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Abstract: Recent carbon neutrality policies have led to active research in the agricultural tractor
sector to replace internal combustion engines, making it imperative to minimize power losses to
improve efficiency. Dual-clutch transmissions (DCTs) have been employed in agricultural tractors
primarily due to their short shift time and smooth shift feel. However, DCTs have a relatively large
number of components and complex structures owing to spatial constraints, making it challenging
to predict power losses. Therefore, to predict DCT power losses, this study defined oil churning
by considering the structural characteristics and oil circulation and comparing and analyzing the
theoretical calculation and test results of power losses at different oil levels. Power loss was calculated
based on ISO standards and fluid viscosity theory, and tests were performed to verify. We calculated
power losses based on the defined oil churning of a DCT in agricultural tractors and confirmed
that their consistency in test results improved when reflecting the lubrication state, considering the
structural features and oil circulation. In addition, the factors contributing to power loss under low-
and high-speed conditions were analyzed by calculating the power loss for each component.

Keywords: dual-clutch transmission; power loss; agricultural tractor

1. Introduction

Agricultural tractors perform various farming tasks using the vehicle’s rotational
power or traction, such as plowing, transportation, and rotary work. Traditionally, diesel
engines, particularly with manual transmissions, have been widely used owing to their
high torque characteristics relative to engine output. Recently, demand for improved driver
convenience and work efficiency, as well as technological pressure to replace fossil fuels in
the agricultural tractor sector due to carbon neutrality policies, has been increasing.

Prominent alternative power sources for agricultural tractors being discussed include
hydrogen fuel cells, batteries, and biodiesel. Research on small electrically driven tractors
using batteries and motors, and studies exploring the technical and economic feasibility
of small farms, are actively underway [1–3]. Other studies have proposed new energy
management strategies for applying hybrid systems, comprising fuel cells and battery
packs, to agricultural tractors [4,5]. Moreover, energy, economic, and environmental life-
cycle assessment analyses have been conducted for applying biodiesel fuel to agricultural
tractors [6]. However, alternative power sources generate less energy per unit volume and
mass compared to diesel [7,8]. Consequently, when using alternative power sources, the
continuous working time is reduced, making power losses in transmission systems an even
more critical issue owing to their direct impact on production efficiency.

Furthermore, researchers are actively studying automatic transmission systems in
response to market demand for improved driver convenience and work efficiency [9–12].
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Automated transmissions (ATs) allow drivers to operate without a gear lever and can
improve transmission productivity via the selection of the optimal gear ratio for farming
tasks through control algorithms. Dual-clutch transmissions (DCTs), a type of AT, use
two clutches responsible for even and odd gear steps in power transmission. Considering
DCTs preselect the target gear shift stage and engage the clutch when shifting, they have
a short shift time with no power interruption, resulting in a smooth shifting experience.
However, due to the increased number of mechanical components needed to select even
and odd gears—such as wet multi-plate clutches—and the complex supporting structures
for components owing to spatial constraints within the transmission, power losses in the
transmission must be considered.

Research on power loss in transmissions has been conducted primarily at the compo-
nent level. Many studies have investigated the drag torque caused by oil viscosity between
friction surfaces to calculate the power loss of wet multi-plate clutches [13,14]. The shear
stress caused by oil viscosity between the ring and cone was considered for calculating the
power loss of synchronizers, friction coefficients obtained through testing were proposed
to predict bearing power loss [15,16]. In addition, research comparing analytical models
and test results has been conducted to predict the power loss caused by oil churning in
gears [17,18]. Moreover, researchers have conducted studies to calculate the power loss
due to gear load transfer and conducted experimental verifications [19,20].

Power loss research on DCTs has primarily been conducted in the automotive sector,
predicting power loss through theoretical predictions and experimental verifications [21,22].
Additionally, research considering power loss in transmissions has also been conducted
in the agricultural tractor sector. The efficiency and energy consumption of tractor trans-
missions have been examined primarily in relation to operating conditions using vehicle
tests [23,24]. Studies have also been conducted to predict transmission efficiency by exam-
ining the power loss generated by each component of agricultural DCTs through theoretical
calculations [25].

