Binocular-Vision-Based Obstacle Avoidance Design and Experiments Verification for Underwater Quadrocopter Vehicle
<p>The mechanical structure of the underwater quadrocopter vehicle.</p> "> Figure 2
<p>Hardware diagram.</p> "> Figure 3
<p>Dynamic model of the UQV.</p> "> Figure 4
<p>Rotational model in the body coordinate system.</p> "> Figure 5
<p>Underwater binocular-vision-based obstacle positioning.</p> "> Figure 6
<p>Camera imaging model.</p> "> Figure 7
<p>Camera calibration images.</p> "> Figure 8
<p>Calibration modeling results.</p> "> Figure 9
<p>Imaging pixels of target point between two cameras.</p> "> Figure 10
<p>Block stereo-matching algorithm.</p> "> Figure 11
<p>Obstacle depth computing model.</p> "> Figure 12
<p>Obstacle -avoidance-based path planning framework.</p> "> Figure 13
<p>Obstacle avoidance path-planning framework.</p> "> Figure 14
<p>Actual and ideal path.</p> "> Figure 15
<p>Projected paths in the <math display="inline"><semantics> <mrow> <mi>X</mi> <mo>−</mo> <mi>a</mi> <mi>x</mi> <mi>i</mi> <mi>s</mi> </mrow> </semantics></math>, the <math display="inline"><semantics> <mrow> <mi>Y</mi> <mo>−</mo> <mi>a</mi> <mi>x</mi> <mi>i</mi> <mi>s</mi> </mrow> </semantics></math> and the <math display="inline"><semantics> <mrow> <mi>Z</mi> <mo>−</mo> <mi>a</mi> <mi>x</mi> <mi>i</mi> <mi>s</mi> </mrow> </semantics></math>, respectively.</p> "> Figure 15 Cont.
<p>Projected paths in the <math display="inline"><semantics> <mrow> <mi>X</mi> <mo>−</mo> <mi>a</mi> <mi>x</mi> <mi>i</mi> <mi>s</mi> </mrow> </semantics></math>, the <math display="inline"><semantics> <mrow> <mi>Y</mi> <mo>−</mo> <mi>a</mi> <mi>x</mi> <mi>i</mi> <mi>s</mi> </mrow> </semantics></math> and the <math display="inline"><semantics> <mrow> <mi>Z</mi> <mo>−</mo> <mi>a</mi> <mi>x</mi> <mi>i</mi> <mi>s</mi> </mrow> </semantics></math>, respectively.</p> "> Figure 16
<p>The photograph of the UQV.</p> "> Figure 17
<p>Web page control interfaces.</p> "> Figure 18
<p>Obstacle-free trajectory.</p> "> Figure 19
<p>X-axis and Y-axis curves of the obstacle-free trajectory.</p> "> Figure 20
<p>Experimental environment.</p> "> Figure 21
<p>The distribution of three spherical obstacles.</p> "> Figure 22
<p>Underwater obstacle image processing results.</p> "> Figure 23
<p>Key steps of obstacle avoidance trajectory.</p> ">
Abstract
:1. Introduction
- (1)
- A novel binocular-vision-based obstacle ranging and recognition method for underwater applications is proposed in this paper, and the radii of spherical obstacles and the distance between them are calculated and applied to design the obstacle avoidance trajectory.
- (2)
- Different from existing methods, this paper not only considers an obstacle-avoidance-based path planning algorithm, but also studies an underwater obstacle recognition and processing method simultaneously.
- (3)
- This paper proposes a new type of underwater vehicle named the underwater quadrocopter vehicle, and its theoretical kinematic and dynamic model is investigated to verify full degree of freedom of movement and obstacle avoidance ability.
