

0, TCPA > T2, DCPA > d4

(24)

T1 =


√

d2
3−DCPA2

vR
, DCPA ≤ d3

DCPA−d3
vR

, DCPA > d3
(25)

T2 =

√
d2

4 − DCPA2

vR
(26)

Here, d3 represents the latest distance at which the give-way ship must take evasive
action, and d4 is the distance within which a ship can take measures to avoid a collision.

(3) Membership function of the distance between two ships (D)



J. Mar. Sci. Eng. 2024, 12, 2123 11 of 25

kD =


1, 0 ≤ D ≤ d3(

d4−D
d4−d3

)2
, d3 < D ≤ d4

0, D > d4

(27)

(4) Membership function of relative bearing (A)

kA =
1
2

[
cos(aTO − 19◦) +

√
440
289

+ cos2(aTO − 19◦)

]
− 5

17
(28)

(5) Membership function of speed ratio (K)

kK =
1

1 + (K0
K )

2 (29)

In the above formula, K0 is the threshold of K, taking K0 = 1.
Establish a set of weights W based on the importance of each factor in the calculation

of the CRI.

W = {WDCPA, WTCPA, WD, WA, WK} (30)

CRI = WDCPAkDCPA + WTCPAkTCPA + WDkD + WAkA + WKkK (31)

3.3. Fitness Function

The CRI, COLREGs, and optimal avoidance distance are incorporated into the assess-
ment of the fitness function, creating an evaluation set F defined by the factors of safety,
economy, COLREGs, and optimal avoidance distance. Here, the safety of the path points is
determined using the CRI, while the economy of the path points is determined using the
voyage distance and the degree of turning. The COLREGs are used to assess encounter
situations and determine whether the ship needs to take evasive action.

The objective function with respect to CRI is defined as follows:

f1 = CRI (32)

During path planning, the total voyage is an economic evaluation index. Assum-
ing that the coordinates of three adjacent points in the path are (xi−1, yi−1), (xi, yi), and
(xi+1, yi+1), respectively, where (xi, yi) is the current point. The total number of path points
is m, and the destination point is (xm, ym). When assessing the total voyage, it is evident
that (xi+1, yi+1) is unknown. Therefore, the total voyage is evaluated by examining the
relationship between the current point, the previous path point, and the destination point.
The objective function with respect to the total voyage is defined as follows:

f2 =

√
(xi − xi−1)

2 + (yi − yi−1)
2√

(xm − xi−1)
2 + (ym − yi−1)

2

+

√
(xm − xi)

2 + (ym − yi)
2√

(xm − xi−1)
2 + (ym − yi−1)

2

(33)

The objective function based on the degree of turning is

f3 = arccos

(
(xi − xi−1, yi − yi−1) · (xm − xi, ym − yi)

T

||(xi − xi−1, yi − yi−1) · (xm − xi, ym − yi)||

)
(34)
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When the OS is a stand-on ship, it does not need to take evasive actions. However,
when the OS is a give-way ship, it should take appropriate evasive measures to avoid
collision risks. Based on the previously described encounter situations and responsibility
allocations, the objective function constructed according to the COLREGs is as follows:

f4 =

{
1 000◦ ≤ θr ≤ 112.5◦ or 354◦ ≤ θr ≤ 006◦

0 otherwise
(35)

The optimal avoidance distance is crucial for determining when a ship should take
evasive actions. Therefore, this paper employs a fuzzy evaluation method to calculate the
optimal avoidance distance, making the decision-making process more accurate and efficient.

Establish a set of factors γ and a set of corresponding evaluation results φ, where
γ = {γ1, γ2, γ3, γ4, γ5, γ6, γ7}, and φ = {φ1, φ2, φ3, φ4, φ5}. γ represents a group of judg-
ment factors, i.e., the set of factors influencing the optimal avoidance distance. Specifically,
γ1, γ2, γ3, γ4, γ5, γ6, and γ7 represent the relative motion velocity judgment vector, bearing
judgment vector, speed ratio judgment vector, ship density judgment vector, navigation
water condition judgment vector, meteorological condition judgment vector, and ship
size judgment vector, respectively. φ corresponds to the values of the optimal avoidance
distance, where φ1 = 2, φ2 = 3, φ3 = 4, φ4 = 5, φ5 = 6.

