Review on Maximum Power Point Tracking Control Strategy Algorithms for Offshore Floating Photovoltaic Systems
<p>Photovoltaic power generation development.</p> "> Figure 2
<p>Offshore floating photovoltaic systems.</p> "> Figure 3
<p>Basic structure of MPPT algorithm with boost converter.</p> "> Figure 4
<p>Single-diode equivalent circuit of PV cell.</p> "> Figure 5
<p>PV module characteristics under different irradiances and constant temperature (25 °C): (<b>left</b>) power–voltage curve and (<b>right</b>) current–voltage curve.</p> "> Figure 6
<p>PV module characteristics under partial shading conditions: (<b>left</b>) power–voltage curve and (<b>right</b>) current–voltage curve.</p> "> Figure 7
<p>Slope of wave surface under different wave models. (<b>left</b>) Airy wave and (<b>right</b>) Stokes wave.</p> "> Figure 8
<p>Irradiance under different wave models. (<b>left</b>) Airy wave and (<b>right</b>) Stokes wave.</p> "> Figure 9
<p>Output characteristics of photovoltaic model under influence of sea waves. (<b>left</b>) V-t curve, (<b>middle</b>) I-V-t diagram, and (<b>right</b>) P-V-t diagram.</p> "> Figure 10
<p>MPPT control structure: (<b>left</b>) direct control, (<b>right</b>) indirect control.</p> "> Figure 11
<p>Flowchart of P&O algorithm.</p> "> Figure 12
<p>The drift phenomena under continuously changing irradiance conditions.</p> "> Figure 13
<p>Flowchart of INC algorithm.</p> "> Figure 14
<p>Block diagram of FLC MPPT technique.</p> "> Figure 15
<p>Photovoltaic array structural diagram: (<b>left</b>) SP, (<b>middle</b>) BL, (<b>right</b>) TCT.</p> "> Figure 16
<p>Block diagram of ANN MPPT technique.</p> "> Figure 17
<p>Block diagram of PSO algorithms.</p> ">
Abstract
:1. Introduction
2. Characteristics of Photovoltaic Arrays in Offshore Floating Scenarios
3. MPPT Under Uniform Solar Irradiance
3.1. MPPT Algorithms Based on Photovoltaic Cell Models
3.1.1. Constant Voltage (CV)
3.1.2. Sliding Mode Control (SMC)
3.1.3. Conclusions
3.2. Traditional Self-Optimization MPPT Algorithm
3.2.1. Perturb and Observe (P&O)
3.2.2. Incremental Conductance (INC)
3.3. Fuzzy Logic Control (FLC)
4. MPPT Under Non-Uniform Solar Irradiance and Partial Shading Conditions
4.1. Hardware-Based GMPPT Control Method
4.2. GMPPT Method Based on Sampled Data Preprocessing
4.3. Intelligent GMPPT Control Algorithm
4.3.1. Neural Network Algorithm
4.3.2. Swarm Intelligence Optimization Algorithms
4.3.3. Evolutionary Algorithms
5. Hybrid MPPT
5.1. Parameter-Improved Control Algorithms
5.2. Multi-Mode Control Algorithms
6. Current Developments and Future Trends
- The P&O method, currently the most widely implemented in engineering applications, cannot be directly applied offshore. However, when combined with improvements targeting misjudgment issues and preprocessing techniques based on sampled data, this algorithm demonstrates high adaptability to floating PV systems and presents potential for further engineering development.
- The harsh offshore environment, characterized by high salinity and humidity, significantly impacts PV system hardware. Present methods for PV array hardware reconfiguration are unsuitable for offshore scenarios. Moreover, prolonged exposure to such conditions may alter the intrinsic characteristics of PV cells, raising concerns about the feasibility and efficiency of algorithms based on PV cell models.
- Intelligent algorithms hold considerable promise, with some existing approaches effectively achieving MPPT control in floating PV systems. However, neural network algorithms present significant training challenges, while heuristic algorithms involve complex computations. The question of which heuristic algorithm is optimal remains unresolved, necessitating further research and exploration.
- Hybrid algorithms, which integrate the strengths of various approaches, can effectively enhance overall system control and represent the current mainstream and trend in MPPT algorithm research for floating PV systems.
7. Conclusions
Funding
Conflicts of Interest
References
- IRENA Statistics Data. Available online: https://www.irena.org/Data (accessed on 29 September 2024).