Considering policy reasons driven by carbon neutrality requirements and consumer
demand, a systematic study on the power transmission efficiency of agricultural transmis-
sions is necessary. However, research on the efficiency of tractors has focused primarily on
vehicle-level experimental verification, while no studies have examined the contribution
of each component to the total power loss and compared theoretical calculations with
actual test results. Moreover, the oil-churning state of the mechanical components must
be defined to accurately predict the power loss of a transmission system. However, in
transmissions such as the DCT—which has many components and circulates oil through
hydraulic systems—oil levels change locally; hence, the structural characteristics must
be considered. Moreover, studies on efficiency considering oil level changes due to the
structural characteristics of agricultural DCTs remain insufficient.

Accordingly, this study compared the theoretical predictions of power loss in a DCT
applied to agricultural tractors with power loss measurements obtained through laboratory
tests. Considering the oil circulation for DCT lubrication, two power loss models, which
considered the average oil level and oil circulation, respectively, were proposed, with
theoretical predictions performed for each case. We used the ISO standard and viscosity
fluid theory to calculate the power loss of components making up the transmission and
constructed a measurement system using a 3-axis dynamometer to measure them. The
power losses considering oil circulation and the average oil level were compared and the
test results were analyzed.

2. Materials and Methods
2.1. DCTs for Agricultural Tractors

In this study, a 24-speed full-power shift DCT for 100-kW agricultural tractors was
applied to 5-ton tractors (without attachments) and shifted by alternately engaging the left
and right odd and even shaft clutches. This DCT comprises three parts—input, even, and
odd shafts—which is relatively more components than other transmissions.
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As shown in Figure 1, the target DCT comprises 64 shafts, 58 gears, 95 bearings,
5 clutches, 14 synchronizers, and 2 dog clutches, and includes 2 rear axle brakes and 1
parking brake within the transmission. However, the transmission system is assembled by
dividing it into sections because it is challenging to arrange the numerous components that
make up the DCT in a single case. Each section has a partition wall supported by housing
and bearings, with empty spaces being left to allow free oil movement when designing the
partition wall. However, the rear partition wall has a relatively thick wall and a narrow
space to support the amplified load of the gear train, hindering oil circulation and isolating
the space. Nonetheless, these spaces can be divided into three cells based on the partition
walls isolating them.
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Figure 1. Oil levels of a dual-clutch transmission (DCT) in full-power shift.

Figure 1 shows the structure and oil level of the DCT used in this study. The DCT is
divided into three cells based on the partition walls supporting the rear part of the power
transmission system: the front cell, where gears of the forward/reverse shift and main
shift parts are arranged; the mid cell, where gears of the range shift and 4WD parts are
arranged; and the rear cell, where the spiral bevel gear connected to the rear axle and PTO
(power take-off) gears are arranged. As shown in Figure 1a, the transmission oil level is
maintained at the height of the rear axle center.

The oil in agricultural tractors simultaneously performs the roles of lubrication for the
components and hydraulic fluid for the hydraulic system. The transmission oil is churned
by the immersed rotating components and circulated by the hydraulic system simultane-
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ously. Therefore, the oil levels in each cell are dynamic and differ considerably. The DCT
used in this study has an intake line at the bottom to supply oil to the hydraulic system.
Moreover, to secure a stable oil supply flow when driving on a slope, forward/reverse
and dual clutches are used, which forcibly supply oil from the front cell—where relatively
more flow is discharged—to the mid cell through a pump. Figure 1b shows an oil-level
application model reflecting the partition walls and oil circulation of the hydraulic system.

Theoretical power-loss predictions were performed for Case I, considering the average
oil level of the transmission, and for Case II, considering the partition walls and hydraulic
system, both verified through testing.

2.2. Power Loss Calculations

The ISO TR 14179-1 standard and drag torque due to viscous fluid were considered to
calculate the power loss caused by the components making up the powertrain, with gears,
bearings, shafts, clutches, and brakes considered for these calculations [26,27].

The total power loss can be expressed as the sum of fundamental, load-dependent,
and speed-dependent power losses. The fundamental power loss is the power consumed
to drive the tractor, a representative example being the power loss of the pump used to
drive the hydraulic line. The measured fundamental power loss was 3.0 kW, applied
equally to all gear steps. The load-dependent power loss occurs in the friction surfaces
under load, resulting in a corresponding load-dependent power loss of gears and bearings.
Speed-dependent power loss is the power loss due to motion resistance when components
of the power transmission system rotate, implying that the power loss due to drag is caused
by the oil applied for lubrication and cooling. For speed-dependent power loss, the power
loss of clutches, bearings, gears, shafts, and brakes was considered. The total power loss
(PL) of the power transmission system can be calculated using Equation (1), with the factors
considered for each power loss shown in Table 1.

