Red Beetroot and Its By-Products: A Comprehensive Review of Phytochemicals, Extraction Methods, Health Benefits, and Applications
<p><span class="html-italic">Beta vulgaris</span> L. around the world [<a href="#B12-agriculture-15-00270" class="html-bibr">12</a>]. The different colors express overlapping classic hexagons (56,848 georeferenced records) and mean the occurrences of subspecies, species, and varieties of beetroot species in each area of the globe.</p> "> Figure 2
<p>Biochemical constituents of beetroot by-products and their health-related effects.</p> "> Figure 3
<p>Examples of structures of various important bioactive compounds in beetroot by-products. (<b>a</b>) β-carotene, (<b>b</b>) Betanin, (<b>c</b>) Vulgaxanthin-I, (<b>d</b>) Ferulic acid, (<b>e</b>) Kaempferol, (<b>f</b>) Rutin [<a href="#B51-agriculture-15-00270" class="html-bibr">51</a>].</p> "> Figure 4
<p>Valorization of beetroot by-products and potential products.</p> "> Figure 5
<p>Challenges and future insights of valorization beetroot by-products.</p> ">
Abstract
:1. Introduction
2. Characterization of Beetroot Waste and By-Products
2.1. Beetroot Pomace
2.2. Beetroot Peels
2.3. Beetroot Leaves and Steams
3. Biochemical Components of By-Products from Beetroots
3.1. Phenolic Compounds
3.2. Betalains
3.3. Dietary Fiber
3.4. Carotenoids
3.5. Minerals
3.6. Vitamins
3.7. Saponins
4. Innovative Applications of Beetroot By-Products
4.1. Natural Food Additives
4.2. Other Uses of Beetroot By-Products
5. Various Techniques for the Extraction of Bioactives from Beetroot By-Products
5.1. Conventional Techniques
Beetroot By-Products | Process Conditions | Compounds | Yield | References |
---|---|---|---|---|
Beetroot peel powder | Conventional extraction, ethanol–water (50:50) Tray drying, 40 °C | Betacyanin (mg/L) Betaxanthin(mg/L) Total betalain (mg/L) | 98.7 ± 6.21 mg/L 72.9 ± 3.8 mg/L 172 mg/L | Shakir & Simone [45]. |
Beetroot peel powder | Conventional extraction 1.5% citric acid concentration, 50% ethanol concentration, 52.5 °C temperature, and 49.9 min extraction time | Betalains TPC (total polyphenolic content) | 0.29 to 1.44 mg/g DW 1.64 to 2.74 mg/g DW | Lazar et al. [134] |
Peels, parings, and stalks | Solid–liquid extraction (70% ethanol with solid–liquid ratio 1 g:5 mL) | Betalains | 68–81 mg/g DW | Costa et al. [39] |
Beetroot pomace | Solid–liquid (water) ratio (1:15), temperature (50.04 °C), time (10 min), and pH (2.50) | Betalains | Betacyanin (17.07) + betaxanthin (15.04) = 32.11 mg/L | Kushwaha et al. [133] |
Beetroot skin | Solvent extraction (ethanol with aquades) | Betacyanin | 73.21% | Paramita et al. [136] |
Beetroot pomace | Solid–liquid extraction (0.5 g/10 mL water) | Betalains | 55 mg/L | Ahmed Moussa et al. [119] |
Beetroot residue | PLE: 40 °C and pressures of 7.5 MPa, and flow rate of 3 mL min−1, ethanol. | TPC ABTS scavenging activity [2,20 azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt] | 14 ± 2 mg GAE/g 15.7 ± 1.2 µmol Trolox/g | Battistella Lasta et al. [28] |
Beetroot waste (pulp) | UAE, 44 kHz for 30 min at a controlled temperature of 30 °C, 30% v/v ethanol. EAE 45 °C, cellulase and pectinase enzymes | Betalains TPC TPC | 0 to 3.06 mg/g DW 6.86 ± 0.23 mg/g 10.06 ± 0.21 mg/g DW, which was a net recovery of 3.2 mg/g DW compared to extraction via maceration | Fernando et al. [137] |
Beetroot residue | SFE with ethanol–water mixtures CO2 + 10% EtOH, 250 bar/40 °C) UAE, H2O:EtOH, 25 °C, submitted to 7 min of 500 W sonication power Maceration, H2O:EtOH four days, manually shaken once a day | TPC ABTS TPC ABTS TPC ABTS | 98 ± 6 mg GAE/g extract 137 ±33 µmol Trolox/g 25 ± 5 mg GAE/g extract 17 ± 3 µmol Trolox/g 15 ±2 mg GAE/g extract 41.6 ± 0.4 µmol Trolox/g | Lasta et al. [138] |
Beetroot waste (stalks) | UAE: 53 °C, 89 W, 35 min, solid–liquid ratio: 1:19 g/mL | Betalains | 1.28 ± 0.02 mg/g (betacyanin) and 5.31 ± 0.09 mg/g (betaxanthin) | Maran and Priya [139] |
Beet stalks | UAE: Power—89 W | Betacyanin | 1.28 mg/g of betacyanin | Singhee [140] |
Beetroot waste (stalks) | Ultrasonication approach: Power intensity: 79.801 W/cm2 Solid–solvent ratio: 22.4 g/mL, 26.7 min | Betalains | 3 mg/g (betacyanin) and 3.36 mg/g (betaxanthin) | Singh et al. [141] |
Beetroot peels | MAE: citric acid, ethanol | Betalains | 229.264 mg/L 472.113 mg/L | Singh et al. [142] |
Beetroot Peels | MAE | Betalains | 180.38 mg/100 g | Zin et al. [113] |
Beetroot waste (peels) | MAE: 150 s of MAE at 800 W, pure water solvent | Betalains Betacyanin betaxanthin | 202.08 ± 2.23 mg/100 g 115.89 ± 1.08 mg/100 g 86.21 ± 1.16 mg/100 g FW | Zin & Bánvölgyi [143] |
Beetroot waste (stems and leaves) | Thermoreversible aqueous biphasic systems (ABS): 20 °C, 70 min, and solid–liquid ratio of 0.12 | Betalains | 6.67% (w/w) | Rosa et al. [144] |
Beetroot waste (peels and pulp) | Deep eutectic solvents (DES) Betalain water extracts (BEW) | Betalains | 3.65–3.99 mg/g (in DES) 3.49–3.55 mg/g (in BEW) | Hernández Aguirre et al. [29] |
5.2. Modern Extraction Techniques
5.3. Ultrasound-Assisted Extraction (UAE)
5.4. Microwave-Assisted Extraction (MAE)
5.5. Supercritical Fluid Extraction (SFE)
5.6. Pulsed Electric Fields (PEF)
5.7. Pressurized Liquid Extraction (PLE)
5.8. Enzyme-Assisted Extraction (EAE)
5.9. Other Methods
5.10. Possibilities of Betalains Stabilization
6. Potential Health Benefits of Beetroot By-Products
6.1. Antioxidant Activity
6.2. Antihypertensive and Cardioprotective Activity
6.3. Anticancer Activity
6.4. Anti-Obesity Effect
6.5. Anti-Diabetic Effect
6.6. Anti-Inflammatory Effect
6.7. Antimicrobial Effect
6.8. Other Health Benefits
7. Challenges and Future Perspectives
8. Conclusions Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations Development Programme Sustainable Development Goals. 2022. Available online: https://www.undp.org/sustainable-development-goals (accessed on 29 November 2024).
- Ganesh, K.S.; Sridhar, A.; Vishali, S. Utilization of Fruit and Vegetable Waste to Produce Value-Added Products: Conventional Utilization and Emerging Opportunities—A Review. Chemosphere 2022, 287, 132221. [Google Scholar] [CrossRef] [PubMed]
- Ninfali, P.; Angelino, D. Nutritional and functional potential of Beta vulgaris cicla and rubra. Fitoterapia 2013, 89, 88–199. [Google Scholar] [CrossRef] [PubMed]
- Gokhale, S.V.; Lele, S.S. Betalain Content and Antioxidant Activity of Beta vulgaris: Effect of Hot Air Convective Drying and Storage: Drying Effect on Betalain and Antioxidants in Beet. J. Food Process. Preserv. 2014, 38, 585–590. [Google Scholar] [CrossRef]
- Chhikara, N.; Kushwaha, K.; Sharma, P.; Gat, Y.; Panghal, A. Bioactive Compounds of Beetroot and Utilization in Food Processing Industry: A Critical Review. Food Chem. 2019, 272, 192–200. [Google Scholar] [CrossRef]
- Nowacka, M.; Tappi, S.; Wiktor, A.; Rybak, K.; Miszczykowska, A.; Czyzewski, J.; Tylewicz, U. The Impact of Pulsed Electric Field on the Extraction of Bioactive Compounds from Beetroot. Foods 2019, 8, 244. [Google Scholar] [CrossRef]
- Abu-Ellail, F.F.B.; Salem, K.F.M.; Saleh, M.M.; Alnaddaf, L.M.; Al-Khayri, J.M. Molecular Breeding Strategies of Beetroot (Beta vulgaris ssp. vulgaris var. conditiva Alefeld). In Advances in Plant Breeding Strategies: Vegetable Crops; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Yashwant, K. Beetroot: A Super Food. Int. J. Eng. Stud. Tech. Approach 2015, 1, 20–26. [Google Scholar]
- Kezi, J.; Sumathy, J.H. Betalain a Boon to the Food Industry. Discovery 2014, 20, 51–58. [Google Scholar]
- Carreón-Hidalgo, J.P.; Franco-Vásquez, D.C.; Gómez-Linton, D.R.; Pérez-Flores, L.J. Betalain plant sources, biosynthesis, extraction, stability enhancement methods, bioactivity, and applications. Food Res. Int. 2022, 151, 110821. [Google Scholar] [CrossRef]
- FAOSTAT. 2022. Available online: https://www.fao.org/faostat/en/#data/qcl (accessed on 2 February 2024).