- Essak, L.; Ghosh, A. Floating Photovoltaics: A Review. Clean Technol. 2022, 4, 752–769. [Google Scholar] [CrossRef]
- Ramanan, C.J.; Lim, K.H.; Kurnia, J.C.; Roy, S.; Bora, B.J.; Medhi, B.J. Towards Sustainable Power Generation: Recent Advancements in Floating Photovoltaic Technologies. Renew. Sustain. Energy Rev. 2024, 194, 114322. [Google Scholar] [CrossRef]
- Huang, G.; Tang, Y.; Chen, X.; Chen, M.; Jiang, Y. A Comprehensive Review of Floating Solar Plants and Potentials for Offshore Applications. JMSE 2023, 11, 2064. [Google Scholar] [CrossRef]
- Bollipo, R.B.; Mikkili, S.; Bonthagorla, P.K. Hybrid, Optimal, Intelligent and Classical PV MPPT Techniques: A Review. CSEE J. Power Energy Syst. 2021, 7, 9–33. [Google Scholar] [CrossRef]
- Fatah, A.; Menzri, F.; Lekmine, A.; Benlaloui, I.; Boutabba, T.; Fezzani, A. Control of Water Pumping System Based On Floating Photovoltaic System with a Solar Tracking Control. In Proceedings of the 2023 International Conference on Electrical Engineering and Advanced Technology (ICEEAT), Batna, Algeria, 5–7 November 2023; Volume 1, pp. 1–6. [Google Scholar]
- Zhang, T. Optimum Design of Maritime Stand-alone PV System and its Maximum Power Point Tracking. Master’s Thesis, Harbin Institute of Technology, Shenzhen, China, 2016. [Google Scholar]
- Liu, H. Research On Maximum Power Tracking Technology Of Floating Photovoltaic Power Generation System. Master’s Thesis, Taiyuan University of Technology, Taiyuan, China, 2021. [Google Scholar]
- Elbaksawi, O.; Elminshawy, N.A.S.; Diab, S.; Eltamaly, A.M.; Mahmoud, A.; Elhadidy, H. Innovative Metaheuristic Algorithm with Comparative Analysis of MPPT for 5.5 kW Floating Photovoltaic System. Process Saf. Environ. Prot. 2024, 185, 1072–1088. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.; Ma, S.; Chen, M.; Zhang, B.; Jiang, B. Analysis of Photovoltaic Array Maximum Power Point Tracking under Uniform Environment and Partial Shading Condition: A Review. Energy Rep. 2022, 8, 13235–13252. [Google Scholar] [CrossRef]
- Ma, M.; Liu, X.; Lee, K.Y. Maximum Power Point Tracking and Voltage Regulation of Two-Stage Grid-Tied PV System Based on Model Predictive Control. Energies 2020, 13, 1304. [Google Scholar] [CrossRef]
- Alcaniz, A.; Monaco, N.; Isabella, O.; Ziar, H. Offshore Floating PV–DC and AC Yield Analysis Considering Wave Effects. Energy Convers. Manag. 2024, 300, 117897. [Google Scholar] [CrossRef]
- Chen, K.; Zhao, S.; Zhang, P.; Fu, Q.; Zeng, C.; Meng, X. Numerical Simulation Of Power Generation Performance of Floating Photovoltaic Arrays Under Random Wave Environment. Acta Energiae Solaris Sin. 2024, 45, 317–325. [Google Scholar] [CrossRef]
- Yanarates, C.; Wang, Y.; Zhou, Z. Unity Proportional Gain Resonant and Gain Scheduled Proportional (PR-P) Controller-Based Variable Perturbation Size Real-Time Adaptive Perturb and Observe (P&O) MPPT Algorithm for PV Systems. IEEE Access 2021, 9, 138468–138482. [Google Scholar] [CrossRef]
- Deboucha, H.; Kermadi, M.; Mekhilef, S.; Belaid, S.L. Ultra-Fast and Accurate MPPT Control Structure for Mobile PV System Under Fast-Changing Atmospheric Conditions. IEEE Trans. Sustain. Energy 2023, 14, 2168–2176. [Google Scholar] [CrossRef]
- Li, X.; Wen, H.; Hu, Y.; Du, Y.; Yang, Y. A Comparative Study on Photovoltaic MPPT Algorithms Under EN50530 Dynamic Test Procedure. IEEE Trans. Power Electron. 2021, 36, 4153–4168. [Google Scholar] [CrossRef]
- Riquelme-Dominguez, J.M.; Martinez, S. Systematic Evaluation of Photovoltaic MPPT Algorithms Using State-Space Models Under Different Dynamic Test Procedures. IEEE Access 2022, 10, 45772–45783. [Google Scholar] [CrossRef]
- Mandourarakis, I.; Gogolou, V.; Koutroulis, E.; Siskos, S. Integrated Maximum Power Point Tracking System for Photovoltaic Energy Harvesting Applications. IEEE Trans. Power Electron. 2022, 37, 9865–9875. [Google Scholar] [CrossRef]
- Yan, J.; Pan, W.; Wu, H.; Hsu, T.; Wei, C. Photovoltaic Energy Harvesting Chip With P&O Maximum Power Point Tracking Circuit and Novel Pulse-Based Multiplier. IEEE Trans. Power Electron. 2021, 36, 12867–12876. [Google Scholar] [CrossRef]