Construction and determination of the judgment matrix for the optimal
avoidance distance is as follows:

E =



γ11, γ12, γ13, γ14 ,γ15
γ21, γ22, γ23, γ24, γ25
γ31, γ32, γ33, γ34, γ35
γ41, γ42, γ43, γ44, γ45
γ51, γ52, γ53, γ54, γ55
γ61, γ62, γ63, γ64, γ65
γ71, γ72, γ73, γ74, γ75


(36)

In previous research and surveys [41], the authors of the paper carried out further
research and provided solutions. Therefore, the weight values of each influencing factor on
the optimal avoidance distance are known under different conditions.

Determine the evaluation vector γ1:
The greater the relative motion speed, the longer the time a ship takes to avoid a

collision by decelerating or turning. Therefore, evasive actions should be taken as early as
possible, and the avoidance distance should be correspondingly increased.

i f 0 kn ≤ VR < 5 kn, γ1 = (0.8, 0.2, 0, 0, 0)
i f 5 kn ≤ VR < 15 kn, γ1 = (0.5, 0.3, 0.2, 0, 0)
i f 15 kn ≤ VR < 25 kn, γ1 = (0.2, 0.6, 0.2, 0, 0)
i f 25 kn ≤ VR < 35 kn, γ1 = (0, 0.2, 0.6, 0.2, 0)
i f 35 kn ≤ VR < 45 kn, γ1 = (0, 0, 0.2, 0.3, 0.5)
i f 45 kn ≤ VR, γ1 = (0, 0, 0, 0.2, 0.8)

(37)

Determine the evaluation vector γ2:

i f − 10◦ ≤ Q < 10◦, γ2 = (0, 0, 0.1, 0.3, 0.6)
i f 10◦ ≤ Q < 60◦, γ2 = (0.1, 0.2, 0.3, 0.3, 0.1)
i f 60◦ ≤ Q < 112◦, γ2 = (0.1, 0.2, 0.4, 0.2, 0.1)
i f 112◦ ≤ Q < 248◦, γ2 = (0.5, 0.4, 0.1, 0, 0)
i f 248◦ ≤ Q < 270◦, γ2 = (0.1, 0.4, 0.4, 0.1, 0)
i f 270◦ ≤ Q < 350◦, γ2 = (0, 0.1, 0.2, 0.3, 0.4)

(38)
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Determine the evaluation vector γ3:

i f K < 0.8, γ3 = (0, 0, 0.1, 0.3, 0.6)
i f 0.8 ≤ K < 1.2, γ3 = (0, 0.2, 0.6, 0.2, 0)
i f 1.2 ≤ K, γ3 = (0.6, 0.2, 0.2, 0, 0)

(39)

Determine the evaluation vector γ4:
When there is less than one ship within two nautical miles,

γ4 = (0, 0.1, 0.2, 0.3, 0.4) (40)

When more than one ship is within one nautical mile,

γ4 = (0.4, 0.3, 0.2, 0.1, 0) (41)

Otherwise,
γ4 = (0.1, 0.2, 0.4, 0.2, 0.1) (42)

Determine the evaluation vector γ5:

in open waters, γ5 = (0, 0.1, 0.2, 0.3, 0.4)
in general waters, γ5 = (0, 0.3, 0.4, 0.3, 0)
in narrow waters, γ5 = (0.4, 0.3, 0.2, 0.1, 0)

(43)

Determine the evaluation vector γ6:
As meteorological conditions worsen, visibility at sea decreases, making ships more

susceptible to external influences and impairing their ability to evaluate unknown risks, so
the distance for collision avoidance should be increased.

When weather conditions are good,

γ6 = (0.4, 0.3, 0.2, 0.1, 0) (44)

When weather conditions are normal,

γ6 = (0.1, 0.2, 0.4, 0.2, 0.1) (45)

When weather conditions are poor,

γ6 = (0, 0.1, 0.2, 0.3, 0.4) (46)

Determine the evaluation vector γ7:
The larger a ship’s size, the poorer its maneuverability, and thus a greater avoidance

distance should be allowed.

i f L ≤ 50 m, γ7 = (0.4, 0.3, 0.2, 0.1, 0)
i f 50 m ≤ L < 100 m, γ7 = (0.1, 0.3, 0.3, 0.2, 0.1)
i f 100 m ≤ L < 250 m, γ7 = (0.1, 0.2, 0.3, 0.3, 0.1)
i f 250 m ≤ L, γ7 = (0, 0.1, 0.2, 0.3, 0.4)

(47)

When calculating the optimal avoidance distance, it is necessary to select appropriate
evaluation vectors according to the actual conditions of each factor and to construct a
judgment matrix E. Based on expert evaluations, the weights of each evaluation factor are
obtained as X = (0.4, 0.2, 0.15, 0.1, 0.05, 0.05, 0.05). The evaluation result H is calculated as
H = X • E, and the optimal avoidance distance φ0 is determined according to the principle
of maximum membership.

