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Abstract: Beamforming technology is very important for passive sonar to detect targets. However,
the performance of a beamformer is seriously degraded in practical applications due to the complex
and changeable underwater environment. In this paper, a null broadening algorithm for passive sonar
based on a weighted similarity vector is proposed for underwater fast-moving strong interference
signals. First, the covariance matrix was reconstructed through the correlation between the steering
vector and the subspace eigenvector, which was used to calculate the similarity vector. Then, the
maximum power in the interference angle sector was used as the virtual interference source power to
broaden the null in the angle sector. Next, the difference between the optimal weight vector and the
similar vector was minimized, the interference-plus-noise power constraints and norm constraints
were added, and the equation was written as a quadratic constrained quadratic programming
(QCQP) problem, which was converted into a convex optimization problem by using the semidefinite
relaxation technique. Finally, the optimal solution was calculated by using eigen decomposition.
The simulation results show that the algorithm can guarantee deep nulling and effectively suppress
sidelobe height under various error conditions, which shows that the proposed algorithm has a good
suppression effect and strong robustness for fast strong interference.

Keywords: passive sonar; null broadening; robust adaptive beamforming; weighted similarity vector;
virtual interference source

1. Introduction

The detection performance of an underwater target is very important for passive
sonar. In the actual underwater weak target detection task, strong interference has a
certain impact on the detection results. Therefore, beamforming technology plays an
important role in this field. Capon beamforming technology is often used in passive
sonar arrays to improve the detection performance of weak target signals and suppress
interference [1]. However, the performance of a Capon beamformer is seriously degraded
in practical applications due to the influence of array element amplitude and phase errors,
array element position floating, and other problems [2]. Aiming at the problems arising
from the above practical application, many robust adaptive beamforming algorithms
have been proposed by scholars, such as loading algorithms [3], weight norm constraint
algorithms [4], covariance matrix reconstruction algorithms [5–7], etc. However, the nulling
formed by the above method in the interference direction is very narrow. When the
interference target moves rapidly or the array platform moves rapidly, the weight vector of
the beamformer cannot be updated in real time, which causes the target to move out of the
narrow nulling area, after which the suppression of strong interference by the beamformer
is seriously reduced.

In order to overcome the above problems, many scholars began to study the method
of null broadening. References [8,9] belong to covariance matrix tapers (CMTs) in essence.
Although they can effectively broaden the nulling, the virtual interference source disperses
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the interference power, resulting in a shallower depth of nulling and a lower gain for the
array. Reference [10] added similarity constraints on the basis of interference-plus-noise
covariance matrix reconstruction, which can effectively broaden the null and ensure the
width of main lobe and the height of sidelobe of the beamformer. Reference [11] applies
a CMT method to broadband beamforming, which can well suppress fast interference in
broadband beamforming. Reference [12] obtained the adaptive diagonal loading factor by
estimating the signal-to-noise ratio in the covariance matrix of the tapered sample and com-
bined it with the CMT method. This algorithm has good robustness and null broadening
effect when there are errors in array calibration. In reference [13], an SVR-CMT algorithm
was proposed that uses the CMT method to expand the null and control the sidelobe using
inequality constraints and changes the optimization problem to a standard SVR problem.
Reference [14] derived a new method for the reconstruction of the interference-plus-noise
covariance matrix from the simplified power spectral density function. This method en-
sures effectiveness and has less computational complexity. Reference [15] combines CMT
with a sidelobe canceller, which is more suitable for the technology in practical application,
and this method also has a lower calculation cost. In reference [16], in order to reduce
the computational complexity, a set of linear constraints is used to replace the quadratic
constraints of the original problem. This method broadens the null and improves the
array gain at the same time. The algorithm proposed in reference [17] can widen different
zeros according to prior knowledge, which can save more scene degrees of freedom. In
reference [18], during the reconstruction of the interference plus noise covariance matrix,
the power parameter is adjusted to control the depth of the null. In addition, the signal-
plus-noise covariance matrix is also reconstructed, and a new convex optimization problem
is solved to obtain the desired signal guidance vector. This algorithm has certain robustness
while eliminating the interference of fast motion. Reference [19] estimated the power
of the interference signal through eigen subspace theory and set the virtual interference
source to expand the null. This algorithm has a deeper null, lower sidelobes, and better
robustness. Reference [20] combines an optimization algorithm with a general regression
neural network and establishes a null model based on the data. The experiments show that
this algorithm has higher operation efficiency. Reference [21] uses a numerical method to
calculate the number of virtual interference sources and the reference frequency of the cone
matrix, then uses the cone matrix to reconstruct the covariance matrix and finally imposes a
constant beam width constraint. The method of adding virtual interference sources in this
method is more complex. Reference [22] used an uncertainty set and projection technology
to correct the signal steering vector and broadened null, respectively, and added diagonal
loading technology to improve the robustness of the algorithm. Nevertheless, some of
the above methods increase the sidelobe and main lobe width while broadening the null,
which leads to a decrease in array gain.