- Global Biodiversity Information Facility (GBIF). Available online: https://www.gbif.org/species/2874515 (accessed on 10 August 2024).
- Knez, E.; Kadac-Czapska, K.; Dmochowska-Ślęzak, K.; Grembecka, M. Root Vegetables-Composition, Health Effects, and Contaminants. Int. J. Environ. Res. Public Health 2022, 19, 15531. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Chung, I.-M.; Samynathan, R.; Chandar, S.R.H.; Venkidasamy, B.; Sarkar, T.; Rebezov, M.; Gorelik, O.; Shariati, M.A.; Simal-Gandara, J. A Comprehensive Review of Beetroot (Beta vulgaris L.) Bioactive Components in the Food and Pharmaceutical Industries. Crit. Rev. Food Sci. Nutr. 2024, 64, 708–739. [Google Scholar] [CrossRef]
- dos S. Baião, D.; da Silva, D.V.T.; Paschoalin, V.M.F. Beetroot, A Remarkable Vegetable: Its Nitrate and Phytochemical Contents Can be Adjusted in Novel Formulations to Benefit Health and Support Cardiovascular Disease Therapies. Antioxidants 2020, 9, 960. [Google Scholar] [CrossRef]
- Sentkowska, A.; Pyrzyńska, K. Old-Fashioned, but Still a Superfood—Red Beets as a Rich Source of Bioactive Compounds. Appl. Sci. 2023, 13, 7445. [Google Scholar] [CrossRef]
- Slavov, A.; Karagyozov, V.; Denev, P.; Kratchanova, M.; Kratchanov, C. Antioxidant Activity of Red Beet Juices Obtained after Microwave and Thermal Pretreatments. Czech J. Food Sci. 2013, 31, 139–147. [Google Scholar] [CrossRef]
- Yadav, D.N.; Sharma, M.; Chikara, N.; Anand, T.; Bansal, S. Quality Characteristics of Vegetable-Blended Wheat—Pearl Millet Composite Pasta. Agric. Res. 2014, 3, 263–270. [Google Scholar] [CrossRef]
- Panghal, A.; Yadav, D.N.; Khatkar, B.S.; Sharma, H.; Kumar, V.; Chhikara, N. Post-Harvest Malpractices in Fresh Fruits and Vegetables: Food Safety and Health Issues in India. Nutr. Food Sci. 2018, 48, 561–578. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Hallmann, E.; Lipowski, J.; Drela, N.; Kowalik, A.; Pussa, T.; Rembialkowska, E. Beetroot (Beta vulgaris L.) and Naturally Fermented Beetroot Juice from Organic and Conventional Production: Metabolomics, Anti-Oxidant Levels and Anti-Cancer Activity. J. Sci. Food Agric. 2014, 94, 2618–2629. [Google Scholar] [CrossRef] [PubMed]
- Sruthi, P.D.; Anoohya, P.N.; Vasu, A.T.; Latha, B.S.; Chavali, M. Portrayal of Red Pigments Extracted from Red Beet (Beta vulgaris, L.) and Its Potential Uses as Antioxidant and Natural Food Colourants. VFSTR J. STEM 2014, 2, 24–32. [Google Scholar]
- Szekely, D.; Illes, B.; Steger-Mate, M.; Monspart-Senyi, J. Effect of Drying Methods for Inner Parameters of Red Beetroot (Beta vulgaris L). Alimentaria 2016, 9, 60–68. [Google Scholar] [CrossRef]
- Raikos, V.; McDonagh, A.; Ranawana, V.; Duthie, G. Processed Beetroot (Beta vulgaris L.) as a Natural Antioxidant in Mayonnaise: Effects on Physical Stability, Texture and Sensory Attributes. Food Sci. Hum. Wellness 2016, 5, 191–198. [Google Scholar] [CrossRef]
- Marmion, D.M. (Ed.) Handbook of US Colorants: Foods, Drugs, Cosmetics, and Medicinal Devices; Wiley-Interscience: New York, NY, USA, 1991. [Google Scholar]
- Cai, Y.Z.; Corke, H. Production and Properties of Spray Dried Amaranthus Betacyanin Pigments. J. Food Sci. 2000, 65, 1248–1252. [Google Scholar] [CrossRef]
- Sooch, B.S.; Sandhu, N.; Mann, M.K.; Ray, R.C. Valorization of Beetroot Waste for Extraction of Natural Dye for Textile and Food Applications. In Roots, Tubers, and Bulb Crop Wastes: Management by Biorefinery Approaches; Springer Nature: Singapore, 2024; pp. 237–260. [Google Scholar]
- Ferreira, M.S.; Santos, M.C.; Moro, T.M.; Basto, G.J.; Andrade, R.M.; Gonçalves, É.C. Formulation and characterization of Functional Foods Based on Fruit and Vegetable Residue Flour. J. Food Sci. Technol. 2015, 52, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Battistella Lasta, H.F.; Lentz, L.; Gonçalves Rodrigues, L.G.; Mezzomo, N.; Vitali, L.; Salvador Ferreira, S.R. Pressurized Liquid Extraction Applied for the Recovery of Phenolic Compounds from Beetroot Waste. Biocatal. Agric. Biotechnol. 2019, 21, 101353. [Google Scholar] [CrossRef]
- Hernández-Aguirre, O.A.; Muro, C.; Hernández-Acosta, E.; Alvarado, Y.; Díaz-Nava, M.D.C. Extraction and Stabilization of Betalains from Beetroot (Beta vulgaris) Wastes Using Deep Eutectic Solvents. Molecules 2021, 26, 6342. [Google Scholar] [CrossRef] [PubMed]
- Ben Haj Koubaier, H.; Snoussi, A.; Essaidi, I.; Chaabouni, M.M.; Thonart, P.; Bouzouita, N. Betalain and Phenolic Compositions, Antioxidant Activity of Tunisian Red Beet (Beta vulgaris L. Conditiva) Roots and Stems Extracts. Int. J. Food Prop. 2014, 17, 1934–1945. [Google Scholar] [CrossRef]
- Igual, M.; Moreau, F.; García-Segovia, P.; Martínez-Monzó, J. Valorization of Beetroot By-Products for Producing Value-Added Third Generation Snacks. Foods 2023, 12, 176. [Google Scholar] [CrossRef]
- Biondo, P.B.F.; Boeing, J.S.; Barizão, É.O.; de Souza, N.E.; Matsushita, M.; de Oliveira, C.C.; Boroski, M.; Visentainer, J.V. Evaluation of Beetroot (Beta vulgaris L.) Leaves during Its Developmental Stages: A Chemical Composition Study. Food Sci. Technol. 2014, 34, 94–101. [Google Scholar] [CrossRef]
- Vilas-Franquesa, A.; Montemurro, M.; Casertano, M.; Fogliano, V. The food by-products bioprocess wheel: A guidance tool for the food industry. Trends Food Sci. Technol. 2024, 152, 104652. [Google Scholar] [CrossRef]
- Narnoliya, L.K.; Jadaun, J.S.; Singh, S.P. Management of Agro-Industrial Wastes with the Aid of Synthetic Biology. In Biosynthetic Technology and Environmental Challenges; Springer: Singapore, 2018; pp. 11–28. [Google Scholar]
- Tivelli, S.W.; Factor, T.L.; Teramoto, J.R.S.; Fabri, E.G.; De Moraes, A.R.A.; Trani, P.E.; Beterraba, A.M. May. Beterraba: Do Plantio À Comercialização; (Série Tecnologia APTA. Boletim Técnico IAC, 210); Instituto Agronômico: Campinas, Brasil, 2011; 45p, ISSN 1809-7936. [Google Scholar]
- Afzaal, M.; Saeed, F.; Ahmed, A.; Khalid, M.A.; Islam, F.; Ikram, A.; Hussain, M.; Fareed, F.; Anjum, W. Red Beet Pomace as a Source of Nutraceuticals. In Food and Agricultural Byproducts as Important Source of Valuable Nutraceuticals; Springer International Publishing: Cham, Switzerland, 2022; pp. 39–55. [Google Scholar]
- Theba, T.; Ravani, A.; Bhatt, H. Utilization of Beetroot Pomace for Food Fortification. Int. J. Chem. Stud. 2021, 9, 2653–2657. [Google Scholar] [CrossRef]
- Šoštarić, T.; Simić, M.; Lopičić, Z.; Zlatanovic, S.; Pastor, F.; Antanaskovic, A.; Gorjanovic, S. Food Waste (Beetroot and Apple Pomace) as Sorbent for Lead from Aqueous Solutions—Alternative to Landfill Disposal. Processes 2023, 11, 1343. [Google Scholar] [CrossRef]
- Costa, A.P.D.; Hermes, V.S.; de Rios, A.O.; Flôres, S.H. Minimally Processed Beetroot Waste as an Alternative Source to Obtain Functional Ingredients. J. Food Sci. Technol. 2017, 54, 2050–2058. [Google Scholar] [CrossRef]
- Sahni, P.; Shere, D.M. Physico-Chemical and Sensory Characteristics of Beet Root Pomace Powder Incorporated Fibre Rich Cookies. Int. J. Food Ferment. Technol. 2016, 6, 309–315. [Google Scholar] [CrossRef]
- Fissore, E.N.; Ponce, N.M.A.; Matkovic, L.; Stortz, C.A.; Rojas, A.M.; Gerschenson, L.N. Isolation of Pectin-Enriched Products from Red Beet (Beta vulgaris L. Var. Conditiva) Wastes: Composition and Functional Properties. Food Sci. Technol. Int. 2011, 17, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, A.T., Jr.; Chau, H.K.; Strahan, G.D.; Nuñez, A.; Simon, S.; White, A.K.; Dieng, S.; Heuberger, E.R.; Yadav, M.P.; Hirsch, J. Structural Characterization of Red Beet Fiber and Pectin. Food Hydrocoll. 2022, 129, 107549. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; El-Mogy, M.M.; Parmar, A.; Mansour, A.T.; Shalaby, T.A.; Ali, M.R. Phytochemical Characterization and Utilization of Dried Red Beetroot (Beta vulgaris) Peel Extract in Maintaining the Quality of Nile Tilapia Fish Fillet. Antioxidants 2022, 11, 906. [Google Scholar] [CrossRef] [PubMed]
- Shuaibu, B.S.; Aremu, M.O.; Kalifa, U.J. Chemical Composition and Antioxidant Activities of Beetroot Peel. Afr. J. Eng. Environ. Res. 2021, 2, 62–73. [Google Scholar]
- Shakir, B.K.; Simone, V. Estimation of Betalain Content in Beetroot Peel Powder. Ital. J. Food Sci. 2024, 36, 53–57. [Google Scholar] [CrossRef]
- Tamayo Tenorio, A. Sugar Beet Leaves for Functional Ingredients. In Food Process Engineering; Wageningen University: Wageningen, The Netherlands, 2017. [Google Scholar]
- Akyüz, A.; Ersus, S. Optimization of Enzyme Assisted Extraction of Protein from the Sugar Beet (Beta vulgaris L.) Leaves for Alternative Plant Protein Concentrate Production. Food Chem. 2021, 335, 127673. [Google Scholar] [CrossRef] [PubMed]
- Socas-Rodríguez, B.; Álvarez-Rivera, G.; Valdés, A.; Ibáñez, E.; Cifuentes, A. Food By-Products and Food Wastes: Are They Safe Enough for Their Valorization? Trends Food Sci. Technol. 2021, 114, 133–147. [Google Scholar] [CrossRef]
- Sulakhiya, K.; Patel, V.K.; Saxena, R.; Dashore, J.; Srivastava, A.K.; Rathore, M. Effect of Beta vulgaris Linn. Leaves Extract on Anxiety- and Depressive-like Behavior and Oxidative Stress in Mice after Acute Restraint Stress. Pharmacogn. Res. 2016, 8, 1–7. [Google Scholar] [CrossRef]
- Bloot, A.P.M.; Kalschne, D.L.; Amaral, J.A.S.; Baraldi, I.J.; Canan, C. A Review of Phytic Acid Sources, Obtention, and Applications. Food Rev. Int. 2023, 39, 73–92. [Google Scholar] [CrossRef]
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 20 September 2024).