- Rong, D.; Liu, F. Application of Improved Perturbation and Observation Method to Photovoltaic MPPT. Proc. CSU-EPSA 2017, 29, 104–109. [Google Scholar]
- Ahmed, J.; Salam, Z. A Modified P&O Maximum Power Point Tracking Method With Reduced Steady-State Oscillation and Improved Tracking Efficiency. IEEE Trans. Sustain. Energy 2016, 7, 1506–1515. [Google Scholar] [CrossRef]
- Hussain, A.; Garg, M.M.; Korukonda, M.P.; Hasan, S.; Behera, L. A Parameter Estimation Based MPPT Method for a PV System Using Lyapunov Control Scheme. IEEE Trans. Sustain. Energy 2019, 10, 2123–2132. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Fang, X.; Huang, J.; Zhu, J. MPPT Control Stratery for Photovoltaic System based on Sliding Mode Control. Acta Energiae Solaris Sin. 2018, 39, 2843–2850. [Google Scholar] [CrossRef]
- Pradhan, R.; Subudhi, B. Double Integral Sliding Mode MPPT Control of a Photovoltaic System. IEEE Trans. Control Syst. Technol. 2016, 24, 285–292. [Google Scholar] [CrossRef]
- Ali, Z.M.; Vu Quynh, N.; Dadfar, S.; Nakamura, H. Variable Step Size Perturb and Observe MPPT Controller by Applying θ-Modified Krill Herd Algorithm-Sliding Mode Controller under Partially Shaded Conditions. J. Clean. Prod. 2020, 271, 122243. [Google Scholar] [CrossRef]
- Shao, W.; Wang, M.; Wu, C.; Chen, Y.; Liu, Y. Mppt Control Strategy Based On Improved Sliding Mode Control For Photovoltaic Power System. Acta Energiae Solaris Sin. 2021, 42, 87–93. [Google Scholar]
- Luo, Q.; Chen, Z.; Hao, Z.; Liu, R.; Wang, H.; Chen, X. Mppt Control Strategy Based on a New Reaching Law for a Photovoltaic Power System. Power Syst. Prot. Control 2023, 51, 139–153. [Google Scholar] [CrossRef]
- Kolesnik, S.; Kuperman, A. On the Equivalence of Major Variable-Step-Size MPPT Algorithms. IEEE J. Photovolt. 2016, 6, 590–594. [Google Scholar] [CrossRef]
- Ali, A.I.M.; Mousa, H.H.H.; Mohamed, H.R.A.; Kamel, S.; Hassan, A.S.; Alaas, Z.M.; Mohamed, E.E.M.; Abdallah, A.-R.Y. An Enhanced P&O MPPT Algorithm With Concise Search Area for Grid-Tied PV Systems. IEEE Access 2023, 11, 79408–79421. [Google Scholar] [CrossRef]
- Swaminathan, N.; Lakshminarasamma, N.; Cao, Y. A Fixed Zone Perturb and Observe MPPT Technique for a Standalone Distributed PV System. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 361–374. [Google Scholar] [CrossRef]
- Kahani, R.; Jamil, M.; Iqbal, M.T. An Improved Perturb and Observed Maximum Power Point Tracking Algorithm for Photovoltaic Power Systems. J. Mod. Power Syst. Clean Energy 2023, 11, 1165–1175. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Kumar, P.D.S.; Samanta, S.; Mishra, S. Steady Output and Fast Tracking MPPT (SOFT-MPPT) for P&O and InC Algorithms. IEEE Trans. Sustain. Energy 2021, 12, 293–302. [Google Scholar] [CrossRef]
- Jabbar, R.I.; Mekhilef, S.; Mubin, M.; Mohammed, K.K. A Modified Perturb and Observe MPPT for a Fast and Accurate Tracking of MPP Under Varying Weather Conditions. IEEE Access 2023, 11, 76166–76176. [Google Scholar] [CrossRef]
- Saxena, V.; Kumar, N.; Singh, B.; Panigrahi, B.K. A Rapid Circle Centre-Line Concept-Based MPPT Algorithm for Solar Photovoltaic Energy Conversion Systems. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 940–949. [Google Scholar] [CrossRef]
- Boztepe, M.; Guinjoan, F.; Velasco-Quesada, G.; Silvestre, S.; Chouder, A.; Karatepe, E. Global MPPT Scheme for Photovoltaic String Inverters Based on Restricted Voltage Window Search Algorithm. IEEE Trans. Ind. Electron. 2014, 61, 3302–3312. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Ruan, X. High-Accuracy and Fast-Speed MPPT Methods for PV String Under Partially Shaded Conditions. IEEE Trans. Ind. Electron. 2016, 63, 235–245. [Google Scholar] [CrossRef]
- Furtado, A.M.S.; Bradaschia, F.; Cavalcanti, M.C.; Limongi, L.R. A Reduced Voltage Range Global Maximum Power Point Tracking Algorithm for Photovoltaic Systems Under Partial Shading Conditions. IEEE Trans. Ind. Electron. 2018, 65, 3252–3262. [Google Scholar] [CrossRef]