Aiming at the above problems caused by null broadening, this paper proposes a
null broadening beamforming method based on a weighted similarity vector (WSV). We
attempted to use the virtual interference source to broaden the null and used the recon-
structed interference-plus-noise covariance matrix to calculate the similarity vector. We
constructed a weighted similar objective function, added interference-plus-noise power
constraints and norm constraints to obtain low sidelobe and narrow main lobe width,
and wrote the problem as a QCQP problem. Then, the semidefinite relaxation method
and eigen decomposition were used to calculate the optimal solution. The simulation
results show that this algorithm can maintain great gain under various error conditions and
effectively suppress the sidelobe height and main lobe width. The above results show that
the proposed algorithm has greater effectiveness and robustness on fast strong interference
suppression.

The rest of this paper is structured as follows: Section 2 introduces the basic model
of array signals and the basic theory of the Capon beamforming algorithm. Section 3
introduces the specific steps of the algorithm proposed in this paper. Section 4 shows the
simulation results and analysis in various cases. Section 5 summarizes this paper.
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2. Signal Model

Consider a uniform linear array (ULA) with M elements. The array element is isotropic,
and the received signal is a narrowband far-field signal. Assuming that there are L incident
signals, the desired signal is incident in direction θ0, while the remaining L− 1 interference
signals are incident in direction θi(i = 1, 2, . . . , L− 1), respectively. The complex vector
observed by the array at time t is expressed as

x(t) = ∑L−1
i=0 aisi(t) + n(t) (1)

where ai =
[
1, e−j 2πd

λ sinθi , . . . , e−j 2πd
λ (M−1)sinθi

]
represents the steering vector of the ith

signal source; si(t) represents the waveform of the ith signal source; and n(t) represents
additive white Gaussian noise. It is assumed that the desired signal, interference, and noise
are statistically independent. The covariance matrix of the array can be expressed as

Rx = E
[
x(t)xH(t)

]
= Rs + Ri+n (2)

where E[·] represents the statistical expected value;(·)H indicates conjugate transposi-
tion. Rs = σ2

0 a0aH
0 is the covariance matrix of the desired signal; σ2

0 is the signal power;

Ri+n =
L−1
∑

i=1
σ2

i aiaH
i + σ2

nI is the interference-plus-noise covariance matrix; σ2
i is the interfer-

ence signal power; σ2
n is the noise power; I is the identity matrix.

The array output signal can be expressed as y(t) = wHx(t), where w is the complex
weight vector of the beamformer. Therefore, the array output SINR is defined as

SINR =
wHRsw

wHRi+nw
=

σ2
0

∣∣wHa0
∣∣2

wHRi+nw
(3)

The Capon beamformer is realized by maximizing array output SINR:
min
w

wHRi+nw

s.t. wHa0 = 1
(4)

The solution of Formula (4) is

wopt =
R−1

i+na0

aH
0 R−1

i+na0
(5)

Substitute Formula (5) into Formula (3) to obtain the optimal output SINR expression

SINRopt = σ2
0 aH

0 R−1
i+na0 (6)

In practical applications, the true value of the steering vector of the desired signal may
have deviation, and the theoretical covariance matrices Ri+n and Rx cannot be obtained.
Therefore, we usually use the sample covariance matrix R̂x instead of Rx

R̂x =
1
K ∑K

t=1 x(t)xH(t) (7)

where K is the number of snapshots. Thus, the weight of the sample matrix inversion (SMI)
algorithm is

wopt =
R̂−1

x a0

aH
0 R̂xa0

(8)
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3. Proposed Algorithm

In this section, a null broadening algorithm is proposed that uses the correlation
between eigenvectors and steering vectors to reconstruct the interference-plus-noise covari-
ance matrix and incorporates weighted similarity vectors. The algorithm mainly uses the
virtual interference source to broaden the null and construct a similarity vector using the
reconstructed interference-plus-noise covariance matrix to constrain the main lobe width
and sidelobe height of the beampattern.