- Miraj, S. Chemistry and Pharmacological Effect of Beta vulgaris: A Systematic Review. Der Pharm. Lett. 2016, 8, 404–409. [Google Scholar]
- Rahimi, P.; Abedimanesh, S.; Mesbah-Namin, S.A.; Ostadrahimi, A. Betalains, the Nature-Inspired Pigments, in Health and Diseases. Crit. Rev. Food Sci. Nutr. 2019, 59, 2949–2978. [Google Scholar] [CrossRef] [PubMed]
- Nemzer, B.; Pietrzkowski, Z.; Spórna, A.; Stalica, P.; Thresher, W.; Michałowski, T.; Wybraniec, S. Betalainic and Nutritional Profiles of Pigment-Enriched Red Beet Root (Beta vulgaris L.) Dried Extracts. Food Chem. 2011, 127, 42–53. [Google Scholar] [CrossRef]
- Singh, J.P.; Kaur, A.; Shevkani, K.; Singh, N. Composition, bioactive compounds and antioxidant activity of common Indian fruits and vegetables. J. Food Sci. Technol. 2016, 53, 4056–4066. [Google Scholar] [CrossRef]
- Kathiravan, T.; Nadanasabapathi, S.; Kumar, R. Standardization of Process Condition in Batch Thermal Pasteurization and Its Effect on Antioxidant, Pigment and Microbial Inactivation of Ready to Drink (RTD) Beetroot (Beta vulgaris L.) Juice. Int. Food Res. J. 2014, 21, 1305–1312. [Google Scholar]
- Maraie, N.K.; Abdul-Jalil, T.Z.; Alhamdany, A.T.; Janabi, H.A. Phytochemical Study of the Iraqi Beta vulgaris Leaves and Its Clinical Application for the Treatment of Different Dermatological Diseases. World J. Pharm. Pharm. Sci. 2014, 3, 5–19. [Google Scholar]
- Georgiev, V.G.; Weber, J.; Kneschke, E.-M.; Denev, P.N.; Bley, T.; Pavlov, A.I. Antioxidant Activity and Phenolic Content of Betalain Extracts from Intact Plants and Hairy Root Cultures of the Red Beetroot Beta vulgaris Cv. Detroit Dark Red. Plant Foods Hum. Nutr. 2010, 65, 105–111. [Google Scholar] [CrossRef]
- Płatosz, N.; Sawicki, T.; Wiczkowski, W. Profile of Phenolic Acids and Flavonoids of Red Beet and Its Fermentation Products. Does Long-Term Consumption of Fermented Beetroot Juice Affect Phenolics Profile in Human Blood Plasma and Urine? Pol. J. Food Nutr. Sci. 2020, 70, 55–65. [Google Scholar] [CrossRef]
- Vulic, J.J.; Ćebović, T.N.; Čanadanović-Brunet, J.M.; Ćetković, G.S.; Čanadanović, V.M.; Djilas, S.M.; Tumbas Šaponjac, V.T. In Vivo and in Vitro Antioxidant Effects of Beetroot Pomace Extracts. J. Funct. Foods 2014, 6, 168–175. [Google Scholar] [CrossRef]
- Mikołajczyk-Bator, K.; Błaszczyk, A.; Czyżniejewski, M.; Kachlicki, P. Identification of Saponins from Sugar Beet (Beta vulgaris) by Low and High-Resolution HPLC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1029–1030, 36–47. [Google Scholar] [CrossRef]
- Mroczek, A.; Kapusta, I.; Janda, B.; Janiszowska, W. Triterpene Saponin Content in the Roots of Red Beet (Beta vulgaris L.) Cultivars. J. Agric. Food Chem. 2012, 60, 12397–12402. [Google Scholar] [CrossRef] [PubMed]
- Hatlestad, G.J.; Sunnadeniya, R.M.; Akhavan, N.A.; Gonzalez, A.; Goldman, I.L.; McGrath, J.M.; Lloyd, A.M. The Beet R Locus Encodes a New Cytochrome P450 Required for Red Betalain Production. Nat. Genet. 2012, 44, 816–820. [Google Scholar] [CrossRef] [PubMed]
- Martins, I.R.; da Silva Martins, L.H.; Chisté, R.C.; Picone, C.S.F.; Joele, M.R.S.P. Betalains from vegetable peels: Extraction methods, stability, and applications as natural food colorants. Food Res. Int. 2024, 195, 114956. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Munekata, P.E.S.; Pateiro, M.; Maggiolino, A.; Bohrer, B.; Lorenzo, J.M. Red Beetroot. A Potential Source of Natural Additives for the Meat Industry. Appl. Sci. 2020, 10, 8340. [Google Scholar] [CrossRef]
- Aykln-Dinçer, E.; Güngor, K.K.; Cąǧlar, E.; Erbas, M. The Use of Beetroot Extract and Extract Powder in Sausages as Natural Food Colorant. Int. J. Food Eng. 2021, 17, 75–82. [Google Scholar] [CrossRef]
- Sahni, P.; Shere, D.M. Utilization of Fruit and Vegetable Pomace as Functional Ingredient in Bakery Products: A Review. Asian J. Dairy Food Res. 2018, 37, 202–211. [Google Scholar]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary Fibre and Fibre-Rich by-Products of Food Processing: Characterisation, Technological Functionality and Commercial Applications: A Review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Parveen, H.; Bajpai, A.; Bhatia, S.; Singh, S. Analysis of Biscuits Enriched with Fbre by Incorporating Carrot and Beetroot Pomace Powder. Indian J. Nutr. Diet. 2017, 54, 403–413. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Mereddy, R.; Maqsood, S. Recent Developments in Emerging Technologies for Beetroot Pigment Extraction and Its Food Applications. Food Chem. 2021, 356, 129611. [Google Scholar] [CrossRef]
- Salah, H.; Rebecca, L.J.; Sharmila, S.; Das, P.; Seshiah, C. Extraction and Purification of Carotenoids from Vegetables. J. Chem. Pharm. Res. 2014, 6, 594–598. [Google Scholar]
- Zein, H.; El-Moneim, A.; Hashish, S.; Ismaiel, G.H.H. The Antioxidant and Anticancer Activities of Swiss Chard and Red Beetroot Leaves. Curr. Sci. Int. 2015, 4, 491–498. [Google Scholar]
- Adhikari, A.; Saha, A.; Indu, R.; Sur, T.K.; Das, A.K. Evaluation of Antiinflammatory Effect of Beetroot Extract in Animal Models. Int J Basic Clin Pharmacol 2017, 6, 2853–2858. [Google Scholar] [CrossRef]
- Olumese, F.E.; Oboh, H.A. Aqueous Beetroot Juice Extract Improves Renal Function and Some Biochemical Parameters in Carbon Tetrachloride-Induced Toxicity in Sprague Dawley Rats. Ann. Trop. Pathol. 2020, 11, 171–175. [Google Scholar]
- Odhav, B.; Beekrum, S.; Akula, U.; Baijnath, H. Preliminary Assessment of Nutritional Value of Traditional Leafy Vegetables in KwaZulu-Natal, South Africa. J. Food Compost. Anal. 2007, 20, 430–435. [Google Scholar] [CrossRef]
- Ekholm, P.; Reinivuo, H.; Mattila, P.; Pakkala, H.; Koponen, J.; Happonen, A.; Hellström, J.; Ovaskainen, M.-L. Changes in the Mineral and Trace Element Contents of Cereals, Fruits and Vegetables in Finland. J. Food Compost. Anal. 2007, 20, 487–495. [Google Scholar] [CrossRef]
- Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. The Potential Benefits of Red Beetroot Supplementation in Health and Disease. Nutrients 2015, 7, 2801–2822. [Google Scholar] [CrossRef]
- Egbuna, C.; Mishra, A.P.; Goyal, M.R. Preparation of Phytopharmaceuticals for the Management of Disorders; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Güçlü-Ustündağ, O.; Mazza, G. Saponins: Properties, Applications and Processing. Crit. Rev. Food Sci. Nutr. 2007, 47, 231–258. [Google Scholar] [CrossRef]
- Vasconcellos, J.; Conte-Junior, C.; Silva, D.; Pierucci, A.P.; Paschoalin, V.; Alvares, T.S. Comparison of Total Antioxidant Potential, and Total Phenolic, Nitrate, Sugar, and Organic Acid Contents in Beetroot Juice, Chips, Powder, and Cooked Beetroot. Food Sci. Biotechnol. 2016, 25, 79–84. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Molina-Montes, E.; Verardo, V.; Artacho, R.; García-Villanova, B.; Guerra-Hernández, E.J.; Ruíz-López, M.D. Changes in Dietary Behaviours during the COVID-19 Outbreak Confinement in the Spanish COVIDiet Study. Nutrients 2020, 12, 1730. [Google Scholar] [CrossRef]
- Lazăr (Mistrianu), S.; Constantin, O.E.; Horincar, G.; Andronoiu, D.G.; Stănciuc, N.; Muresan, C.; Râpeanu, G. Beetroot By-Product as a Functional Ingredient for Obtaining Value-Added Mayonnaise. Processes 2022, 10, 227. [Google Scholar] [CrossRef]