- Jately, V.; Bhattacharya, S.; Azzopardi, B.; Montgareuil, A.; Joshi, J.; Arora, S. Voltage and Current Reference Based MPPT Under Rapidly Changing Irradiance and Load Resistance. IEEE Trans. Energy Convers. 2021, 36, 2297–2309. [Google Scholar] [CrossRef]
- Alhusseini, H.; Niroomand, M.; Mirzaeian Dehkordi, B. A Fuzzy-Based Adaptive P&O MPPT Algorithm for PV Systems With Fast Tracking and Low Oscillations Under Rapidly Irradiance Change Conditions. IEEE Access 2024, 12, 84374–84386. [Google Scholar] [CrossRef]
- Jain, S.; Agarwal, V. A New Algorithm for Rapid Tracking of Approximate Maximum Power Point in Photovoltaic Systems. IEEE Trans. Power Electron. Lett. 2004, 2, 16–19. [Google Scholar] [CrossRef]
- Li, X.; Wen, H.; Jiang, L.; Xiao, W.; Du, Y.; Zhao, C. An Improved MPPT Method for PV System With Fast-Converging Speed and Zero Oscillation. IEEE Trans. Ind. Appl. 2016, 52, 5051–5064. [Google Scholar] [CrossRef]
- Sera, D.; Teodorescu, R.; Hantschel, J.; Knoll, M. Optimized Maximum Power Point Tracker for Fast-Changing Environmental Conditions. IEEE Trans. Ind. Electron. 2008, 55, 2629–2637. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, J.; Li, J.; Zhou, L. Application of Gradient Variable Step Size MPPT Algorithm in Photovoltaic System. Proc. CSEE 2014, 34, 3156–3161. [Google Scholar] [CrossRef]
- Wang, W.; Dai, C.; Chen, W.; Guo, A. Research on Improved Variable Step Perturbation Algorithm for Power Prediction in Photovoltaic Mppt. Acta Energiae Solaris Sin. 2022, 43, 217–225. [Google Scholar] [CrossRef]
- Escobar, G.; Pettersson, S.; Ho, C.N.M.; Rico-Camacho, R. Multisampling Maximum Power Point Tracker (MS-MPPT) to Compensate Irradiance and Temperature Changes. IEEE Trans. Sustain. Energy 2017, 8, 1096–1105. [Google Scholar] [CrossRef]
- Abouadane, H.; Fakkar, A.; Sera, D.; Lashab, A.; Spataru, S.; Kerekes, T. Multiple-Power-Sample Based P&O MPPT for Fast-Changing Irradiance Conditions for a Simple Implementation. IEEE J. Photovolt. 2020, 10, 1481–1488. [Google Scholar] [CrossRef]
- Killi, M.; Samanta, S. Modified Perturb and Observe MPPT Algorithm for Drift Avoidance in Photovoltaic Systems. IEEE Trans. Ind. Electron. 2015, 62, 5549–5559. [Google Scholar] [CrossRef]
- Anssari, O.M.H.; Badamchizadeh, M.; Ghaemi, S. Designing of a PSO-Based Adaptive SMC with a Multilevel Inverter for MPPT of PV Systems Under Rapidly Changing Weather Conditions. IEEE Access 2024, 12, 41421–41435. [Google Scholar] [CrossRef]
- Jain, K.; Gupta, M.; Kumar Bohre, A. Implementation and Comparative Analysis of P&O and INC MPPT Method for PV System. In Proceedings of the 2018 8th IEEE India International Conference on Power Electronics (IICPE), Jaipur, India, 13–15 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Shadlu, M.S. A Comparative Study Between Two MPPT Algorithms for Photovoltaic Energy Conversion System Based on Modular Multilevel Converter. In Proceedings of the Electrical Engineering (ICEE), Iranian Conference, Mashhad, Iran, 8–10 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1154–1159. [Google Scholar]
- Sera, D.; Mathe, L.; Kerekes, T.; Spataru, S.V.; Teodorescu, R. On the Perturb-and-Observe and Incremental Conductance MPPT Methods for PV Systems. IEEE J. Photovolt. 2013, 3, 1070–1078. [Google Scholar] [CrossRef]
- Loukriz, A.; Haddadi, M.; Messalti, S. Simulation and Experimental Design of a New Advanced Variable Step Size Incremental Conductance MPPT Algorithm for PV Systems. ISA Trans. 2016, 62, 30–38. [Google Scholar] [CrossRef]
- Wei, D.; Wang, Y.; Chang, Y. A Variable Step-Size Mppt Algorithm Based on Incremental Conductance Method. Acta Energiae Solaris Sin. 2018, 39, 1277–1283. [Google Scholar] [CrossRef]
- Zhang, D. Research on Photovoltaic Maximum Power Point Tracking Strategy Based on Improved Conductance Increment Method. Acta Energiae Solaris Sin. 2022, 43, 82–90. [Google Scholar] [CrossRef]
- Shang, L.; Guo, H.; Zhu, W. An Improved MPPT Control Strategy Based on Incremental Conductance Algorithm. Prot. Control Mod. Power Syst. 2020, 5, 14. [Google Scholar] [CrossRef]