3.1. Similar Vector Estimation

In order to reduce the adverse effects of widening the main lobe and increasing the
sidelobe caused by broadening the null, a similar vector wS is introduced. This paper
uses the reconstructed interference-plus-noise covariance matrix R̂i+n and Formula (5) to
calculate wS. In order to filter the expected signal component in the signal covariance
matrix, the received signal covariance matrix Rx is eigendecomposed in this paper

Rx = UΓUH=
L−1

∑
i=0

γiuiuH
i +

M−1

∑
j=L

γiujuH
j (9)

where γ is the eigenvalues in descending order, u is the eigenvector corresponding to γ.
The first L large eigenvalues are related to the received signal, and the last M− L small
eigenvalues are related to noise.

According to the properties of characteristic subspace

span{a0, a1, . . . , aL−1} = span{u0, u1, . . . , uL−1} (10)

where span{a0, a1, . . . , aL−1} is the subspace spanned by the incident signal steering vector,
span{u0, u1, . . . , uL−1} is the signal subspace spanned by the eigenvector corresponding to
the incident signal. Because of the linear independence between ui(i = 0, 1, . . . , L− 1), the
signal steering vector can be expressed linearly with ui

ai = k0iu0 + k1iu1 + · · ·+ k(L−1)iuL−1 (11)

According to Formula (11), there is a certain linear relationship between ai and ui;
we can find the feature vector corresponding to the expected signal by calculating the
correlation between the steering vector of expected signal and the feature vector

cor(a0, ui) =

∣∣a0
Hui
∣∣

‖a0‖‖ui‖
(i = 0, 1, . . . , L− 1) (12)

According to the maximum correlation coefficient obtained by calculating Equation
(12), the corresponding eigenvector ue and the corresponding eigenvalue γe of the desired
signal can be obtained. Remove ue and γe in Formula (9) to obtain the reconstructed
interference-plus-noise covariance matrix

R̂i+n = UM×(M−1)ΓM−1UH
M×(M−1) (13)

Then, Formula (13) is substituted into Formula (5) to obtain the similarity vector wS

ws =
R̂−1

i+na0

aH
0 R̂−1

i+na0

(14)

3.2. Null Broadening

Since the incident angle θi(i = 1, 2, . . . , L− 1) of the interference source is known, it is
only necessary to set up multiple virtual interference sources in the corner sector around θi
to broaden the zero trap and achieve interference suppression within a certain range. In this
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paper, the virtual interference interval is set as ∆θ, and the number of virtual interference
sources around each interference source is N, so the widening range of each interference
null is N·∆θ. The range of the ith corner sector is expressed as

θ̂i =

[
θi −

N·∆θ

2
, θi +

N·∆θ

2

]
(15)

Next, it is necessary to determine the appropriate virtual interference source power.
The Capon power spectrum expression is as follows

P(θ) =
1

aH(θ)R̂−1
x a(θ)

(16)

In order to ensure a better performance of interference suppression of beamformers,
this paper estimates the power spectrum in the interference angle sector, finds the maximum
power in the region as the power of all virtual interference sources, which can ensure
the depth of the nulling while broadening the nulling. The power expression of the ith
interference angle sector is

σ̂2
i = max{ 1

aH(θ)R̂−1
x a(θ)

|θ ∈ θ̂i} (17)

In order to estimate the noise power more accurately, this paper uses the average of
the small eigenvalues of the received signal covariance matrix as the noise power

σ̂2
n =

1
M− L∑M−1

j=L γj (18)

Then the interference-plus-noise covariance matrix can be reconstructed

∼
Ri+n = ∑L−1

i=1 σ̂2
i a(θ)aH(θ) + σ̂2

nI, θ ∈ θ̂i (19)

3.3. Establishment and Solution of Objective Function

Based on the above two sections, the objective function can be established by using the
obtained similarity vector and the reconstructed interference-plus-noise covariance matrix.
It can be seen from the above that the calculated main lobe width and sidelobe height of
the beampattern formed by similar vectors have good performance. In order to control the
beampattern performance after null broadening, we use the similarity vector to construct
the objective function

min
w
‖λ(w−ws)‖2 (20)

where λ = [λ1, λ2, . . . , λM] represents the similar weighting value, which is set by the user
according to the actual performance error of each array element. The purpose is to maintain
greater similarity between elements with better performance and values in similar vectors
and let elements with poor performance and more errors attempt more transformations.
According to Formula (3), the smaller the denominator is, the larger the SINR will be when
the expected signal is undistorted. Therefore, we constrain wHRi+nw to a small range to
control the SINR lower limit of the beamformer. In order to increase the robustness of
beamformer, we add norm constraints. The resulting optimization problems are as follows

min
w
‖λ(w−ws)‖2s.t. wH∼Ri+nw ≤ ε2‖w‖2 ≤ δ2 (21)