Construct an objective function based on the optimal avoidance distance:
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f5 =

{
1 D < φ0
0 D ≥ φ0

(48)

Fitness = W1 f1 + W2 f2 + W3 f3 + W4 f4 + W5 f5 (49)

where W1, W2, W3, W4, and W5 are the weights for safety, total voyage, degree of turning,
COLREGs, and optimal avoidance distance, respectively.

3.4. Determining Weight Values Through the Analytic Hierarchy Process

The analytic hierarchy process (AHP) is a decision-support tool for calculating weights
in multi-objective complex issues. Due to its systematic and flexible nature, the AHP
has been extensively utilized across various sectors, including risk assessment, resource
allocation, and project evaluation.

To enhance the rationality of the fitness function value in evaluating the merits of
individual path points, this paper employs the AHP to calculate the weights. Expert
scoring, constructing a judgment matrix, calculating eigenvectors and weight values, and
consistency checks are used to ultimately determine the weight of each factor.

3.4.1. Establishment of the Judgment Matrix

(1) Expert scoring

After scoring by multiple experts, an initial judgment matrix was established as
depicted in Table 2.

Table 2. Initial judgment matrix.

CRI Voyage Degree of Turning COLREGs Avoidance Distance

CRI 1 3 2 4 1
Voyage 1/3 1 1/2 2 1/3

Degree of turning 1/2 2 1 3 1/2
COLREGs 1/4 1/2 1/3 1 1/4
Avoidance

distance 1 3 2 4 1

CRI 1 6 3 3 2
Voyage 1/6 1 1/2 1/2 1/3

Degree of turning 1/3 2 1 1 2/3
COLREGs 1/3 2 1 1 2/3
Avoidance

distance 1/2 3 3/2 3/2 1

CRI 1 4/3 2 3 5
Voyage 3/4 1 4/3 2 4

Degree of turning 1/2 3/4 1 4/3 3
COLREGs 1/3 1/2 3/4 1 2
Avoidance

distance 1/5 1/4 1/3 1/2 1

(2) Combining judgment matrices

The geometric mean was calculated from the scores of multiple experts, and the
consolidated judgment matrix is shown in Table 3.
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Table 3. The combined judgment matrix.

CRI Voyage Degree of Turning COLREGs Avoidance Distance

CRI 1 2.8851 2.289 3.301 2.154
Voyage 0.3466 1 0.693 1.260 0.763

Degree of turning 0.4368 1.4422 1 1.587 1
COLREGs 0.3029 0.7937 0.6300 1 0.693

Avoidance distance 0.4642 1.3104 1 1.4422 1

3.4.2. Calculation of Weight Values

(1) Normalize the judgment matrix.
(2) Sum the processed matrix row-wise.
(3) Normalize again to obtain the eigenvector and the weight values of each factor. The

results are presented in Table 4.

Table 4. AHP hierarchical analysis results.

Eigenvector Weight Value Maximum Eigenvalue Value of CI

CRI 1.956 39.129%
Voyage 0.677 13.533%

Degree of turning 0.906 18.130% 5.004 0.001
COLREGs 0.578 11.556%

Avoidance distance 0.883 17.652%

As indicated by Table 4, a 5-order judgment matrix was constructed for research
on CRI, voyage, degree of turning, COLREGs, and avoidance distance (calculated using
the sum-product method). The analysis yielded an eigenvector of (1.956, 0.677, 0.906,
0.587, 0.883), with corresponding weight values of 0.39129, 0.13533, 0.18130, 0.11556, and
0.17652, respectively. Additionally, combining the eigenvector allowed the calculation of the
maximum eigenvalue (5.004). Subsequently, this value was used to obtain the consistency
index (CI) value 0.001, where CI = (maximum eigenvalue− n)/(n− 1), which was used
for the consistency check described below.

3.4.3. Consistency Check

The random consistency index (RI) value corresponding to the 5-order judgment
matrix was 1.120. The consistency index (CR) calculated (CR = CI/RI) was 0.001 < 0.1.
This demonstrates that the judgment matrix used in this study passed the consistency
check, ensuring that the calculated weights are reliable. The results of the consistency check
are shown in Table 5.