- Kumar, N.; Hussain, I.; Singh, B.; Panigrahi, B.K. Self-Adaptive Incremental Conductance Algorithm for Swift and Ripple-Free Maximum Power Harvesting from PV Array. IEEE Trans. Ind. Inform. 2018, 14, 2031–2041. [Google Scholar] [CrossRef]
- Mishra, J.; Das, S.; Kumar, D.; Pattnaik, M. A Novel Auto-Tuned Adaptive Frequency and Adaptive Step-Size Incremental Conductance MPPT Algorithm for Photovoltaic System. Int. Trans. Electr. Energy Syst. 2021, 31, e12813. [Google Scholar] [CrossRef]
- Cao, F.; Wang, Y. Variable Universe Adaptive Fuzzy-PI Compound Control Applied in Maximum Power Point Tracking for Photovoltaic Energy Generation System. In Advanced Intelligent Computing Theories and Applications; Huang, D.-S., McGinnity, M., Heutte, L., Zhang, X.-P., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 514–519. [Google Scholar]
- Liu, C.-L.; Chen, J.-H.; Liu, Y.-H.; Yang, Z.-Z. An Asymmetrical Fuzzy-Logic-Control-Based MPPT Algorithm for Photovoltaic Systems. Energies 2014, 7, 2177–2193. [Google Scholar] [CrossRef]
- Li, S.; Gao, X. A VWP-Interval Fuzzy Mppt Control Strategy for Pv System. Acta Energiae Solaris Sin. 2016, 37, 1167–1173. [Google Scholar]
- Kim, J.-C.; Huh, J.-H.; Ko, J.-S. Optimization Design and Test Bed of Fuzzy Control Rule Base for PV System MPPT in Micro Grid. Sustainability 2020, 12, 3763. [Google Scholar] [CrossRef]
- Farhat, M.; Barambones, O.; Sbita, L. Efficiency Optimization of a DSP-Based Standalone PV System Using a Stable Single Input Fuzzy Logic Controller. Renew. Sustain. Energy Rev. 2015, 49, 907–920. [Google Scholar] [CrossRef]
- Eltamaly, A.M.; Farh, H.M.H. Dynamic Global Maximum Power Point Tracking of the PV Systems under Variant Partial Shading Using Hybrid GWO-FLC. Sol. Energy 2019, 177, 306–316. [Google Scholar] [CrossRef]
- Nie, X.; Lai, J. A Survey on Tracking and Control Approaches for Global Maximum Power Point of Photovoltaic Arrays in Partially Shaded Environment. Power Syst. Technol. 2014, 38, 3279–3285. [Google Scholar] [CrossRef]
- Buqiong, X.; Yan, L. Study on the Impact of PV Connection to Grid on Power Flow Based on Time Series Output Characteristics. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 8991–8993. [Google Scholar]
- Alpuerto, L.; Balog, R.S. Comparing Connection Topologies of PV Integrated Curved Roof Tile for Improved Performance. In Proceedings of the 2020 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 6–7 February 2020; pp. 1–5. [Google Scholar]
- Lu, Q.; Wei, X.; Zhang, Y.; Deng, H. Research on Output Characteristics of Photovoltaic Arrays with Different Structures Under Partial Shading. Acta Energiae Solaris Sin. 2019, 40, 1003–1010. [Google Scholar] [CrossRef]
- Bingöl, O.; Özkaya, B. Analysis and Comparison of Different PV Array Configurations under Partial Shading Conditions. Sol. Energy 2018, 160, 336–343. [Google Scholar] [CrossRef]
- Chandrakant, C.V.; Mikkili, S. A Typical Review on Static Reconfiguration Strategies in Photovoltaic Array Under Non-Uniform Shading Conditions. CSEE J. Power Energy Syst. 2023, 9, 2018–2039. [Google Scholar] [CrossRef]
- Potnuru, S.R.; Pattabiraman, D.; Ganesan, S.I.; Chilakapati, N. Positioning of PV Panels for Reduction in Line Losses and Mismatch Losses in PV Array. Renew. Energy 2015, 78, 264–275. [Google Scholar] [CrossRef]
- Rani, B.I.; Ilango, G.S.; Nagamani, C. Enhanced Power Generation From PV Array Under Partial Shading Conditions by Shade Dispersion Using Su Do Ku Configuration. IEEE Trans. Sustain. Energy 2013, 4, 594–601. [Google Scholar] [CrossRef]
- Krishna, S.G.; Moger, T. Optimal SuDoKu Reconfiguration Technique for Total-Cross-Tied PV Array to Increase Power Output Under Non-Uniform Irradiance. IEEE Trans. Energy Convers. 2019, 34, 1973–1984. [Google Scholar] [CrossRef]
- Manjunath; Suresh, H.N.; Rajanna, S. Reduction of Mislead Power and Mismatch Power Loss under Partial Shading Conditions Using Novel Square Matrix Shade Dispersion Technique. Sol. Energy 2020, 207, 1364–1383. [Google Scholar] [CrossRef]
- Vijayalekshmy, S.; Bindu, G.R.; Rama Iyer, S. A Novel Zig-Zag Scheme for Power Enhancement of Partially Shaded Solar Arrays. Sol. Energy 2016, 135, 92–102. [Google Scholar] [CrossRef]