It is easy to see that problem (21) is a nonconvex quadratic constrained quadratic
programming (QCQP) problem, which is usually NP-hard. Next, we mainly study how to
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transform it into a convex problem and solve it. By introducing a new variable t and t2 = 1,
we can transform problem (21) into the following form

min
g

tr
(

R0ggH
)

s.t. tr
(

R1ggH
)
≤ ε2tr

(
R2ggH

)
≤ δ2tr

(
R3ggH

)
= 1 (22)

where g =

w

t

, R0 =

 λHλ −λHλws

−wH
s λHλ wH

s λHλws

, R1 =

 ∼Ri+n 0M×1

01×M 0

, R2 =

IM×M 0M×1

01×M 0

, R3 =

0M×M 0M×1

01×M 1

.

It can be seen that problems (21) and (22) have the same optimal value; the difference
between the two values is only t. Then we define a semidefinite matrix G = ggH ,G < 0.
After the relaxation of constraint rank(G) = 1 by the semidefinite relaxation method, then
the following question forms are obtained

min
G

tr(R0G)s.t. tr(R1G) ≤ ε2tr(R2G) ≤ δ2tr(R3G) = 1G < 0 (23)

Problem (23) is a convex semidefinite programming (SDP) problem, which can be
easily solved by using the CVX toolbox in Matlab (version: 9.4.0.813654 (R2018a)). However,
the optimal solution of problem (23) is not necessarily the optimal solution of problem (22).
Generally, the rank of the result obtained by problem (23) is not 1. Therefore, the first thing
we should do is to judge the rank of G. If rank(G) = 1, the optimal solution of the original
problem can be easily recovered. If rank(G) > 1, it is necessary to obtain a suboptimal
solution by solving the following problems

min
g

∥∥∥G− ggH
∥∥∥2

F
(24)

It is not difficult to find that the optimal solution of problem (24) is the multiplication of
the maximum eigenvector of G and the square root of the maximum eigenvalue. Therefore,
we perform EVD decomposition of G to obtain its maximum eigenvector g0 and maximum
eigenvalue µ. Then the solution of problem (22) is

g∗ =
√

µg0 (25)

Finally, the solution of problem (21) is obtained. Algorithm 1 summarizes the flow of
the whole algorithm.

Algorithm 1: Proposed Algorithm Steps

step1: Calculate the similarity vector using Formulas (12) and (14);

step2:
Reconstruction of interference-plus-noise covariance matrix according to Formulas (17)
and (19);

step3: Introduce a new variable t to transform problem (21) into problem (22);

step4:
Construct semidefinite matrix G = ggH to transform problem (22) into standard SDP
problem;

step5: Judge the rank of G, If rank(G) = 1, calculate g∗ according to G = g∗g∗H ; Otherwise,
skip to step 6;

step6: Calculate g∗ using Formula (25);
step7: Calculate w∗.

4. Simulation Analysis

The simulation in this paper is based on a linear sonar array with 32 elements and
half wavelength element spacing. The desired signal incidence direction is set as 0◦, the
two interference signal incidence directions are set as −20◦ and 40◦, and the interference-
to-noise ratios (INRs) are set as 15 dB and 20 dB, respectively. The sound speed is set to
c = 1500 m/s. The noise is set to obey the Gaussian distribution of N(0, 1). All experimental
results are the results of 100 Monte Carlo tests.
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4.1. Performance Comparison between the Proposed Algorithm and Other Algorithms

In this section, the proposed algorithm (WSV) is compared with the sample matrix
inversion (SMI) algorithm, the covariance matrix tapers (CMT) algorithm, the linear con-
straint sector suppressed (LCSS) algorithm, Yu’s beamformer [19], and the theoretical
optimal value algorithm. The broadening ranges of zero depression are both [−23◦,−17◦]
and [37◦,43◦]. The virtual interference interval is 0.1◦. The noise figure of the algorithm in
reference [19] is set to 0.1. The parameters of the algorithm proposed in this paper are as
follows: ε = 0.01, δ = 1/M, λ = [diag(0.5·I M

2 ×
M
2
), diag(0.8 · I M

2 ×
M
2
)].