- dos Baião, D.S.; d’El-Rei, J.; Alves, G.; Fritsch Neves, M.; Perrone, D.; Del Aguila, E.M.; Flosi Paschoalin, V.M. Chronic Effects of Nitrate Supplementation with a Newly Designed Beetroot Formulation on Biochemical and Hemodynamic Parameters of Individuals Presenting Risk Factors for Cardiovascular Diseases: A Pilot Study. J. Funct. Foods 2019, 58, 85–94. [Google Scholar] [CrossRef]
- Hobbs, D.A.; George, T.W.; Lovegrove, J.A. Differential Effect of Beetroot Bread on Postprandial DBP According to Glu298Asp Polymorphism in the eNOS Gene: A Pilot Study. J. Hum. Hypertens. 2014, 28, 726–730. [Google Scholar] [CrossRef] [PubMed]
- Ranawana, V.; Raikos, V.; Campbell, F.; Bestwick, C.; Nicol, P.; Milne, L.; Duthie, G. Breads Fortified with Freeze-Dried Vegetables: Quality and Nutritional Attributes. Part 1: Breads Containing Oil as an Ingredient. Foods 2016, 5, 19. [Google Scholar] [CrossRef] [PubMed]
- Kohajdová, Z.; Karovičová, J.; Kuchtová, V.; Lauková, M. Utilisation of Beetroot Powder for Bakery Applications. Chem. Pap. 2018, 72, 1507–1515. [Google Scholar] [CrossRef]
- Chauhan, S.; Rajput, H. Production of Gluten Free and High Fiber Cookies Using Beet Root Waste Powder and Wheat Flour Husk. J. Pharm. Innov. 2018, 7, 556. [Google Scholar]
- Yadav, M.; Masih, D.; Sonkar, C. Development and Quality Evaluation of Beetroot Powder Incorporated Yogurt. Int. J. Sci. Eng. Technol. 2016, 4, 582–586. [Google Scholar]
- Chaudhari, S.N.; Nikam, M.P. Development and Sensory Analysis of Beetroot Jelly. Int. J. Sci. Res. 2015, 4, 827–830. [Google Scholar]
- Jovanović, M.; Zlatanović, S.; Micić, D.; Bacić, D.; Mitić-Ćulafić, D.; Đuriš, M.; Gorjanović, S. Functionality and Palatability of Yogurt Produced Using Beetroot Pomace Flour Granulated with Lactic Acid Bacteria. Foods 2021, 10, 1696. [Google Scholar] [CrossRef]
- Petrović, M.S.; Veljović, N.; Tomić, S.; Zlatanović, T.; Tosti, P.; Vukosavljević, S. Formulation of Novel Liqueurs from Juice Industry Waste: Consumer Acceptance, Phenolic Profile and Preliminary Monitoring of Antioxidant Activity and Colour Changes During Storage. Food Technol. Biotechnol. 2021, 59, 282–294. [Google Scholar] [CrossRef]
- Abdo, E.; El-Sohaimy, S.; Shaltout, O.; Abdalla, A.; Zeitoun, A. Nutritional Evaluation of Beetroots (Beta vulgaris L.) and Its Potential Application in a Functional Beverage. Plants 2020, 9, 1752. [Google Scholar] [CrossRef]
- Evanuarini, H.; Susilo, A.; Amertaningtyas, D. Physico-Chemical Properties, Amino Acid and Fatty Acid Profile of Chicken Patties Added with Beetroot Peel Flour as Natural Colourant. J. Food Nutr. Res. 2023, 62, 170–176. [Google Scholar]
- Duthie, G.; Campbell, F.; Bestwick, C.; Stephen, S.; Russell, W. Antioxidant Effectiveness of VegetablePowders on the Lipid and Protein Oxidative Stability of Cooked Turkey Meat Patties. Implic. Health 2013, 5, 1241–1252. [Google Scholar]
- Jeong, H.J.; Lee, H.C.; Chin, K.B. Effect of Red Beet on Quality and Color Stability of Low-Fat Sausages Duringrefrigerated Storage. Korean J. Food Sci. Anim. Resour. 2010, 30, 1014–1023. [Google Scholar] [CrossRef]
- Swastike, W.; Suryanto, E.; Rusman, R.; Hanim, C.; Jamhari, J.; Erwanto, Y.; Jumari, J. The Substitution Effects of Tapioca Starch and Beetroot Powder as Filler On The Physical and Sensory Characteristics Of Chicken Sausage. J. Ilmu Dan Teknol. Has. Ternak 2020, 15, 97–107. [Google Scholar] [CrossRef]
- Yavuzer, E.; Özogul, F.; Özogul, Y. Impact of Icing with Potato, Sweet Potato, Sugar Beet, and Red Beet Peel Extract on the Sensory, Chemical, and Microbiological Changes of Rainbow Trout (Oncorhynchus mykiss) Fillets Stored at (3 ± 1 °C). Aquac. Int. 2020, 28, 187–197. [Google Scholar] [CrossRef]
- Alshehry, G.A.; Taif University, Saudi Arabia. Utilization of Beetroot as A Natural Antioxidant, Pigment and Antimicrobial in Cupcake during the Storage Period. Int. J. Eng. Res. Technol. 2019, V8, 652–659. [Google Scholar] [CrossRef]
- Amnah, M.A.A. Nutritional, Sensory and Biological Study of Biscuits Fortified with Red Beetroots. Life Sci. J. 2013, 10, 1579–1584. [Google Scholar]
- Dhadage, K.B.; Shinde, G.S.; Gadhave, R.K. Developemnt of the Functional Food i.e. Beetroot Fortified Multigrain Snacks. Int. J. Sci. Res. 2015, 4, 469–473. [Google Scholar]
- Fatma, S.; Sharma, N.; Singh, S.P.; Jha, A.; Kumar, A. Fuzzy Analysis of Sensory Data for Ranking of Beetroot Candy. ETP Int. J. Food Eng. 2016, 2, 26–30. [Google Scholar] [CrossRef]
- Kumar, V.; Kushwaha, R.; Goyal, A.; Tanwar, B.; Kaur, J. Process Optimization for the Preparation of Antioxidant Rich Ginger Candy Using Beetroot Pomace Extract. Food Chem. 2018, 245, 168–177. [Google Scholar] [CrossRef]
- Mohamed, Z.E.M.; Ismaiel, G.H.H.; Rizk, A.E. Quality Characterizations of Pasta Fortified with Red Beetroot and Red Radish. Int. J. Food Sci. Biotechnol. 2016, 1, 1–7. [Google Scholar]
- Ingle, M.; Ingle, M.P.; Thorat, S.S.; Nimbalkar, C.A.; Nawkar, R.R. Nutritional Evaluation of Cookies Enriched with Beetroot (Beta vulgaris L.) Powder. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1888–1896. [Google Scholar] [CrossRef]
- Shere, P.D.; Chaudhari, D.N.; Mali, P.T. Preparation and Characterization of Beetroot Fortified Cheese Crackers to Enhance Nutritional Benefits. Int. J. Food Sci. Nutr. 2018, 3, 52–55. [Google Scholar]
- Pereira De Oliveira, L.C.A.K.N.; Farias, T.; Baldus, M.H. Scabora Beetroot Pulp and Residue Improve the Shelf Life of Greek Yogurt When Added as Syrup. Contrib. a Las Cienc. Soc. 2024, 17, e8233. [Google Scholar] [CrossRef]
- Niemira, J.; Galus, S. Valorization of Red Beetroot (Beta vulgaris L.) Pomace Combined with Golden Linseed (Lini Semen) for the Development of Vegetable Crispbreads as Gluten-Free Snacks Rich in Bioactive Compounds. Molecules 2024, 29, 2105. [Google Scholar] [CrossRef]
- Ozaki, M.M.; Munekata, P.E.S.; de Lopes, A.S.; do Nascimento, M.D.S.; Pateiro, M.; Lorenzo, J.M.; Pollonio, M.A.R. Using Chitosan and Radish Powder to Improve Stability of Fermented Cooked Sausages. Meat Sci. 2020, 167, 108165. [Google Scholar] [CrossRef]
- Lazăr, S.M. Valorization of by-Products Resulting from Red Beet Processing. Ph.D. Thesis, “Dunărea de Jos” University of Galați, Galați, Romania, 2023. [Google Scholar]
- Mridula, D.; Gupta, R.K.; Bhadwal, S.; Khaira, H.; Tyagi, S.K. Optimization of Food Materials for Development of Nutritious Pasta Utilizing Groundnut Meal and Beetroot. J. Food Sci. Technol. 2016, 53, 1834–1844. [Google Scholar] [CrossRef]
- Sandhya, P.S.; Lakshmy, P.S. Formulation of Beetroot Cream Cheese Spread. Int. J. Inform. Res. Rev. 2017, 4, 3710–3712. [Google Scholar]
- Guo, Z.; Ge, X.; Li, W.; Yang, L.; Han, L.; Yu, Q.-L. Active-Intelligent Film Based on Pectin from Watermelon Peel Containing Beetroot Extract to Monitor the Freshness of Packaged Chilled Beef. Food Hydrocoll. 2021, 119, 106751. [Google Scholar] [CrossRef]
- Zin, M.M.; Marki, E.; Banvolgyi, S. Conventional Extraction of Betalain Compounds from Beetroot Peels with Aqueous Ethanol Solvent. Acta Aliment. 2020, 49, 163–169. [Google Scholar] [CrossRef]
- Silva, J.; Bolanho, B.C.; Stevanato, N. Ultrasound-Assisted Extraction of Red Beet Pigments (Beta vulgaris L.): Influence of Operational Parameters and Kinetic Modeling. J. Food Process. Preserv. 2020, 44, e14762. [Google Scholar] [CrossRef]
- Fadhallah, E.G.; Rinjani, S.E.R.; Anantasya, A.K.S.; Pranata, A.; Triharto, R.; Dameswary, A.H. Potency of Betacyanin from Beetroot (Beta vulgaris) Peel Waste as Chicken Meat Freshness Indicator in Sago Starch-Based Biodegradable Smart Packaging. MOJ Ecol. Environ. Sci. 2023, 8, 186–190. [Google Scholar] [CrossRef]