2. The Underwater Quadrocopter Vehicle Model
2.1. Translational Motion
2.2. Rotational Motion
3. Binocular-Vision-Based Underwater Obstacle Positioning
3.1. Step 1: Binocular Camera Calibration
3.2. Step 2: Underwater Binocular Matching
3.3. Step 3: Obstacle Depth Computing
4. Obstacle-Avoidance-Based Continuous Path Design
5. Model Verification and Experimental Results
5.1. Motion Model Simulation
5.2. Hardware Implementation for Uqv
5.3. Obstacle-Free Trajectory
5.4. Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Xiao, Y.; Li, T. A Survey of Autonomous Underwater Vehicle Formation: Performance, Formation Control, and Communication Capability. IEEE Commun. Surv. Tutorials 2021, 23, 815–841. [Google Scholar] [CrossRef]
- Cheng, M.; Guan, Q.; Ji, F.; Cheng, J.; Chen, Y. Dynamic Detection Based Trajectory Planning for Autonomous Underwater Vehicle to Collect Data From Underwater Sensors. IEEE Internet Things J. 2022, 9, 13168–13178. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, M.; Zheng, Y.R. Task Assignment and Path Planning for Multiple Autonomous Underwater Vehicles Using 3D Dubins Curves. Sensors 2017, 17, 1607. [Google Scholar] [CrossRef]
- Wen, J.; Yang, J.; Wang, T. Path Planning for Autonomous Underwater Vehicles Under the Influence of Ocean Currents Based on a Fusion Heuristic Algorithm. IEEE Trans. Veh. Technol. 2021, 70, 8529–8544. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Guo, Y.; Wu, Y.; Wu, G.; Xu, J.; Chen, Y. The design of control system based on autonomous underwater helicopter. In Proceedings of the OCEANS 2018 MTS/IEEE Conference, Charleston, SC, USA, 22–25 October 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Chen, C.; Huang, C.; Dai, X.; Huang, H.; Chen, Y. Motion and control simulation of a dished autonomous underwater helicopter. In Proceedings of the OCEANS 2017, Anchorage, AK, USA, 22–25 October 2017; pp. 1–6. [Google Scholar]
- Kohl, M.; Moe, S.; Kelasidi, E.; Pettersen, K.Y.; Gravdahl, J.T. Set-based path following and obstacle avoidance for underwater snake robots. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, Macao, 5–8 December 2017; pp. 1206–1213. [Google Scholar] [CrossRef]
- Zhong, Y.; Chen, Y.; Wang, C.; Wang, Q.; Yang, J. Research on Target Tracking for Robotic Fish Based on Low-cost Scarce Sensing Information Fusion. IEEE Robot. Autom. Lett. 2022, 7, 6044–6051. [Google Scholar] [CrossRef]
- Wang, C.; Lu, J.; Ding, X.; Jiang, C.; Yang, J.; Shen, J. Design, Modeling, Control, and Experiments for a Fish-Robot-Based IoT Platform to Enable Smart Ocean. IEEE Internet Things J. 2021, 8, 9317–9329. [Google Scholar] [CrossRef]
- Antonelli, G.; Chiaverini, S.; Finotello, R.; Schiavon, R. Real-time path planning and obstacle avoidance for RAIS: An autonomous underwater vehicle. IEEE J. Ocean. Eng. 2001, 26, 216–227. [Google Scholar] [CrossRef]
- Fanelli, F.; Fenucci, D.; Marlow, R.; Pebody, M.; Phillips, A.B. Development of a Multi-Platform Obstacle Avoidance System for Autonomous Underwater Vehicles. In Proceedings of the 2020 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV), St. Johns, NL, Canada, 30 September–2 October 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Petillot, Y.; Ruiz, I.T.; Lane, D.M. Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking sonar. IEEE J. Ocean. Eng. 2001, 26, 240–251. [Google Scholar] [CrossRef]
- Braginsky, B.; Guterman, H. Obstacle Avoidance Approaches for Autonomous Underwater Vehicle: Simulation and Experimental Results. IEEE J. Ocean. Eng. 2016, 41, 882–892. [Google Scholar] [CrossRef]