4.1.1. Beampattern Effect in Ideal State

The simulation parameters were set as follows: the number of snapshots is 600,
and the desired signal-to-noise ratio (SNR) is 0 dB. It can be seen from Figure 1 that the
main lobe directions of the five algorithms are aligned to 0◦, and null is formed in the
directions of −20◦ and 40◦. However, SMI, CMT, and LCSS have high sidelobes and
poor noise suppression, and the nulling depth is relatively shallow. Both the algorithm
proposed in reference [19] and WSV have low sidelobes and deep null, indicating that the
two algorithms have a good interference suppression effect and can effectively suppress
interference within the range.
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Figure 1. Beampatterns of different algorithms in ideal state [19].

4.1.2. Output SINR Performance in Ideal State

The simulation parameters in Figure 2 are set as follows: the number of snapshots is
600 and the input SNR range is [−20,30] dB. It can be seen from Figure 2 that the output
SINR of SMI and LCSS algorithms increases with the increase in input SNR at a low signal-
to-noise ratio, and the increase tends to be gradual after SNR = 0. The SINR of CMT also
shows an upward trend in general and a downward trend in the end. This is because the
above three algorithms do not remove the desired signal component in the received signal
when calculating the weight vector, resulting in the signal component being suppressed
as interference under the condition of a large signal-to-noise ratio. Compared with the
algorithm in reference [19], WSV has a better effect in each SNR case, a stable growth
trend, and always approximates the theoretical optimal value. The simulation parameters
in Figure 3 are set as follows: the input SNR is 0 dB and the snapshot number range is
[40,400]. It is easy to see that the output SINR of SMI, CMT and LCSS are low under the
condition of low snapshot number. With the increase in snapshot number, the output
SINR gradually increases and tends to be flat. The algorithm in reference [19] and WSV
show a horizontal trend as a whole, which can still maintain good performance under low
snapshot conditions, and the WSV is slightly better than that in reference [19], which is
closer to the theoretical optimal value.
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Figure 3. Output SINR under different snapshot numbers in ideal state [19].

4.1.3. Output SINR Performance under Amplitude and Phase Disturbance Errors

The parameters set in Sections 4.1.2 and 4.1.3 are basically the same. On this basis, we
add amplitude and phase disturbance errors. It is assumed that the amplitude error of each
sensor follows N

(
1, 0.12) and the phase error follows N

(
0, 20◦2

)
. The m-th element of the

steering vector after adding amplitude and phase errors is expressed as

a(θ)m = (1 + Am)e−j( 2πmd
λ sinθ+εm) (26)

where Am represents amplitude error and εm represents phase error.
Figure 4 shows that the performances of SMI, CMT, and LCSS drop sharply due to the

addition of amplitude and phase errors, which shows that their robustness is poor. The
upward trend of the algorithm in reference [19] is stable. Compared with the algorithm in
reference [19], WSV has better performance and is closer to the theoretical optimal value
while ensuring the growth trend. It can be seen that the algorithm proposed in reference [19]
and this paper have good robustness. The results shown in Figure 5 are almost identical to
those in Figure 3. The difference is that SMI, CMT, and LCSS only show a small increase
trend before the number of snapshots is 100, and then they keep floating up and down and
are affected by amplitude and phase errors. All values are low and the performance is poor.
Reference [19] and WSV have strong robustness, and the performance is almost unaffected
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by the number of snapshots. Although the addition of amplitude and phase errors can
affect the steering vector a, according to Equation (8), it can be seen that the final impact of
this error is still the weighted vector w. Meanwhile, the algorithm proposed in this article
directly optimizes w, thus effectively reducing the impact of this error.
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Figure 4. Output SINR under different input SNRs with amplitude and phase perturbation errors [19].
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Figure 5. Output SINR under different snapshot numbers with amplitude and phase perturbation
errors [19].