- Beluhan, S.; Herceg, F.; Leboš Pavunc, A.; Djaković, S. Preparation and Structural Properties of Bacterial Nanocellulose Obtained from Beetroot Peel Medium. Energies 2022, 15, 9374. [Google Scholar] [CrossRef]
- Popescu, V. Chapter 7—New Trends in the Application of Natural Dyes. In Textile Dyeing, Renewable Dyes and Pigments; Elsevier: Amsterdam, The Netherlands, 2024; pp. 111–137. [Google Scholar] [CrossRef]
- Popescu, V.; Blaga, A.C.; Pruneanu, M.; Cristian, I.N.; Pîslaru, M.; Popescu, A.; Rotaru, V.; Crețescu, I.; Cașcaval, D. Green Chemistry in the Extraction of Natural Dyes from Colored Food Waste, for Dyeing Protein Textile Materials. Polymers 2021, 13, 3867. [Google Scholar] [CrossRef]
- Ahmed Moussa, A.; Gomaa, A.; El-Azabawy, R.; El-Bayaa, R.E. Valorization Beetroot Waste for Eco-Friendly Extraction of Natural Dye for Textile and Food Applications. Egypt. J. Chem. 2022, 65, 725–736. [Google Scholar] [CrossRef]
- Adeel, S.S.; Abrar, M.; Fazal-Ur-Rehman, M.; Hussaan, F. Batool Chapter 15—Evolving Role of Plant Pigments in the Cosmetic Industry Renewable Dyes and Pigments; Elsevier: Amsterdam, The Netherlands, 2024; pp. 307–319. [Google Scholar]
- Montenegro, C.F.; Kwong, D.A.; Minow, Z.A.; Davis, B.A.; Lozada, C.F.; Casazza, G.A. Betalain-Rich Concentrate Supplementation Improves Exercise Performance and Recovery in Competitive Triathletes. Appl. Physiol. Nutr. Metab. 2017, 42, 166–172. [Google Scholar] [CrossRef]
- Mumford, P.W.; Kephart, W.C.; Romero, M.A.; Haun, C.T.; Mobley, C.B.; Osburn, S.C.; Healy, J.C.; Moore, A.N.; Pascoe, D.D.; Ruffin, W.C.; et al. Effect of 1-Week Betalain-Rich Beetroot Concentrate Supplementation on Cycling Performance and Select Physiological Parameters. Eur. J. Appl. Physiol. 2018, 118, 2465–2476. [Google Scholar] [CrossRef]
- Khan, M.I.; Giridhar, P. Plant Betalains: Chemistry and Biochemistry. Phytochemistry 2015, 117, 267–295. [Google Scholar] [CrossRef]
- da Silva, D.V.T.; dos Santos Baião, D.; de Oliveira Silva, F.; Alves, G.; Perrone, D.; Del Aguila, E.M.; Paschoalin, V.M.F. Betanin, a natural food additive: Stability, bioavailability, antioxidant and preservative ability assessments. Molecule 2019, 24, 458. [Google Scholar] [CrossRef]
- Khan, M.I. Plant Betalains: Safety, Antioxidant Activity, Clinical Efficacy, and Bioavailability. Compr. Rev. Food Sci. Food Saf. 2016, 15, 316–330. [Google Scholar] [CrossRef]
- Del Amo-Mateos, E.M.; Fernández-Delgado, S.; Lucas, J.C.; López-Linares, M.T.; García-Cubero, M. Coca Valorization of Discarded Red Beetroot through the Recovery of Bioactive Compounds and the Production of Pectin by Surfactant-Assisted Microwave Extraction. J. Clean. Prod. 2023, 389, 135995. [Google Scholar] [CrossRef]
- Fissore, E.N.; Rojas, A.M.; Gerschenson, L.N.; Williams, P.A. Butternut and Beetroot Pectins: Characterization and Functional Properties. Food Hydrocoll. 2013, 31, 172–182. [Google Scholar] [CrossRef]
- Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Guine, R.P.F.; Mendes, M.; Gonçalves, F. Optimization of Bioactive Compound’s Extraction Conditions from Beetroot by Means of Artificial Neural Networks (ANN). Agric. Eng. Int. CIGR J. 2019, 21, 216–223. [Google Scholar]
- Sturzoiu, A.; Stroescu, M.; Stoica, A.; Dobre, T. Betanine Extraction from Beta vulgaris-Experimental Research and Statistical Modeling. J. Biochem. Technol. 2011, 73, 10–14. [Google Scholar]
- Halwani, A.F.; Sindi, H.A.; Jambi, H.A. Characterization of Physical Properties of Red Beet Pigments. J. Biochem. Technol. 2018, 9, 10–14. [Google Scholar]
- Kushwaha, R.; Kumar, V.; Vyas, G.; Kaur, J. Optimization of Different Variable for Eco-Friendly Extraction of Betalains and Phytochemicals from Beetroot Pomace. Waste Biomass Valorization 2018, 9, 1485–1494. [Google Scholar] [CrossRef]
- Lazar, S.; Constantin, O.E.; Stanciuc, N.; Aprodu, I.; Croitoru, C.; Râpeanu, G. Optimization of Betalain Pigments Extraction Using Beetroot By-Products as a Valuable Source. Inventions 2021, 6, 50. [Google Scholar] [CrossRef]
- Šeremet, D.; Durgo, K.; Jokić, S.; Huđek, A.; Vojvodić Cebin, A.; Mandura, A.; Jurasović, J.; Komes, D. Valorization of Banana and Red Beetroot Peels: Determination of Basic Macrocomponent Composition, Application of Novel Extraction Methodology and Assessment of Biological Activity in Vitro. Sustainability 2020, 12, 4539. [Google Scholar] [CrossRef]
- Paramita, O.; Ansori, M.; Kusumastuti, A.; Fatimah, N. Natural Food Colourant of Beetroot Skin (Beta vulgaris L): Characterisation Study. IOP Conf. Ser. Earth Environ. Sci. 2022, 969, 012047. [Google Scholar] [CrossRef]
- Fernando, G.S.N.; Wood, K.; Papaioannou, E.H.; Marshall, L.J.; Sergeeva, N.N.; Boesch, C. Application of an Ultrasound-Assisted Extraction Method to Recover Betalains and Polyphenols from Red Beetroot Waste. ACS Sustain. Chem. Eng. 2021, 9, 8736–8747. [Google Scholar] [CrossRef]
- Lasta, H.F.B.; Lentz, L.; Mezzomo, N.; Ferreira, S.R.S. Supercritical CO2 to Recover Extracts Enriched in Antioxidant Compounds from Beetroot Aerial Parts. Biocatal. Agric. Biotechnol. 2019, 19, 101169. [Google Scholar] [CrossRef]
- Maran, J.P.; Priya, B. Multivariate Statistical Analysis and Optimization of Ultrasound-Assisted Extraction of Natural Pigments from Waste Red Beet Stalks. J. Food Sci. Technol. 2016, 53, 792–799. [Google Scholar] [CrossRef]
- Singhee, D. Review on Natural Dyes for Textiles from Wastes. In Chemistry and Technology of Natural and Synthetic Dyes and Pigments; IntechOpen: London, UK, 2020. [Google Scholar]
- Singh, S.; Tripathi, A.D.; Chauhan, A.K.; Gupta, A.K. Production of Beetroot (Beta vulgaris L.) Wine Using Different Saccharomyces Strains and Study of Physicochemical and Sensorial Characteristics. J. Food Sci. Technol. 2021, 58, 4442–4449. [Google Scholar] [CrossRef]
- Singh, A.; Ganesapillai, M.; Gnanasundaram, N. Optimization of Extraction of Betalain Pigments from Beta vulgaris Peel by Microwave Pretreatment. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 032004. [Google Scholar] [CrossRef]
- Zin, M.M.; Bánvölgyi, S. Emerging Technology Approach for Extractability and Stability of Betalains from the Peel of Beetroot (Beta vulgaris L.). Biomass Convers. Biorefinery 2023, 13, 10759–10769. [Google Scholar] [CrossRef]
- Rosa, M.E.; Ferreira, A.M.; Neves, C.M.; Almeida, M.R.; Barros, R.; Cristovão, A.C.; Sousa, A.C.; Reis, P.M.; Rebelo, L.P.N.; Esperança, J.M.; et al. Coutinho and Mara G. Freire Valorisation of Red Beet Waste: One-Step Extraction and Separation of Betalains and Chlorophylls Using Thermoreversible Aqueous Biphasic systems. Green Chem. 2023, 25, 1852–1864. [Google Scholar] [CrossRef]
- Borjan, D.; Šeregelj, V.; Andrejč, D.C.; Pezo, L.; Šaponjac, V.T.; Knez, Ž.; Vulić, J.; Marevci, M.K. Green Techniques for Preparation of Red Beetroot Extracts with Enhanced Biological Potential. Antioxidants 2022, 11, 805. [Google Scholar] [CrossRef]
- Cardoso-Ugarte, G.A.; Sosa-Morales, M.E.; Ballard, T.; Liceaga, A.; San Martín-González, M.F. Microwave-Assisted Extraction of Betalains from Red Beet (Beta vulgaris). LWT 2014, 59, 276–282. [Google Scholar] [CrossRef]
- Paciulli, M.; Medina-Meza, I.G.; Chiavaro, E.; Barbosa-Cánovas, G.V. Impact of Thermal and High Pressure Processing on Quality Parameters of Beetroot (Beta vulgaris L.). LWT 2016, 68, 98–104. [Google Scholar] [CrossRef]