- Belcher, E.O.; Fox, W.L.; Hanot, W.H. Dual-frequency acoustic camera: A candidate for an obstacle avoidance, gap-filler, and identification sensor for untethered underwater vehicles. In Proceedings of the OCEANS’02 MTS/IEEE, Biloxi, MI, USA, 29–31 October 2002. [Google Scholar]
- Lin, H.Y.; Peng, X.Z. Autonomous Quadrotor Navigation with Vision Based Obstacle Avoidance and Path Planning. IEEE Access 2021, 9, 102450–102459. [Google Scholar] [CrossRef]
- Barrett, D.; Vandor, I.; Kohler, E. Applying Structured Light Laser Imaging to Underwater Obstacle Avoidance and Navigation. In Proceedings of the OCEANS 2018 MTS/IEEE, Charleston, SC, USA, 22–25 October; 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Leonardi, M.; Stahl, A.; Gazzea, M.; Ludvigsen, M.; Rist-Christensen, I.; Nornes, S.M. Vision based obstacle avoidance and motion tracking for autonomous behaviors in underwater vehicles. In Proceedings of the OCEANS, Aberdeen, UK, 19–22 June 2017; pp. 1–10. [Google Scholar] [CrossRef]
- Drews, P.; Hernández, E.; Elfes, A.; Nascimento, E.R.; Campos, M. Real-time monocular obstacle avoidance using Underwater Dark Channel Prior. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 4672–4677. [Google Scholar] [CrossRef]
- Evans, J.; Redmond, P.; Plakas, C.; Hamilton, K.; Lane, D. Autonomous docking for intervention-auvs using sonar and video-based real-time 3d pose estimation. In Proceedings of the OCEANS 2003, San Diego, CA, USA, 22–26 September 2003; Volume 4, pp. 2201–2210. [Google Scholar]
- Xue, K.; Liu, J.; Xiao, N.; Ji, X.; Qian, H.A. A Bio-inspired Simultaneous Surface and Underwater Risk Assessment Method Based on Stereo Vision for USVs in Nearshore Clean Waters. IEEE Robot. Autom. Lett. 2022. [Google Scholar] [CrossRef]
- Han, G.; Wang, H.; Li, S.; Jiang, J.; Zhang, W. Probabilistic Neighborhood Location-Point Covering Set-Based Data Collection Algorithm With Obstacle Avoidance for Three-Dimensional Underwater Acoustic Sensor Networks. IEEE Access 2017, 5, 24785–24796. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, W.; Song, A.; Zhu, X.; Zhu, D. Trajectory Tracking and Obstacle Avoidance Control of Unmanned Underwater Vehicles Based on MPC. In Proceedings of the 2018 IEEE 8th International Conference on Underwater System Technology: Theory and Applications (USYS), Wuhan, China, 1–3 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Chu, Z.; Zhu, D. Obstacle Avoidance Trajectory Planning and Trajectory Tracking Control for Autonomous Underwater Vehicles. In Proceedings of the 2018 13th World Congress on Intelligent Control and Automation (WCICA), Changsha, China, 4–8 July 2018; pp. 450–454. [Google Scholar] [CrossRef]
- Cai, W.; Wu, Y.; Zhang, M. Three-Dimensional Obstacle Avoidance for Autonomous Underwater Robot. IEEE Sens. Lett. 2020, 4, 7004004. [Google Scholar] [CrossRef]
- Cai, W.; Xie, Q.; Zhang, M.; Lv, S.; Yang, J. Stream-Function Based 3D Obstacle Avoidance Mechanism for Mobile AUVs in the Internet of Underwater Things. IEEE Access 2021, 9, 142997–143012. [Google Scholar] [CrossRef]
- Zuo, Z.; Liu, C.; Han, Q.L.; Song, J. Unmanned Aerial Vehicles: Control Methods and Future Challenges. IEEE/CAA J. Autom. Sin. 2022, 9, 601–614. [Google Scholar] [CrossRef]