PL = ∑ PHP + ∑ PGL + ∑ PGS + ∑ PBL + ∑ PBS + ∑ PS + ∑ PCL + ∑ PBR (1)

Table 1. Composition of the total power loss.

Power Loss Component

Fundamental power loss Hydraulic pump [PHP ]

Load-dependent power loss Gear [PGL ], Bearing [PBL ]

Speed-dependent power loss Gear [PGS], Bearing [PBS], Clutch [PCL],
Shaft [PS], Brake [PBR ]

2.2.1. Power Losses of the Gear and Shaft

The load-dependent power loss of the gear (PGL) can be expressed as follows:

PGL =
fmT1n1cos 2β

9549M
(2)

where fm denotes the mesh coefficient of friction (determined by the pitch line speed,
lubricating oil viscosity, load size, and gear size), and M denotes the mesh mechanical
advantage (a coefficient influenced by the gear size, pressure angle, and gear step).

The speed-dependent power loss of the gear (PGS) and speed-dependent power loss
of the shaft (PS) can be expressed as the sum of power losses owing to the outer diame-
ter (PGW1), lateral part (PGW2), and tooth surface (PGW3). PGW1, PGW2, and PGW3 can be
calculated using Equations (3)–(5), respectively, as follows:

PGW1 =
7.37 fgνn3D4.7L

Ag1026 (3)
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PGW2 =
1.474 fgνn3D5.7

Ag1026 (4)

PGW3 =

7.37 fgνn3D4.7F
(

R f√
tan β

)
Ag1026 (5)

where R f denotes the roughness factor (which is influenced by the transverse module).

2.2.2. Power Loss of the Bearing

The load-dependent power loss of the bearing (PBL) can be expressed as follows:

PBL =
(M1 + M2)n

9549
(6)

where M1 denotes the bearing-load-dependent torque (calculated using the load rating
of the bearing, dynamic load, coefficient of friction, and bearing size) and M2 denotes
the cylindrical-roller-bearing axial-load-dependent moment (determined by the friction
coefficient of the lubrication surface, axial bearing load, and bearing size).

The speed-dependent power loss of the bearing (PBS) can be expressed as follows:

PBS =
(M0 + M3)n

9549
(7)

where M0 denotes the load-independent frictional moment (influenced by the dynamic
viscosity coefficient, dip factor, rotation speed, and size), and M3 is the frictional moment
of seals (a factor influenced by the size and type of the bearing).

2.2.3. Power Loss of the Clutch and Brake

Clutch drag torque occurs owing to the shear stress caused by the viscosity of the
lubricating oil between the friction surfaces. The clutch power loss can be calculated by
correcting the drag torque based on the supplied flow area, while the drag torque can be
calculated using Equation (8) [27]. The oil is supplied from the shaft center, causing a rup-
tured section where the oil flow breaks into mist and steam. As a result, three flow sections
are generated—Tf a, Tra, and Tm; their relationships are expressed in Equations (9)–(11).
The oil used was ISO VG 46; in addition, oil viscosity properties of 46 cSt at 40 ◦C and
6.7 cSt at 100 ◦C were considered. The viscosity of the lubricating oil in the mist state can
be assumed to be 1/10 of the oil viscosity.

TCL =
(
1− rag

)
·
(

Tf a + Tra + Tm

)
(8)

Tf a =
πµ∆ωN

2h
·
(

rc
4 − ri

4
)

(9)

Tra =
πµ∆ωN

h
·Φ·
(

ro
2 − rc

2
)

(10)

Tm =
2πµmist∆ωN

h
·
[(

ro
4 − rc

4)
4

− Φ

2
·
(

ro
2 − rc

2
)]

(11)

The power loss of the clutch (PCL) considering the drag torque of each section can be
expressed as follows:

PCL = TCL∆n
2π

60× 1000
(12)
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Similarly, the power loss of the brake (PB), which occurs owing to the shear stress
caused by the fluid viscosity, can be expressed as follows:

PB =
(
1− rag

)Nµα

h

(
2πn
60

)2[ ro
4

4
− ri

4

4

]
1

1000
(13)