- Martins, N.; Roriz, C.L.; Morales, P.; Barros, L.; Ferreira, I.C.F.R. Coloring Attributes of Betalains: A Key Emphasis on Stability and Future Applications. Food Funct. 2017, 8, 1357–1372. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fabiano-Tixier, A.-S.; Abert-Vian, M.; Chemat, F. Microwave-Assisted Extraction of Antioxidants and Food Colors. In Food Engineering Series; Springer: Boston, MA, USA, 2012; pp. 103–125. [Google Scholar]
- Soquetta, M.B.; de Terra, L.M.; Bastos, C.P. Green Technologies for the Extraction of Bioactive Compounds in Fruits and Vegetables. CyTA-J. Food 2018, 16, 400–412. [Google Scholar] [CrossRef]
- US-FDA, United States—Food and Drug Administration. 2016. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=184.1240 (accessed on 13 April 2024).
- Luengo, E.; Martinez, J.M.; Álvarez, I.; Raso, J. Comparison of the Efficacy of Pulsed Electric Fields Treatments in the Millisecond and Microsecond Range for the Extraction of Betanine from Red Beetroot. In 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies; Springer: Singapore, 2016; pp. 375–378. [Google Scholar]
- Viganó, J.; Martinez, J. Trends for the Application of Passion Fruit Industrial By-Products: A Review on the Chemical Composition and Extraction Techniques of Phytochemicals. Food Public Health 2015, 5, 164–173. [Google Scholar] [CrossRef]
- Armenta, S.; Esteve-Turrillas, F.A.; Garrigues, S.; de la Guardia, M. Green Analytical Chemistry. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–25. [Google Scholar]
- Arias, A.; Feijoo, G.; Moreira, M.T. Assessing of the Most Appropriate Biotechnological Strategy on the Recovery of Antioxidants from Beet Wastes by Applying the Life Cycle Assessment (LCA) Methodology. Food Bioprod. Process. 2022, 135, 178–189. [Google Scholar] [CrossRef]
- Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme Assisted Extraction of Biomolecules as an Approach to Novel Extraction Technology: A Review. Food Res. Int. 2018, 108, 309–330. [Google Scholar] [CrossRef]
- Yusuf, M.; Shabbir, M.; Mohammad, F. Natural Colorants: Historical, Processing and Sustainable Prospects. Nat. Prod. Bioprospect. 2017, 7, 123–145. [Google Scholar] [CrossRef]
- Rastogi, N.K.; Raghavarao, K.S.M.S. Mass Transfer during Osmotic Dehydration of Pineapple: Considering Fickian Diffusion in Cubical Configuration. LWT 2004, 37, 43–47. [Google Scholar] [CrossRef]
- Calva-Estrada, S.J.; Jiménez-Fernández, M.; Lugo-Cervantes, E. Betalains and Their Applications in Food: The Current State of Processing, Stability and Future Opportunities in the Industry. Food Chem. 2022, 4, 100089. [Google Scholar] [CrossRef]
- Castro-Enríquez, D.D.; Montaño-Leyva, B.; Del Toro-Sánchez, C.L.; Juaréz-Onofre, J.E.; Carvajal-Millan, E.; Burruel-Ibarra, S.E.; Tapia-Hernández, J.A.; Barreras-Urbina, C.G.; Rodríguez-Félix, F. Stabilization of Betalains by Encapsulation—A Review. J. Food Sci. Technol. 2020, 57, 1587–1600. [Google Scholar] [CrossRef]
- Mkhari, T.; Kaseke, T.; Fawole, O.A. Encapsulation of Betalain-Rich Extract from Beetroot Postharvest Waste Using a Binary Blend of Gum Arabic and Maltodextrin to Promote a Food Circular Bioeconomy. Front. Nutr. 2023, 10, 1235372. [Google Scholar] [CrossRef] [PubMed]
- Tekin, İ.K.; Özcan, S. Ersus Optimization of Ionic Gelling Encapsulation of Red Beet (Beta vulgaris L.) Juice Concentrate and Stability of Betalains. Biocatal. Agric. Biotechnol. 2023, 51, 102774. [Google Scholar] [CrossRef]
- Tumbas Šaponjac, V.; Čanadanović-Brunet, J.; Ćetković, G.; Jakišić, M.; Djilas, S.; Vulić, J. Encapsulation of Beetroot Pomace Extract: RSM Optimization, Storage and Gastrointestinal Stability. Molecules 2016, 21, 584. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Ghoshal, G. Encapsulation of Betalains Extracted from Beta vulgaris L. Pomace Powder Using Different Hydrocolloids and Its Characterization. Food Bioprocess Technol. 2024, 18, 1968–1982. [Google Scholar] [CrossRef]
- Ravichandran, K.; Palaniraj, R.; Saw, N.M.M.T.; Gabr, A.M.M.; Ahmed, A.R.; Knorr, D.; Smetanska, I. Effects of Different Encapsulation Agents and Drying Process on Stability of Betalains Extract. J. Food Sci. Technol. 2014, 51, 2216–2221. [Google Scholar] [CrossRef]
- Shofinita, D.M.; Fawwaz, A.B. Achmadi Betalain Extracts: Drying Techniques, Encapsulation, and Application in Food Industry. Food Front. 2023, 4, 576–623. [Google Scholar] [CrossRef]
- Coimbra, P.P.S.; Silva-e-Silva, A.C.A.G.D.; Antonio, A.D.S.; Pereira, H.M.G.; Veiga-Junior, V.F.D.; Felzenszwalb, I.; Araujo-Lima, C.F.; Teodoro, A.J. Antioxidant Capacity, Antitumor Activity and Metabolomic Profile of a Beetroot Peel Flour. Metabolites 2023, 13, 277. [Google Scholar] [CrossRef]
- Hobbs, D.A.; Kaffa, N.; George, T.W.; Methven, L.; Lovegrove, J.A. Blood Pressure-Lowering Effects of Beetroot Juice and Novel Beetroot-Enriched Bread Products in Normotensive Male Subjects. Br. J. Nutr. 2012, 108, 2066–2074. [Google Scholar] [CrossRef]
- Rahimi, P.; Mesbah-Namin, S.A.; Ostadrahimi, A.; Separham, A.; Jafarabadi, M.A. Betalain-and Betacyanin-Rich Supplements’impacts on the PBMC SIRT1 and LOX1 Genes Expression and Sirtuin-1 Protein Levels in Coronary Artery Disease Patients: A Pilot Crossover Clinical Trial. J. Funct. Foods 2019, 60, 103401. [Google Scholar] [CrossRef]
- Salloum, F.N.; Sturz, G.R.; Yin, C.; Rehman, S.; Hoke, N.N.; Kukreja, R.C.; Xi, L. Beetroot Juice Reduces Infarct Size and Improves Cardiac Function Following Ischemia-Reperfusion Injury: Possible Involvement of Endogenous H2S. Exp. Biol. Med. 2015, 240, 669–681. [Google Scholar] [CrossRef]
- Vulic, J.; Canadanovic-Brunet, J.; Cetkovic, G. Antioxidant and Cell Growth Activities of Beet Rootpomace Extracts. J. Func. Foods 2012, 4, 670–678. [Google Scholar] [CrossRef]
- Pietrzkowski, Z.; Nemzer, B.; Spórna, A.; Stalica, P.; Tresher, W.; Keller, R.; Wybraniec, S. Influence of Betalain-Rich Extract on Reduction of Discomfort Associated with Osteoarthritis. New Med. 2010, 1, 12–17. [Google Scholar]
- Zhang, Q.; Pan, J.; Wang, Y.; Lubet, R.; You, M. Beetroot Red (Betanin) Inhibits Vinyl Carbamate-and Benzo (a) Pyrene-Induced Lung Tumorigenesis through Apoptosis. Mol. Carcinog. 2013, 52, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; An, D.; Nguyen, C.T.; Patil, B.S.; Kim, J.; Yoo, K.S. Betalain and betaine composition of greenhouse-or field-produced beetroot (Beta vulgaris L.) and inhibition of HepG2 cell proliferation. J. Agric. Food Chem. 2014, 62, 1324–1331. [Google Scholar] [CrossRef]
- Kapadia, G.J.; Rao, G.S.; Ramachandran, C.; Iida, A.; Suzuki, N.; Tokuda, H. Synergistic Cytotoxicity of Red Beetroot (Beta vulgaris L.) Extract with Doxorubicin in Human Pancreatic, Breast and Prostate Cancer Cell Lines. J. Complement. Integr. Med. 2013, 10, 113–122. [Google Scholar] [CrossRef]
- Lee, J.H.; Son, C.W.; Kim, M.Y.; Kim, M.H.; Kim, H.R.; Kwak, E.S.; Kim, M.R. Red Beet (Beta vulgaris L.) Leaf Supplementation Improves Antioxidant Status in C57BL/6J Mice Fed High-Fat High Cholesterol Diet. Nutr. Res. Pract. 2009, 3, 114–121. [Google Scholar] [CrossRef]
- Esatbeyoglu, T.; Wagner, A.E.; Motafakkerazad, R.; Nakajima, Y.; Matsugo, S.; Rimbach, G. Free Radical Scavenging and Antioxidant Activity of Betanin: Electron Spin Resonance Spectroscopy Studies and Studies in Cultured Cells. Food Chem. Toxicol. 2014, 73, 119–126. [Google Scholar] [CrossRef]