- Guo, S.; Chen, S.; Liu, F.; Ye, X.; Yang, H. Binocular vision-based underwater ranging methods. In Proceedings of the 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Kagawa, Japan, 6–9 August 2017; pp. 1058–1063. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, H. Underwater Circular Object Positioning System Based on Monocular Vision. In Proceedings of the 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Ajman, United Arab Emirates, 10–12 December 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, Z. A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
- Lin, S.; Li, W.; Wang, C.; Tang, Y. Distance Measurement of Underwater Target Based on Stereo Vision. In Proceedings of the 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation Control, and Intelligent Systems (CYBER), Waikiki, HI, USA, 31 July–4 August; 2017; pp. 97–102. [Google Scholar] [CrossRef]
- Liu, J.; Liu, W.; Li-e, G.; Le, L. Detection and localization of underwater targets based on monocular vision. In Proceedings of the 2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM), Tai’an, China, 27–31 August 2017; pp. 100–105. [Google Scholar] [CrossRef]
- Liu, J.H. Research on Multi-UUV Coordinated Formation Control Method Based on Virtual Pilot. Master’s Thesis, Harbin Engineering University, Harbin, China, 2017. [Google Scholar]
Name | Definition |
---|---|
m | Mass of the UQV |
Water density | |
V | Volume of the UQV |
g | Gravitational acceleration |
Roll angle, Yaw angle, Pitch angle | |
axis coordinates in earth coordinate system | |
axis accelerations in earth coordinate system | |
Linear velocity of axis in body coordinate system | |
Angular velocity of axis in body coordinate system, | |
Force provided by propeller 1 | |
Force provided by propeller 2 | |
Force provided by rotor No.1 | |
Force provided by rotor No.2 | |
Force provided by rotor No.3 | |
Force provided by rotor No.4 | |
Resultant force provided by two propellers | |
Resultant force provided by four rotors | |
Resultant forces of the UQV | |
Rotation matrix | |
M | Inertia matrix |
Velocity vector | |
State vector | |
Coriolis force–centripetal force matrix | |
Damping coefficient matrix | |
Static resilience | |
Force and moment | |
d | Distance between obstacle and the UQV |
R | Radius of spherical obstacle |
Parameter | Value |
---|---|
m | 50 kg |
f | 2.6 mm |
b | 6 cm |
−1.5 | |
0.1 | |
8.0 | |
−40 | |
10 | |
200 | |
−8.9 | |
5 | |
15 |
Real Distance (cm) | Measured Distance (cm) | Measurement Error (cm) |
---|---|---|
50 | 49.5 | 0.5 |
70 | 71.5 | 1.5 |
90 | 90.5 | 0.5 |
110 | 110 | 0 |
130 | 134 | 4 |
150 | 155 | 5 |
170 | 176 | 6 |
190 | 202 | 12 |
210 | 216 | 6 |
230 | 242 | 12 |
250 | 273 | 23 |
270 | 295 | 25 |
290 | 323 | 33 |
310 | 343 | 33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Cai, W.; Xie, Q.; Xu, S. Binocular-Vision-Based Obstacle Avoidance Design and Experiments Verification for Underwater Quadrocopter Vehicle. J. Mar. Sci. Eng. 2022, 10, 1050. https://doi.org/10.3390/jmse10081050
Zhang M, Cai W, Xie Q, Xu S. Binocular-Vision-Based Obstacle Avoidance Design and Experiments Verification for Underwater Quadrocopter Vehicle. Journal of Marine Science and Engineering. 2022; 10(8):1050. https://doi.org/10.3390/jmse10081050
Chicago/Turabian StyleZhang, Meiyan, Wenyu Cai, Qinan Xie, and Shenyang Xu. 2022. "Binocular-Vision-Based Obstacle Avoidance Design and Experiments Verification for Underwater Quadrocopter Vehicle" Journal of Marine Science and Engineering 10, no. 8: 1050. https://doi.org/10.3390/jmse10081050
APA StyleZhang, M., Cai, W., Xie, Q., & Xu, S. (2022). Binocular-Vision-Based Obstacle Avoidance Design and Experiments Verification for Underwater Quadrocopter Vehicle. Journal of Marine Science and Engineering, 10(8), 1050. https://doi.org/10.3390/jmse10081050