4.1.4. Output SINR Performance with Array Element Position Error

The parameters of Section 4.1.4 are the same as those of Section 4.1.2. Considering
the disturbance of waves in the underwater environment, we add the position error of
the array element in this simulation to test the robustness of the beamformer. Assuming
that the position error ∆di(i = 1, 2, . . . , M) of each array element is uniformly distributed
between [−0.1λ,0.1λ], the actual signal steering vector becomes

a(θ) = ψa(θ)= diag(e−j 2π∆d1
λ sinθ , e−j 2π∆d2

λ sinθ , . . . , e−j 2π∆dM
λ sinθ) (27)

The results in Figure 6 show that the performance of SMI, CMT, and LCSS are seriously
degraded, and the SINR are almost unchanged after slowly rising under low signal-to-noise
ratio conditions. The robustness of WSV is consistent with that in reference [19], but the
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output SINR is about 4 dB higher than the algorithm in reference [19] under various signal-
to-noise ratio conditions. Figure 7 still shows the superior robustness of the algorithm
in the reference [19] and WSV, and the good performance not affected by the number of
snapshots in the environment where the array element position produces errors.
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Figure 6. Output SINR under different input SNRs with array element position error [19].
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4.2. Effect of Different Parameters on the Performance of the Proposed Algorithm

In this section, we focus on the performance of the proposed algorithm under different
parameter conditions. The following simulation parameters are set as SNR = 0 dB, the
number of snapshots is 600, and other parameters are consistent with Section 4.1.

4.2.1. Effect of Parameter ε on Beamformer Performance

Section 4.2.1 studies the performance differences of a beamformer under different ε
conditions, in which the null width is 6◦. It can be clearly seen from Figure 8 that with
the decrease in ε, the null of the beamformer gradually becomes deeper, and the ability
to suppress interference becomes stronger. This is because the reduction in ε restricts the
interference-plus-noise power to a smaller range. The closer ε is to 0, the better interference
will be suppressed. Figure 9 shows that the smaller the value of ε, the larger the output
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SINR under the same SNR. This is because the denominator of the SINR expression is
constrained to a smaller range, so the output SINR is larger.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 11 of 14 
 

 

 
Figure 7. Output SINR under different snapshot numbers with array element position error [19]. 

4.2. Effect of Different Parameters on the Performance of the Proposed Algorithm 
In this section, we focus on the performance of the proposed algorithm under 

different parameter conditions. The following simulation parameters are set as SNR = 0 
dB, the number of snapshots is 600, and other parameters are consistent with Section 4.1. 

4.2.1. Effect of Parameter 𝜀 on Beamformer Performance 
Section 4.2.1 studies the performance differences of a beamformer under different 𝜀 

conditions, in which the null width is 6°. It can be clearly seen from Figure 8 that with the 
decrease in 𝜀, the null of the beamformer gradually becomes deeper, and the ability to 
suppress interference becomes stronger. This is because the reduction in 𝜀 restricts the 
interference-plus-noise power to a smaller range. The closer 𝜀  is to 0, the better 
interference will be suppressed. Figure 9 shows that the smaller the value of 𝜀, the larger 
the output SINR under the same SNR. This is because the denominator of the SINR 
expression is constrained to a smaller range, so the output SINR is larger. 

 
Figure 8. Beampattern under different 𝜀 conditions. 

50 100 150 200 250 300 350 400
Number of Snapshots

-30

-25

-20

-15

-10

-5

0

5

10

15

20

SMI
Optimal
CMT
LCSS
Proposed
Yu(2022)

Am
pl

itu
de

 (d
B)

Figure 8. Beampattern under different ε conditions.
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Figure 9. Output SINR under different ε conditions.

4.2.2. Effect of Nulling Width on Beamformer Performance

Section 4.2.2 sets ε to 0.01 and studies the performance of beamformer under different
null width. It can be seen from Figure 10 that with the increase in the null width, the null
depth does not decrease significantly. This is because the power of the virtual interference
source used in this paper is the maximum power in the broadened area, so the interference
power will not decrease with the change in the null width. It can be seen from Figure 11
that the change in the null width has little effect on the output SINR. When the null width
is 4◦ and 16◦, the output SINR only has a 1 dB difference. The simulation shows that the
performance of the proposed algorithm is not sensitive to the change in the null width
and has an obvious effect on suppressing the strong interference of fast movement, with
strong robustness.
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5. Conclusions

In this paper, a new null broadening Capon beamformer is proposed to effectively
suppress the influence of strong interference caused by rapid underwater movement. The
algorithm uses the covariance matrix after removing the desired signal components to
calculate the similarity vector. Then the null trap is broadened by setting virtual interference
sources around the interference. Next, the difference between the weight vector to be
calculated and the similar vector is minimized, and interference and noise power constraints
are added. Finally, we use the semidefinite relaxation technique and eigen decomposition
to calculate the optimal solution. The simulation results show that the algorithm can
effectively suppress the sidelobe height while ensuring the deep null, and the null depth
will not become shallow with the increase in the null width. Application in different scenes
reflects the effectiveness and robustness of the beamformer.
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