- Fu, Y.; Shi, J.; Xie, S.-Y.; Zhang, T.-Y.; Soladoye, O.P.; Aluko, R.E. Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. J. Agric. Food Chem. 2020, 68, 11595–11611. [Google Scholar] [CrossRef]
- Zhao, G.; He, F.; Wu, C. Betaine in Inflammation: Mechanistic Aspects and Applications. Front. Immunol. 2018, 9, 1070. [Google Scholar] [CrossRef]
- Gao, X.; Wang, Y.; Randell, E. Higher Dietary Cho-Line and Betaine Intakes Are Associated with Betterbody Composition in the Adult Population of New found land. PLoS ONE 2016, 11, e0155403. [Google Scholar]
- Tesoriere, L.; Fazzari, M.; Angileri, F.; Gentile, C.; Livrea, M.A. In Vitro Digestion of Betalainic Foods. Stability and Bioaccessibility of Betaxanthins and Betacyanins and Antioxidative Potential of Food Digesta. J. Agric. Food Chem. 2008, 56, 10487–10492. [Google Scholar] [CrossRef] [PubMed]
- Rabeh, M.N.; Ibrahim, E.M. Antihypercholesterolemic Effects of Beet (Beta vulgaris L.) Root Waste Extract on Hypercholesterolemic Rats and Its Antioxidant Potential Properties. Pak. J. Nutr. 2014, 13, 500–505. [Google Scholar] [CrossRef]
- Al-Dosari, M.; Alqasoumi, S.A.; Ahmed, M.; Al-Yahya, M.; Ansari, M.N.; Rafatullah, S. Effect of Beta vulgaris L. on Cholesterol Rich Dietinduced Hypercholesterolemia in Rats. Farmácia 2011, 59, 669–678. [Google Scholar]
- Lorizola, I.M.; Furlan, C.P.B.; Portovedo, M.; Milanski, M.; Botelho, P.B.; Bezerra, R.M.N.; Sumere, B.R.; Rostagno, M.A.; Capitani, C.D. Beet Stalks and Leaves (Beta vulgaris L.) Protect against High-Fat Diet-Induced Oxidative Damage in the Liver in Mice. Nutrients 2018, 10, 872. [Google Scholar] [CrossRef] [PubMed]
- Bobek, P.; Galbavý, S.; Mariássyová, M. The Effect of Red Beet (Beta vulgaris Var. Rubra) Fiber on Alimentary Hypercholesterolemia and Chemically Induced Colon Carcinogenesis in Rats. Nahrung 2000, 44, 184–187. [Google Scholar] [CrossRef]
- Han, J.; Ma, D.; Zhang, M.; Yang, X.; Tan, D. Natural Antioxidant Betanin Protects Rats from Paraquat-Induced Acute Lung Injury Interstitial Pneumonia. Biomed. Res. Int. 2015, 2015, 608174. [Google Scholar] [CrossRef]
- Han, J.; Tan, C.; Wang, Y.; Yang, S.; Tan, D. Betanin Reduces the Accumulation and Cross-Links of Collagen in High-Fructose-Fed Rat Heart through Inhibiting Non-Enzymatic Glycation. Chem. Biol. Interact. 2015, 227, 37–44. [Google Scholar] [CrossRef]
- Kabir, A.U.; Samad, M.B.; Ahmed, A.; Jahan, M.R.; Akhter, F.; Tasnim, J.; Hasan, S.M.N.; Sayfe, S.S.; Hannan, J.M.A. Aqueous Fraction of Beta vulgaris Ameliorates Hyperglycemia in Diabetic Mice Due to Enhanced Glucose Stimulated Insulin Secretion, Mediated by Acetylcholine and GLP-1, and Elevated Glucose Uptake via Increased Membrane Bound GLUT4 Transporters. PLoS ONE 2015, 10, e0116546. [Google Scholar] [CrossRef]
- El-Ghffar, E.A.; Hegazi, N.M.; Saad, H.H.; Soliman, M.M.; El-Raey, M.A.; Shehata, S.M.; Sobeh, M. HPLC-ESI-MS/MS Analysis of Beet (Beta vulgaris) Leaves and Its Beneficial Properties in Type 1 Diabetic Rats. Biomed. Pharmacother. 2019, 120, 109541. [Google Scholar] [CrossRef]
- El Gamal, A.A.; AlSaid, M.S.; Raish, M.; Al-Sohaibani, M.; Al-Massarani, S.M.; Ahmad, A.; Hefnawy, M.; Al-Yahya, M.; Basoudan, O.A.; Rafatullah, S. Beetroot (Beta vulgaris L.) Extract Ameliorates Gentamicin-Induced Nephrotoxicity Associated Oxidative Stress, Inflammation, and Apoptosis in Rodent Model. Mediators Inflamm. 2014, 2014, 983952. [Google Scholar] [CrossRef]
- Kundu, J.K.; Surh, Y.-J. Emerging Avenues Linking Inflammation and Cancer. Free Radic. Biol. Med. 2012, 52, 2013–2037. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Williams, D.S.; Das, A.; Kukreja, R.C. Beet Root Juice Promotes Apoptosis in Oncogenic MDA-MB-231 Cells While Protecting Cardiomyocytes under Doxorubicin Treatment. J. Exp. Second. Sci. 2013, 2, 1–6. [Google Scholar]
- Vidal, P.J.; López-Nicolás, J.M.; Gandía-Herrero, F.; García-Carmona, F. Inactivation of Lipoxygenase and Cyclooxygenase by Natural Betalains and Semi-Synthetic Analogues. Food Chem. 2014, 154, 246–254. [Google Scholar] [CrossRef]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and Inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef]
- Kumar, S.; Brooks, M.S.-L. Use of Red Beet (Beta vulgaris L.) for Antimicrobial Applications—A Critical Review. Food Bioproc. Technol. 2018, 11, 17–42. [Google Scholar] [CrossRef]
- Čanadanović-Brunet, J.M.; Savatović, S.S.; Ćetković, G.S.; Vulić, J.J.; Djilas, S.M.; Markov, S.L.; Cvetković, D.D. Antioxidant and Antimicrobial Activities of Beet Root Pomace Extracts. Czech J. Food Sci. 2011, 29, 575–585. [Google Scholar] [CrossRef]
- Khosasi, W.; Felim, J.; Lukita, S.; Sim, M.; Wijaya, S.; Florenly. Stronger Antibacterial Efficacy of Red Beetroots Compared to Red Dragon Fruit Peels Extract on Streptococcus Mutans. In Proceedings of the 2021 IEEE International Conference on Health, Instrumentation & Measurement, and Natural Sciences (InHeNce), Medan, Indonesia, 14–16 July 2021. [Google Scholar]
- Lundberg, J.O.; Carlström, M.; Larsen, F.J.; Weitzberg, E. Roles of Dietary Inorganic Nitrate in Cardiovascular Health and Disease. Cardiovasc. Res. 2011, 89, 525–532. [Google Scholar] [CrossRef]
- Wink, D.A.; Hines, H.B.; Cheng, R.Y.S.; Switzer, C.H.; Flores-Santana, W.; Vitek, M.P.; Ridnour, L.A.; Colton, C.A. Nitric Oxide and Redox Mechanisms in the Immune Response. J. Leukoc. Biol. 2011, 89, 873–891. [Google Scholar] [CrossRef]
- Kanner, J.; Harel, S.; Granit, R. Betalains—A New Class of Dietary Cationized Antioxidants. J. Agric. Food Chem. 2001, 49, 5178–5185. [Google Scholar] [CrossRef]
- Abdo, E.M.; Shaltout, O.E.-S.; El-Sohaimy, S.; Abdalla, A.E.M.; Zeitoun, A.M. Effect of Functional Beetroot Pomace Biscuit on Phenylhydrazine Induced Anemia in Albino Rats: Hematological and Blood Biochemical Analysis. J. Funct. Foods 2021, 78, 104385. [Google Scholar] [CrossRef]
- Lidder, S.; Webb, A.J. Vascular Effects of Dietary Nitrate (as Found in Green Leafy Vegetables and Beetroot) via the Nitrate-Nitrite-Nitric Oxide Pathway: Vascular Effects of Dietary Nitrate. Br. J. Clin. Pharmacol. 2013, 75, 677–696. [Google Scholar] [CrossRef] [PubMed]
- Joris, P.J.; Mensink, R.P. Beetroot Juice Improves in Overweight and Slightly Obese Men Postprandial Endothelial Function after Consumption of a Mixed Meal. Atherosclerosis 2013, 231, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Machha, A.; Schechter, A.N. Dietary Nitrite and Nitrate: A Review of Potential Mechanisms of Cardiovascular Benefits. Eur. J. Nutr. 2011, 50, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Presley, T.D.; Morgan, A.R.; Bechtold, E.; Clodfelter, W.; Dove, R.W.; Jennings, J.M.; Kraft, R.A.; King, S.B.; Laurienti, P.J.; Rejeski, W.J.; et al. Acute Effect of a High Nitrate Diet on Brain Perfusion in Older Adults. Nitric Oxide 2011, 24, 34–42. [Google Scholar] [CrossRef]
- Gilchrist, M.; Winyard, P.G.; Fulford, J.; Anning, C.; Shore, A.C.; Benjamin, N. Dietary Nitrate Supplementation Improves Reaction Time in Type 2 Diabetes: Development and Application of a Novel Nitrate-Depleted Beetroot Juice Placebo. Nitric Oxide 2014, 40, 67–74. [Google Scholar] [CrossRef]
- Ptak, M.; Skowrońska, A.; Pińkowska, H.; Krzywonos, M. Sugar Beet Pulp in the Context of Developing the Concept of Circular Bioeconomy. Energies 2021, 15, 175. [Google Scholar] [CrossRef]