2.3. Power Loss Measurement of DCT

Figure 2 shows the system constructed for power loss measurement using a 3-axis
dynamometer to control the rotation speed and torque. Sensors for measuring the rotation
speed and torque are installed at the connection between the motor and the transmission to
measure the input and output power. The input speed to the transmission is controlled at
the input section, while the load applied to the transmission is controlled by controlling the
torque at the output section. Additionally, a thermometer is installed inside the transmission
system to monitor the oil temperature during the test. The test procedure is as follows.
The speed of the input motor is slowly increased over 120 s from 0 to 2200 rpm. When the
speed reaches 2200 rpm, the torque of the output motor is increased by 200 Nm to reach
the target load level. While maintaining the target load for 1 min, the torque and rotation
speed of the input and output sections are measured by the sensor. The oil temperature is
maintained in the range of 50 to 90 ◦C, which is the normal operating temperature of the
tractor. Motor and sensor specifications are shown in Table 2.
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Table 2. Specifications of sensor and motor applied to 3-axis dynamometer.

Component Specifications

Input motor Rated voltage: 360 V, rated speed: 3090 rpm, rated power: 282 kW

Output motor Rated voltage: 360 V, rated speed: 1800 rpm, rated power: 246 kW

Torque and rpm sensor
Nominal torque: 30 kNm, nominal rotational speed: 4000 rpm

Magnetic rotational speed measuring system:
1024 pulses/revolution

For the test, the input rotation speed was set to the engine’s rated rotation speed of
2200 rpm across all gear steps. The torque level applied to the transmission was determined
separately for the two sections. In the max. traction force range, traction force was
determined using the vehicle weight, with the engine’s output not fully utilized. In the
rated engine power range, the engine’s rated output could be used, with the output torque
of the rear axle decreasing as the vehicle speed increased. Figure 3 shows the test conditions,
applying the wheel torque, vehicle speed, and input power at the rated rotation speed of
the engine for the tractor used in this study. Tests were conducted in gear steps 2nd–24th,
with the load conditions for each point shown in Figure 3.
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3. Results
3.1. Theoretical Power Loss Calculations

Figure 4 shows the theoretical calculation results of the power loss based on the
equations presented in Section 2.1. The horizontal axis represents the vehicle speed at the
engine’s rated rotation speed for each gear step. For Case I and Case II, the total power loss
can be calculated by adding the power loss of the DCT components, with power losses of
less than 1 kW being combined and represented as a single item.
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Figure 4. Theoretical calculation results of the power losses.

The components comprising the largest portion of overall power loss are the gears
and bearings. Most of the load-dependent power loss occurs owing to the gears, the largest
power loss occurring at 5.5 km/h for Cases I and II of 4.51 and 4.50 kW, respectively. As the
vehicle speed increases at gear steps above 12 km/h, the speed-dependent power loss of
the gears and bearings increases proportionally. Furthermore, the speed-dependent power
loss of the gears and bearings is the highest at the top gear step of 40.2 km/h. In Case I,
the speed-dependent power loss of the gears and bearings is 9.1 and 9.2 kW, respectively,
while in Case II, it is 25.8 and 15.9 kW, respectively. The highest power loss occurs at
the top speed of 40.2 km/h for both Cases I and II, with total power losses of 28.8 and
53.8 kW, respectively. This is because the speed-dependent power loss of each component
is calculated to be higher in high-speed gear steps for Case II compared to Case I.

Figure 5 shows the power transmission efficiency calculated for Cases I and II. The
power transmission efficiency for Cases I and II tends to increase as the vehicle speed
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increases in the max. traction force range (0–5.5 km/h) owing to the contribution of
fundamental and load-dependent power losses relative to the total power. In the rated
engine power range (5.5–40.2 km/h), the efficiency is maintained up to a speed of 11.1 km/h,
but drops sharply as the speed increases in high-speed gear steps above 12.9 km/h. The
maximum efficiency is 86.6% at 9.7 km/h for Case I and 87.6% at 7.3 km/h for Case II,
while the minimum efficiency is calculated to be 70.4% for Case I and 44.7% for Case II at
40.2 km/h.
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3.2. Experimental Studies of Power Loss

Figure 6 shows the measurement results of power loss for each gear step of the DCT
obtained through lab tests.

As the vehicle speed increases, the power loss of the transmission tends to increase.
The power loss is lowest at 1.8 km/h (10.16 kW), and highest at 40.2 km/h (60.06 kW).
Conversely, at lower gear steps with low vehicle speeds, the efficiency increases as the
speed increases, it being highest at 5.5 km/h (83.2%). At gear steps with vehicle speeds
above 5.5 km/h, the efficiency tends to decrease as the speed increases, the efficiency being
the lowest at 40.2 km/h (37.2%).
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4. Discussion
Comparison between Theoretical Calculations and Experimental Studies

Figure 7 compares the theoretical calculations and experimental studies of the power
losses for Cases I and II. The tendency for power loss to increase as vehicle speed increased
is the same for both Cases I and II, but the absolute level of power loss differs more as the
speed increases.