- Yadav, A.S.; Mukherjee, V. Line Losses Reduction Techniques in Puzzled PV Array Configuration under Different Shading Conditions. Sol. Energy 2018, 171, 774–783. [Google Scholar] [CrossRef]
- Meerimatha, G.; Rao, B.L. Novel Reconfiguration Approach to Reduce Line Losses of the Photovoltaic Array under Various Shading Conditions. Energy 2020, 196, 117120. [Google Scholar] [CrossRef]
- Li, F.; Meng, S. ICL Static Reconstruction Method of Photovoltaic Array Under Partial Shadow Condition. Electr. Power Autom. Equip. 2021, 41, 82–88. [Google Scholar] [CrossRef]
- Yadav, K.; Kumar, B.; D., S. Mitigation of Mismatch Power Losses of PV Array under Partial Shading Condition Using Novel Odd Even Configuration. Energy Rep. 2020, 6, 427–437. [Google Scholar] [CrossRef]
- Sai Krishna, G.; Moger, T. Reconfiguration Strategies for Reducing Partial Shading Effects in Photovoltaic Arrays: State of the Art. Sol. Energy 2019, 182, 429–452. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Truong, A.V.; Phung, T.A. A Novel Method Based on Adaptive Cuckoo Search for Optimal Network Reconfiguration and Distributed Generation Allocation in Distribution Network. Int. J. Electr. Power Energy Syst. 2016, 78, 801–815. [Google Scholar] [CrossRef]
- Karakose, M.; Baygin, M.; Murat, K.; Baygin, N.; Akin, E. Fuzzy Based Reconfiguration Method Using Intelligent Partial Shadow Detection in PV Arrays*. Int. J. Comput. Intell. Syst. 2016, 9, 202. [Google Scholar] [CrossRef]
- Shao, R.; Yang, B.; Shu, H.; Zeng, K.; Zhang, H.; Chen, Y. Optimal Reconfiguration Method for Photovoltaic Arrays Based on Improved Mayfly Algorithm. Autom. Electr. Power Syst. 2022, 46, 142–150. [Google Scholar]
- Yao, F.; Fu, Y.; Li, Z. Optimal Reconfiguration of Total-Cross-Tied Pv Array Based on Multi-Knapsack Problem. Acta Energiae Solaris Sin. 2021, 42, 200–207. [Google Scholar] [CrossRef]
- Pillai, D.S.; Ram, J.P.; Garcia, J.L.; Kim, Y.-J.; Catalão, J.P.S. Experimental Studies on a New Array Design and Maximum Power Tracking Strategy for Enhanced Performance of Soiled Photovoltaic Systems. IEEE Trans. Power Electron. 2024, 39, 1596–1608. [Google Scholar] [CrossRef]
- Patel, H.; Agarwal, V. Maximum Power Point Tracking Scheme for PV Systems Operating Under Partially Shaded Conditions. IEEE Trans. Ind. Electron. 2008, 55, 1689–1698. [Google Scholar] [CrossRef]
- Kouchaki, A.; Iman-Eini, H.; Asaei, B. A New Maximum Power Point Tracking Strategy for PV Arrays under Uniform and Non-Uniform Insolation Conditions. Sol. Energy 2013, 91, 221–232. [Google Scholar] [CrossRef]
- Xu, S.; Gao, Y.; Zhou, G.; Mao, G. A Global Maximum Power Point Tracking Algorithm for Photovoltaic Systems Under Partially Shaded Conditions Using Modified Maximum Power Trapezium Method. IEEE Trans. Ind. Electron. 2021, 68, 370–380. [Google Scholar] [CrossRef]
- Ghasemi, M.A.; Foroushani, H.M.; Parniani, M. Partial Shading Detection and Smooth Maximum Power Point Tracking of PV Arrays Under PSC. IEEE Trans. Power Electron. 2016, 31, 6281–6292. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Yang, Y.; Zhang, G.; Hu, H. Research on Multi Peak Mppt Algorithm Based on Equal Power Curve Method. Acta Energiae Solaris Sin. 2019, 40, 563–571. [Google Scholar] [CrossRef]
- Mobarak, M.H.; Bauman, J. A Fast Parabolic-Assumption Algorithm for Global MPPT of Photovoltaic Systems Under Partial Shading Conditions. IEEE Trans. Ind. Inform. 2022, 69, 8066–8079. [Google Scholar] [CrossRef]
- Zhang, F.; Gao, C.; Huang, C.; Zheng, W.; Wang, W. Global Maximum Power Point Tracking Method for Photovoltaic System Based on Virtual Impedance Characteristic Disturbance. J. Electr. Eng. 2023, 18, 331–339. [Google Scholar]
- Soon, T.K.; Mekhilef, S. A Fast-Converging MPPT Technique for Photovoltaic System Under Fast-Varying Solar Irradiation and Load Resistance. IEEE Trans. Ind. Inform. 2015, 11, 176–186. [Google Scholar] [CrossRef]
- Barbosa, E.J.; Cavalcanti, M.C.; Azevedo, G.M.S.; Neto, R.C.; Barbosa, E.A.O.; Bradaschia, F. Hybrid GMPPT Technique for Photovoltaic Series Based on Fractional Characteristic Curve. IEEE J. Photovolt. 2024, 14, 170–177. [Google Scholar] [CrossRef]