- Simić, S.; Petrović, J.; Rakić, D.; Pajin, B.; Lončarević, I.; Jozinović, A.; Fišteš, A.; Nikolić, S.; Blažić, M.; Miličević, B. The Influence of Extruded Sugar Beet Pulp on Cookies’ Nutritional, Physical and Sensory Characteristics. Sustainability 2021, 13, 5317. [Google Scholar] [CrossRef]
Form of the Beetroot By-Product | Food Product | Functional/ Technological Benefits | References |
---|---|---|---|
Beetroot peel | Mayonnaise | The use of purple-red granules significantly enhanced the total phenolic content and antioxidant activity of the mayonnaise. The texture and viscosity of the mayonnaise were also considerably enhanced. Based on sensory evaluation, adding beetroot peel enhanced the color and the formulation’s overall attractiveness for mayonnaise. | Lazar et al. [82] |
Beetroot powder | Beet-cereal bar, juice and chips | The formulations showed high nitrate and phenolic compounds and high antioxidant capacity. It improved the products’ nutritional value. Increase health benefits | Baião et al. [83] |
Beetroot powder | Bread | Increase in bioactive compounds such as betacyanins (12.1 mg). Increased health benefits improved the nutritional and antioxidant properties of bread. Beetroot enhanced the shelf life of bread. | Hobbs et al. [84] Ranawana et al. [85] Kohajdová, et al. [86] |
Beetroot pomace | Cookies | Gluten-free and high fiber-rich Increase in the fiber content of cookies. The moisture, protein, fiber, and ash increased, whereas carbohydrate content decreased with the increase in the level of incorporation. | Chauhan & Rajput [87] Sahni & Shere [40] |
Beetroot powder | Yogurt | The samples formulated with different concentration levels (0, 6, 8, and 10%) of dried beetroot powder enhanced nutritional quality and increased the protein content of yogurts. The inclusion of beetroot powder resulted in an increase in acidity, protein content, and carbs of enhanced samples. Consumers found the sensory measurements, including taste, color, aroma, flavor, consistency, and overall acceptability, of the yogurt containing beetroot powder to be extremely acceptable. | Yadav et al. [88] |
Beetroot extract | Jelly | The beetroot jelly formulation achieved the highest score in sensory evaluation, with an overall acceptance rating of 8.3. | Chaudhari & Nikam [89] |
Beetroot pomace flour | Fermented beverage | Beetroot pomace flour as a premix has acceptable sensory qualities for both people and dogs, and consumers’ favorable attitudes towards it have led to helpful guidance and an early assessment of its market potential. | Jovanović, et al. [90] |
Beetroot pomace | Liqueurs | Beetroot pomace serves as a valuable source of bioactives, as demonstrated by the high total phenolic content and antioxidant activity of obtained liqueurs. The enhanced liqueurs can act as an additional source of phytochemicals, with their sensory properties, significant phenolic concentration, and antioxidant activity remaining well-preserved even after six months of storage. | Petrović et al. [91] |
Beetroot juice | Functional probiotic beverage | A higher lactate production throughout the fermentation process improved the taste and flavor and thickened the consistency. The fermentation also increased zinc content and antioxidant capacity. | Abdo et al. [92] |
Beetroot peel flour | Chicken patties | Incorporating beetroot peel flour at a 30 g/kg dosage enhanced the color, antioxidant activity, and water retention capacity. It also decreased cooking loss, moisture, and fat content and avoided the depletion of polyunsaturated fatty acids and alterations in amino acid composition during cooking. | Evanuarini et al. [93] |
Beetroot powder | Turkey patties | An increase in the polyphenols content, also in lutein, α-, and β-carotene and tocopherol contents. An increase in oxidation stability enhances sensory characteristics | Duthie et al. [94] |
Beetroot powder | Boiled sausages | Increase in redness and yellowness, reduction in lightness, and no effect on pH levels. | Jeong et al. [95] |
Beetroot powder | Chicken sausage | Increased water retention capacity and improved color ratings, without affecting pH values or overall acceptability. | Swastike et al. [96] |
Beetroot by-products | Snacks | The extended snacks exhibited an increase in antioxidant capacity due to the presence of betalains and phenols derived from the beetroot by-product. It is suggested that a water content of 25% and a beetroot by-product of 10% be incorporated into a maize mixture to achieve a third-generation snack that possesses enhanced nutritional value. | Igual et al. [31] |
Beetroot extract concentrate | Ice sherbets, jam | Enhanced color and antioxidant characteristics | Sruthi et al. [21] |
Red beet peel extracts | Fish | Red beetroot peel extract (0.1%) can extend trout’s shelf life while enhancing its chemical and sensory qualities. | Yavuzer et al. [97] |
Beetroot powder | Cupcake | Enhanced antioxidant, coloring, and antibacterial properties | Alshehry [98] |
Beetroot powder | Biscuits | Enhanced nutritional quality | Amnah [99] |
Beetroot paste | Multigrain snacks | Improved nutritional content | Dhadage et al. [100] |
Beetroot pulp, pomace | Candies | Enhanced nutritional value Improved the phytochemical properties of the candies | Fatma et al. [101] Kumar et al. [102] |
Beetroot powder | Pasta | Elevated mineral content and enhanced antioxidant activity | Mohamed et al. [103] |
Beetroot powder | Cookies | Elevated levels of protein, crude fiber, and ash content | Ingle et al. [104] |
Beetroot pulp | Noodles | Enhanced nutritional, physicochemical, and functional quality | Chhikara et al. [5] |
Beetroot pulp | Cheese cracker | Augmented nutritional and sensory attributes | Shere et al. [105] |
Beetroot pulp and residue (aerial parts) | Greek yogurt | Improve the shelf life and mineral content | Pereira de Oliveira et al. [106] |
Beetroot pomace | Crispbread snacks | Low water activity and elevated dry matter content confer microbiological stability and extended storage Beetroot pomace provided betalains—red (14.59–51.44 mg betanin/100 g d.m.) and yellow dyes. | Niemira & Galus [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoica, F.; Râpeanu, G.; Rațu, R.N.; Stănciuc, N.; Croitoru, C.; Țopa, D.; Jităreanu, G. Red Beetroot and Its By-Products: A Comprehensive Review of Phytochemicals, Extraction Methods, Health Benefits, and Applications. Agriculture 2025, 15, 270. https://doi.org/10.3390/agriculture15030270
Stoica F, Râpeanu G, Rațu RN, Stănciuc N, Croitoru C, Țopa D, Jităreanu G. Red Beetroot and Its By-Products: A Comprehensive Review of Phytochemicals, Extraction Methods, Health Benefits, and Applications. Agriculture. 2025; 15(3):270. https://doi.org/10.3390/agriculture15030270
Chicago/Turabian StyleStoica, Florina, Gabriela Râpeanu, Roxana Nicoleta Rațu, Nicoleta Stănciuc, Constantin Croitoru, Denis Țopa, and Gerard Jităreanu. 2025. "Red Beetroot and Its By-Products: A Comprehensive Review of Phytochemicals, Extraction Methods, Health Benefits, and Applications" Agriculture 15, no. 3: 270. https://doi.org/10.3390/agriculture15030270
APA StyleStoica, F., Râpeanu, G., Rațu, R. N., Stănciuc, N., Croitoru, C., Țopa, D., & Jităreanu, G. (2025). Red Beetroot and Its By-Products: A Comprehensive Review of Phytochemicals, Extraction Methods, Health Benefits, and Applications. Agriculture, 15(3), 270. https://doi.org/10.3390/agriculture15030270