As shown in Figure 7a, in Case I the theoretical calculations tend to be higher than
the test results. However, as the speed increases in the high-speed gear steps, the mea-
sured power loss increases; at 40.2 km/h, the measured power loss is 60.06 kW, while the
calculated total power loss is 28.80 kW, the error being as much as 31.26 kW.
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As shown in Figure 7b, in Case II the load-dependent power loss is similar to that of
Case I, where the speed-dependent power loss increases rapidly with the vehicle speed.
The maximum power loss is 47.21 kW at 40.2 km/h, and the total power loss is 53.79 kW,
exhibiting an error of 12.85 kW compared to the experimentally measured power loss of
60.06 kW. That is, the power loss error in high-speed gear steps is smaller than that of
Case I.

To analyze the effects of the oil level on load-dependent and speed-dependent power
losses, the theoretical calculation results for the power loss in Cases I and II were compared,
as shown in Figure 8.

Figure 8a shows the comparison of load-dependent power losses for Cases I and II,
which are similar regardless of the oil levels. The load-dependent power loss is the highest
at 5.5 km/h, corresponding to the fastest gear step in the max. traction force range for
agricultural tractors.

Figure 8b compares the speed-dependent power losses for Cases I and II. For both cases,
the speed-dependent power loss tends to increase with vehicle speed. However, a local
peak value is evident at 3.6 km/h owing to the considerable influence of temperature on the
speed-dependent power loss. In the tests of 3.1 km/h and 3.6 km/h, the oil temperatures
were 69.3 ◦C and 50.7 ◦C, respectively, showing a difference of 18.6 ◦C. As a result of
calculating viscosity by the ASTM D341 method, the kinematic viscosity of the oil is 33.2 cSt
and 63.61 cSt, respectively, for the tests of 3.1 km/h and 3.6 km/h. As the viscosity increases,
it can be seen that the drag torque increases and results in a larger speed-dependent
power loss.

According to the results shown in Figure 8b, at vehicle speeds below approximately
11.1 km/h, the power loss in Case I is greater; conversely, at speeds above 14.8 km/h, the
power loss in Case II is greater. The differences in power loss between Cases I and II in
each speed range are related to the structural features of the DCT used in the study.

The DCT used in the study comprises a gear train made up of 58 gears to implement
24 gear shift stages. The gears in the forward/reverse and main shift parts—including
the dual clutches—are in the front cell, while gears in the range shift part are in the mid
cell. The vehicle speed range for the primary work of agricultural tractors is defined by
the range shift part, the transmission used in this study being divided into 0–4.1 km/h
(low-speed range), 4.7–12.9 km/h (mid-speed range), and 14.8–40.2 km/h (high-speed
range) depending on the applicable gear ratio. Consequently, the gears in the range shift
part have larger gear ratio differences than other gears, the speed deviation of idle gears
that do not transmit power also being greater.
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Figure 9 shows the average rotation speed and distribution of gears in the front and
mid cells at the engine’s rated rotation speed. The gears in the front cell—which are closer
to the engine—determine the forward/reverse direction and perform the role of primary
reduction in the engine’s rotation speed. Consequently, their average rotation speed and
deviation are similar. Therefore, the speed-dependent power loss of the gears in the front
cell is not greatly affected by the vehicle speed.

By contrast, the rotation speed of the gears in the mid cell is similar to or lower than
that of the gears in the front cell in the 1.8–12.9 km/h vehicle-speed range, the average
rotation speed and deviation increasing sharply at speeds above 14.8 km/h compared to
the gears in the front cell.

The rotation speed of the gears in the mid cell is more greatly influenced by driving
speed than those in the front cell. Therefore, the speed-dependent power loss of the gears
in the mid cell is affected by the driving speed, showing a similar tendency to the results
shown in Figure 7b, where the speed-dependent power loss increases sharply at speeds
above 14.8 km/h. Consequently, speed-dependent power loss has a greater impact on the
components located in the front cell at low-speed gear steps and the mid cell at high-speed
gear steps.