- Koutroulis, E.; Blaabjerg, F. A New Technique for Tracking the Global Maximum Power Point of PV Arrays Operating Under Partial-Shading Conditions. IEEE J. Photovolt. 2012, 2, 184–190. [Google Scholar] [CrossRef]
- Malathy, S.; Ramaprabha, R. Maximum Power Point Tracking Algorithm of SPVA under Inhomogeneous Irradiation Conditions: A Modified Fibonacci Search Based Approach. In Proceedings of the 2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS), Honolulu, HI, USA, 12–15 December 2017; pp. 487–492. [Google Scholar]
- Gao, F.; Hu, R.; Yin, L.; Cao, H.; Yu, J.; Shuang, F. Quantum Grover Search-Inspired Global Maximum Power Point Tracking for Photovoltaic Systems Under Partial Shading Conditions. IEEE Trans. Sustain. Energy 2024, 15, 1601–1613. [Google Scholar] [CrossRef]
- Gao, F.; Hu, R.; Yin, L.; Cao, H. Locate and shrink method for PV maximum power point tracking in partial shading conditions. Power Syst. Prot. Control 2024, 52, 87–99. [Google Scholar] [CrossRef]
- Yona, A.; Senjyu, T.; Saber, A.Y.; Funabashi, T.; Sekine, H.; Kim, C.-H. Application of Neural Network to 24-Hour-Ahead Generating Power Forecasting for PV System. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–6. [Google Scholar]
- Nkambule, M.S.; Hasan, A.N.; Ali, A.; Hong, J.; Geem, Z.W. Comprehensive Evaluation of Machine Learning MPPT Algorithms for a PV System Under Different Weather Conditions. J. Electr. Eng. Technol. 2021, 16, 411–427. [Google Scholar] [CrossRef]
- Kiran, S.R.; Basha, C.H.H.; Singh, V.P.; Dhanamjayulu, C.; Prusty, B.R.; Khan, B. Reduced Simulative Performance Analysis of Variable Step Size ANN Based MPPT Techniques for Partially Shaded Solar PV Systems. IEEE Access 2022, 10, 48875–48889. [Google Scholar] [CrossRef]
- Phan, B.C.; Lai, Y.-C.; Lin, C.E. A Deep Reinforcement Learning-Based MPPT Control for PV Systems under Partial Shading Condition. Sensors 2020, 20, 3039. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, J.; Xiao, W. Photovoltaic System MPPT Algorithm Based on Adaptive Radial Basis Function Neural Network. J. Hunan Univ. (Nat. Sci.). 2019, 46, 96–100. [Google Scholar] [CrossRef]
- Dounis, A.I.; Kofinas, P.; Papadakis, G.; Alafodimos, C. A Direct Adaptive Neural Control for Maximum Power Point Tracking of Photovoltaic System. Sol. Energy 2015, 115, 145–165. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Zou, Y.; Zhang, C. An Enhanced Photovoltaic MPPT Approach Based on Adaptive Neural Network Control. Acta Energiae Solaris Sin. 2019, 40, 3095–3102. [Google Scholar] [CrossRef]
- Mao, M.; Feng, X.; Chen, S.; Wang, L. A Novel Maximum Power Point Voltage Forecasting Method for Pavement Photovoltaic Array Based on Bayesian Optimization Convolutional Neural Network. Proc. CSEE 2024, 44, 620–631. [Google Scholar] [CrossRef]
- Ishaque, K.; Salam, Z. A Deterministic Particle Swarm Optimization Maximum Power Point Tracker for Photovoltaic System Under Partial Shading Condition. IEEE Trans. Ind. Electron. 2013, 60, 3195–3206. [Google Scholar] [CrossRef]
- Mohammed, K.K.; Mekhilef, S. Improved Snake Optimizer Algorithm-Based GMPPT With a Fast Response to the Load Variations Under Different Weather Conditions for PV Systems. IEEE Trans. Ind. Electron. 2024, 71, 7147–7157. [Google Scholar] [CrossRef]
- Javed, S.; Ishaque, K.; Siddique, S.A.; Salam, Z. A Simple Yet Fully Adaptive PSO Algorithm for Global Peak Tracking of Photovoltaic Array Under Partial Shading Conditions. IEEE Trans. Ind. Electron. 2022, 69, 5922–5930. [Google Scholar] [CrossRef]
- Obukhov, S.; Ibrahim, A.; Zaki Diab, A.A.; Al-Sumaiti, A.S.; Aboelsaud, R. Optimal Performance of Dynamic Particle Swarm Optimization Based Maximum Power Trackers for Stand-Alone PV System Under Partial Shading Conditions. IEEE Access 2020, 8, 20770–20785. [Google Scholar] [CrossRef]
- Sangrody, R.; Taheri, S.; Cretu, A.-M.; Pouresmaeil, E. An Improved PSO-Based MPPT Technique Using Stability and Steady State Analyses Under Partial Shading Conditions. IEEE Trans. Sustain. Energy 2024, 15, 136–145. [Google Scholar] [CrossRef]