Table 5. Summary of results of consistency check.

Maximum
Eigenvalue CI RI CR Consistency

Check

5.004 0.001 1.120 0.001 pass

As illustrated in Figure 5, the weight values for the factors constituting the fitness
function are as follows: W1 = 0.3913, W2 = 0.1353, W3 = 0.1813, W4 = 0.1156, W5 = 0.1765.
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Figure 5. Weights of evaluation factors.

The process of the improved differential evolution algorithm in this paper is illustrated
in Figure 6, and the pseudocode is provided in Algorithm 1.

Begin

Population initialization

Fitness evaluation

Mutation

Crossover

Boundary constraint

Selection

Gth iteration?

End

Elite archive F adaptive

CR adaptive

YES

NO

BeginBegin

Population initializationPopulation initialization

Fitness evaluationFitness evaluation

MutationMutation

CrossoverCrossover

Boundary constraintBoundary constraint

SelectionSelection

Gth iteration?

YES

Gth iteration?

EndEnd

Elite archiveElite archive F adaptiveF adaptive

CR adaptiveCR adaptive

YES

NO

Figure 6. Algorithmic process.
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Algorithm 1: Differential Evolution Algorithm
Input: population size M, crossover rate CR, scale factor F, maximum generation K
Output: optimal solution

1 for i← 1 to M do
2 initialize population Xi
3 end
4 for g← 1 to K do
5 for i← 1 to M do
6 evaluate the fitness value Xi
7 end
8 for i← 1 to M do
9 mutation operation;

10 select 3 distinct individuals a, b, c from elite population;
11 select 2 distinct individuals d, e from Non-elite population;

12 FG =


F1, F0 ×

M
∑

i=1
f (xG

i )/
M
∑

i=1
f (x0

i ) ≤ F1

F0 ×

M
∑

i=1
f (xG

i )

M
∑

i=1
f (x0

i )
, F0 ×

M
∑

i=1
f (xG

i )/
M
∑

i=1
f (x0

i ) > F1

13 generate trial vector Vi = a + F(b− d) + F(c− e)
14 crossover operation;

15 CRn =


CR1, f (xG

n ) > f (xG
avg)

CR0 ×
(CR1−CR0)( f (xG

avg )− f (xG
n ))

f (xG
avg )− f (xG

min)
, f (xG

n ) ≤ f (xG
avg)

16 Ui,j(G) =

{
Vi,j(G), rand[0, 1) < CRorj = jrand
Xi,j(G), otherwise

17 penalty mechanism;
18 Ui,j(G) = min(max(Ui,j(G), Umin

i,j ), Umax
i,j )

19 apply crossover operation to create offspring Ui ;
20 evaluate offspring Ui ;
21 if fitness(Ui) < fitness(Xi) then
22 replace Xi with Ui ;
23 end
24 end
25 end

4. Simulation Experiments

The simulation experiments were carried out in Matlab 2023b using standard hard-
ware, specifically a computer with an Intel Core i5 CPU and 16 GB of RAM. The exper-
imental environment consisted of open water with good visibility, where the effects of
wind, waves, and currents were neglected. In the absence of external factors such as water
currents, the difference between the ship’s course and heading is considered negligible.
Therefore, the course used in this model was effectively equivalent to the heading. To more
accurately assess the effectiveness of the algorithms, the experiments simulated scenarios
of two-ship encounters and four-ship encounters, incorporating static obstacles in the
two-ship encounter scenario to evaluate the algorithm’s obstacle avoidance capabilities.
Considering the limitations of the TS in simulation experiments and to better assess the
real-time avoidance capability of the OS, the TSs were set as stand-on ships while the OS
acted as the give-way ship. The parameters and initial states of the experimental subjects
are presented in Tables 6–8. The various parameters used during the experiment were
uniformly set as follows: number of iterations of the algorithm K = 100, population size
M = 50, and individual dimension n = 10.

Table 6. Ship parameters.

Parameter OS TS

Length Overall/m 41.38 153.80
Beam/m 7.20 23.20
Draft/m 3.2 8.200

Displacement/t 615.01 12,000.0
Water density/m³ 1.025 1.025
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Table 7. Initial state of experimental subjects in the two-ship encounter.

Ship Initial Heading/° Initial Speed/kn Distance from OS/n Mile

OS 135° 8 0
TS 0° 8 5.10

Obstacle none none 2.95

Table 8. Initial state of experimental subjects in the four-ship encounter.