As in Case II of Figure 7b, when the oil level in the front cell is lowered and the oil
level in the mid cell is raised, the speed-dependent power loss in the front cell decreases,
reducing the total power loss at low speeds. Owing to the increased influence of speed-
dependent power loss in the mid cell, the total power loss at high speeds increases. This
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trend is consistent with the test results, where power loss decreases at low speeds and
increases sharply at high speeds.
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Through this study, it was confirmed that the error between the theoretical calculation
and the measured value of power loss was reduced by considering the oil level change
caused by the oil circulation of the transmission. Therefore, in order to improve the
efficiency of the transmission, the rotation speed of the internal components and the oil
lubrication condition must be considered together. For example, gears with high rotation
speeds should be located in positions that are not submerged in oil. Rotating components
that are inevitably immersed in oil need to be designed with a small outer diameter and
width to minimize power loss.

5. Conclusions

In this study, we calculated the power loss of an agricultural tractor DCT using the
ISO standard and viscous fluid theory and measured the power loss of the DCT for each
gear step using a 3-axis dynamometer measurement system. The calculated power loss and
measurement results were compared and analyzed with the calculation results reflecting
the oil levels considering the characteristics of the agricultural tractor DCT reviewed. The
results of this study can be summarized as follows:

1. We calculated the power loss for each gear shift stage of a DCT applied to agricul-
tural tractors using the ISO standard and the viscous fluid theory. The components
accounting for the largest portion of the total power loss were the gears and bearings,
with the efficiency calculated to be highest at 5.5 km/h, the fastest speed in the max.
traction force range.

2. We confirmed that the theoretical calculation results of power loss in Case II were
more consistent with the test results compared to Case I. Additionally, while the
load-dependent power loss was not significantly affected by the oil level, the speed-
dependent power loss was affected by the locally varying oil level owing to oil
circulation.

3. The transmission components closer to the engine exhibited smaller speed deviations
for each gear step, while the gears of the transmission components closer to the output
shaft exhibited greater rotation speed and speed deviation between gears at higher
gear steps. Owing to these driving characteristics, when the oil level in the cell closer
to the output shaft rose, the power loss was lower at low-speed gear shift stages, while
it increased sharply at high-speed gear steps.
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4. Thus, we confirmed that, to predict the efficiency of agricultural transmissions, the
oil level reflecting the transmission structure characteristics, oil circulation, and the
operating characteristics of the transmission component—such as rotation speed and
deviation—must be considered.
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Nomenclature

PL Total power loss, kW
PHP Fundamental power loss of the hydraulic pump, kW
PGL Load-dependent power loss of the gear, kW
PGS Speed-dependent power loss of the gear, kW
PBL Load-dependent power loss of the bearing, kW
PBS Speed-dependent power loss of the bearing, kW
PS Speed-dependent power loss of the shaft, kW
PCL Speed-dependent power loss of the clutch, kW
PBR Speed-dependent power loss of the brake, kW
fm Mesh coefficient of friction
M Mesh mechanical advantage
T1 Pinion torque, Nm
n1 Pinion rotation speed, rpm
β Operating helix angle/mean spiral angle, degrees
PGW1 Gear windage and churning losses associated with smooth outside diameters, kW
PGW2 Gear windage and churning losses associated with smooth sides of the disc, kW
PGW3 Gear windage and churning losses associated with tooth surfaces, kW
fg Gear dip factor
ν Kinematic oil viscosity, m2/s
n Rotating speed, rpm
L Length of element for gearing windage and churning, mm
Ag Arrangement constant
F Total face width, mm
R f Roughness factor for gear teeth
M0 Load-independent frictional moment, Nm
M1 Bearing load-dependent torque, Nm
M2 Cylindrical roller bearing axial load-dependent moment, Nm
M3 Frictional moment of seals, Nm
TCL Clutch torque loss, Nm
rag Percentage value of the groove area to the friction material area
Tf a Torque loss due to oil film in continuous section, Nm
Tra Torque loss due to oil film in ruptured section, Nm
Tm Torque loss due to mist in ruptured section, Nm
rc Critical radius, m
ri Inner radius of the disk, m
ro Outer radius of the disk, m
N Number of friction surfaces
µ Fluid absolute viscosity, Pa·s
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µmis Absolute viscosity of mist, Pa·s
∆ω Difference in clutch rotation speed, rad/s
h Clearance between plate and disc, m
Φ Critical radius square, m2

α Angle of the area of brake caliper, rad
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