- Hadji, S.; Gaubert, J.-P.; Krim, F. Real-Time Genetic Algorithms-Based MPPT: Study and Comparison (Theoretical an Experimental) with Conventional Methods. Energies 2018, 11, 459. [Google Scholar] [CrossRef]
- Tey, K.S.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B.; Oo, A.T.; Stojcevski, A. Improved Differential Evolution-Based MPPT Algorithm Using SEPIC for PV Systems Under Partial Shading Conditions and Load Variation. IEEE Trans. Ind. Inform. 2018, 14, 4322–4333. [Google Scholar] [CrossRef]
- Liu, Y.; Zou, Y.; Zhang, X.; Ren, G.; Yan, F. An Improved Photovoltaic MPPT Algorithm Based on Differential Evolution Algorithm. Acta Energiae Solaris Sin. 2020, 41, 264–271. [Google Scholar] [CrossRef]
- Kumar, N.; Hussain, I.; Singh, B.; Panigrahi, B.K. Rapid MPPT for Uniformly and Partial Shaded PV System by Using JayaDE Algorithm in Highly Fluctuating Atmospheric Conditions. IEEE Trans. Ind. Inform. 2017, 13, 2406–2416. [Google Scholar] [CrossRef]
- Li, X.; Wen, H.; Hu, Y.; Jiang, L. A Novel Beta Parameter Based Fuzzy-Logic Controller for Photovoltaic MPPT Application. Renew. Energy 2019, 130, 416–427. [Google Scholar] [CrossRef]
- Kulaksız, A.A.; Akkaya, R. A Genetic Algorithm Optimized ANN-Based MPPT Algorithm for a Stand-Alone PV System with Induction Motor Drive. Sol. Energy 2012, 86, 2366–2375. [Google Scholar] [CrossRef]
- Sundareswaran, K.; Vignesh Kumar, V.; Palani, S. Application of a Combined Particle Swarm Optimization and Perturb and Observe Method for MPPT in PV Systems under Partial Shading Conditions. Renew. Energy 2015, 75, 308–317. [Google Scholar] [CrossRef]
- Shang, L.; Li, F. PV power point tracking based on adaptive cuckoo search and perturbation observation method. Power Syst. Prot. Control 2022, 8, 99–107. [Google Scholar] [CrossRef]
- Jinpeng, W.; Qinxue, Y.; Bo, Z.; Jeremy-Gillbanks; Xin, Z. Study on MPPT Algorithm Based on an Efficient Hybrid Conjugate Gradient Method in a Photovoltaic System. IEEE Access 2023, 11, 4219–4227. [Google Scholar] [CrossRef]
- Kermadi, M.; Salam, Z.; Ahmed, J.; Berkouk, E.M. An Effective Hybrid Maximum Power Point Tracker of Photovoltaic Arrays for Complex Partial Shading Conditions. IEEE Trans. Ind. Electron. 2019, 66, 6990–7000. [Google Scholar] [CrossRef]
- Mathi, D.K.; Chinthamalla, R. Global Maximum Power Point Tracking Technique Based on Adaptive Salp Swarm Algorithm and P&O Techniques for a PV String under Partially Shaded Conditions. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 46, 7467–7484. [Google Scholar] [CrossRef]
Name of Parameter | Quantitative Value | Name of Parameter | Quantitative Value |
---|---|---|---|
declination angle (°) | 0 | the Earth’s orbital eccentricity correction factor | 1 |
latitude angle (°) | 0 | the solar constant (W/m2) | 1367 |
hour angle (°) | 36 | the atmospheric transmittance coefficient | 0.7 |
solar azimuth angle (°) | 0 | the ocean reflectance | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Pan, B.; Wang, S.; Dong, Y.; Mou, Z. Review on Maximum Power Point Tracking Control Strategy Algorithms for Offshore Floating Photovoltaic Systems. J. Mar. Sci. Eng. 2024, 12, 2121. https://doi.org/10.3390/jmse12122121
Huang L, Pan B, Wang S, Dong Y, Mou Z. Review on Maximum Power Point Tracking Control Strategy Algorithms for Offshore Floating Photovoltaic Systems. Journal of Marine Science and Engineering. 2024; 12(12):2121. https://doi.org/10.3390/jmse12122121
Chicago/Turabian StyleHuang, Lei, Baoyi Pan, Shaoyong Wang, Yingrui Dong, and Zihao Mou. 2024. "Review on Maximum Power Point Tracking Control Strategy Algorithms for Offshore Floating Photovoltaic Systems" Journal of Marine Science and Engineering 12, no. 12: 2121. https://doi.org/10.3390/jmse12122121
APA StyleHuang, L., Pan, B., Wang, S., Dong, Y., & Mou, Z. (2024). Review on Maximum Power Point Tracking Control Strategy Algorithms for Offshore Floating Photovoltaic Systems. Journal of Marine Science and Engineering, 12(12), 2121. https://doi.org/10.3390/jmse12122121