Ship Initial Heading/° Initial Speed/kn Distance from OS/n Mile

OS 225° 8 0
TS1 0° 8 6.10
TS2 85° 8 6.30
TS3 50° 8 7.00

Article 8 of the COLREGs explicitly states that if sufficient water is available, the most
effective way to avoid a close-quarters situation might be to change course, as long as the
change is performed in a timely and significant manner and does not lead to another close-
quarters situation. Therefore, for the purposes of this study, when considering encounter
scenarios and avoidance strategies, and in accordance with the rules of collision avoidance
and the usual practices followed by crews when navigating at sea, this paper mainly
adopted a change of course for avoidance, without slowing down or stopping.

Given the relatively few applications of the DE algorithm in USV path planning,
this paper compared the improved differential evolution algorithm (AHP-ADE) with the
improved particle swarm algorithm (I-PSO) [42], which includes adaptive improvements
to the acceleration coefficients and introduces a shared learning factor to correct the speed
update, which improves the global search ability and group collaboration ability of the
PSO. The effectiveness of each algorithm was verified using factors such as safety, economy,
and algorithm operation efficiency as evaluation indexes.

4.1. Simulation of Two-Ship Encounter

In ship collision scenarios, crossing situations constitute a significant proportion.
Therefore, in the two-ship encounter scenario, the OS’s heading was set to 135°, and the
TS’s heading was set to 000°, forming a crossing encounter situation, with an added static
obstacle in the path. The results of the path planning are depicted in Figures 7 and 8, where
Figure 7 displays the complete planned path and Figure 8 shows the ship’s progress at
specific time intervals. Figure 9 reflects the real-time distance between the OS and the TS
and the static obstacles, providing data support for evaluating the safety of the path. In
the simulation result diagrams, the blue ship represents the OS, the black ship represents
the TS, the black hexagon is the static obstacle, the red path indicates the path planned by
the AHP-ADE, the blue path is that planned by the I-PSO, the black line shows the TS’s
trajectory, and the black dashed line indicates the original path of the OS. Table 9 presents
the simulation results of each algorithm. It includes the closest distances between the OS
and the TS, and between the OS and the obstacle. These distances reflect the safety of the
path. The total deviation distance between the planned and original paths, along with the
maximum deviation distance, reflects the economic efficiency of the path. Additionally, the
run-time reflects the operational efficiency of the algorithms.

The findings from the experiments indicate that the I-PSO performed poorly in terms
of path safety. Although the closest distance to obstacles was comparable to that of the AHP-
ADE, the closest distances to the TS, as shown in Figure 8 and Table 9, indicates that the path
planned by the I-PSO involved periodic close encounters with the TS during navigation,
increasing the risk of collision and thus lowering the safety. In contrast, the AHP-ADE
ensured that a large safe distance was always maintained between the OS and the obstacle
and the TS. The closest distance between the OS and the TS was approximately 1.98 nautical
miles, remaining within a safe range and effectively ensuring navigational safety.
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Figure 7. Simulation results of the two-ship encounter.
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Figure 8. The state of the two-ship encounter ship at specific time intervals.
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Figure 9. Real-time distance of the OS from the TS and static obstacles.

The initial position of the OS was 2.95 nautical miles from the obstacle, within a safe
distance; thus, the ship should have continued along its original path, without needing
to take evasive actions. However, the I-PSO algorithm caused the ship to deviate from
its intended course right at the start of navigation. This premature maneuvering resulted
in a significant deviation distance, thereby reducing the path’s economic efficiency. In
contrast, the AHP-ADE allowed the ship to continue along its original path during the
initial phase, and it started taking evasive actions when approximately 2.1 nautical miles
away from the obstacle. It effectively avoided collisions with the obstacle by adjusting
the heading, and gradually returned to the original path after safely passing. The data in
Table 9 show that the total deviation distance caused by the I-PSO was larger, indicating
a lower economic efficiency, while the AHP-ADE had a relatively smaller total deviation
distance, thus performing slightly better in terms of economy. In addition, the running
time of the AHP-ADE proposed in this paper was shorter than that of the I-PSO, and the
running efficiency was higher.

Table 9. Results of the operation of the algorithm in the two-ship encounter.

Algorithms AHP-ADE I-PSO

Min Dis to TS/n mile 1.978486 0.588198
Min Dis to obstacle/n mile 0.811146 0.810035
Sum deviation Dis/n mile 19.67959 21.50712
Max deviation Dis/n mile 0.854862 0.893951

Runtime/s 8.9933 9.4854

4.2. Simulation of Four-Ship Encounter

Similarly, in the four-ship encounter scenario, the OS’s heading was set at 225°, while
the TSs’ headings were set at 000°, 085°, and 050°, respectively. The results of the path
planning are depicted in Figures 10–12, displaying the real-time distances between the OS
and each TS. The results of the simulation experiments are presented in Table 10.
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Table 10. Results of the operation of the algorithm in the four-ship encounter.

Algorithms AHP-ADE I-PSO

Min Dis to TS1/n mile 2.308743 1.193513
Min Dis to TS2/n mile 0.459320 0.650301
Min Dis to TS3/n mile 1.081382 0.252936

Sum deviation Dis/n mile 16.14991 15.79813
Max deviation Dis/n mile 0.823841 0.794038

Runtime/s 14.7038 14.48

The findings from the experiments indicate that the AHP-ADE and the I-PSO per-
formed comparably in terms of economic efficiency, and the total deviation distances of
16.15 nautical miles and 15.8 nautical miles guaranteed that both paths had good economy.

However, the I-PSO algorithm performed poorly in terms of path safety. According
to the data in Figure 11 and Table 10, this algorithm caused the OS to pass ahead of the
TS2 during their encounter, violating the COLREGs. Additionally, during the encounter
with the TS3, the OS failed to maintain a safe distance, with the closest proximity being
only 0.25 nautical miles, thereby increasing the risk of collision. In contrast, the AHP-ADE,
during the encounter with TS2, adjusted the course, allowing the OS to pass from the stern,
adhering to the COLREGs. Throughout the navigation, the algorithm also maintained
greater safety distances with all TSs, effectively ensuring navigational safety.

In summary, the AHP-ADE and the I-PSO models were simulated and evaluated
in scenarios of two-ship and four-ship encounters. The effectiveness of the algorithms
was verified by comprehensively evaluating the total deviation distance, the maximum
deviation distance, the nearest distances to the TS and the obstacles, and the algorithm’s
operation time. The findings from the experiments indicate that the AHP-ADE model
showed better performance in the scenarios of two-ship and four-ship encounters, and
at the same time conformed to the principle of early, largely, widely and clearly, thus
effectively verifying the applicability and superiority of the AHP-ADE algorithm.

AHP-ADE 

I-PSO
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Figure 10. Simulation results of the four-ship encounter.
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Figure 11. The state of a four-ship encounter ship at specific time intervals.

Figure 12. Real-time distance of the OS from the TSs.
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5. Conclusions

In this paper, an adaptive differential evolutionary algorithm model combined with
hierarchical analysis (AHP-ADE) was proposed for the path planning and collision avoid-
ance problem of USVs in open water. This model combines the breadth of global search and
the accuracy of local search by introducing an elite archiving strategy into the crossover
operation. In order to enhance the efficiency of the algorithm, the control factors F and CR
were adaptively improved. This adjustment increases the global search capabilities in the
early stage to prevent premature convergence and enhances the local search capabilities in
the later stage to improve the search accuracy. Additionally, this paper improved the tradi-
tional collision risk model by incorporating a limiting factor in the membership function
by selecting the DCPA, aligning the CRI calculations more closely with maritime practices.
The CRI, COLREGs, and optimal collision avoidance distance were incorporated into the
evaluation of the fitness function. And the weights of each evaluation factor were obtained
through hierarchical analysis, so as to more accurately assess the quality of the individual
path points.

Simulation experiments in multi-ship encounter scenarios compared the AHP-ADE
and I-PSO models. The total deviation distance and maximum deviation distance were used
to evaluate the economy of the path, the closest distance to the target ship and obstacles
was used to evaluate the safety of the path, and the running time was used to evaluate the
operational efficiency of the algorithm. The simulation results showed that considering
safety, economy, and operation efficiency, the AHP-ADE showed better performance in
multi-ship encounter situations, which fully verified the effectiveness of the algorithm in
this paper. The algorithm model in this study ignored the effects of factors such as wind,
waves, and current. Therefore, the course used in this model was effectively equivalent to
the heading. In the absence of external factors like water currents, the difference between
a ship’s heading and course is considered negligible. This simplification enhanced the
computational efficiency and provided a feasible solution for the simulation experiments.

Although this study achieved certain results, there were still some limitations, as the
ship’s navigation in high-density waters, the ship’s maneuverability, and the interference
of external factors like wind, waves, and currents were not fully considered, which provide
directions for further research on this algorithm.
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