Insights into Orris (Iris pallida Lam.) In Vivo Acclimatization and Response to Salt Stress via Exogenous Melatonin Application
<p>Root development (cm) monitored during the different steps of the treatment: plants transferring to Magenta<sup>®</sup> vessels with ventilated caps (T0), transferring to perlite (T1), to peat and perlite (T2), and their length at the end of the acclimatization phase (TF). Data, reported as mean values ± S.E., were subjected to analysis of variance (ANOVA), the different letters indicate significant differences among means (Tukey post-test, <span class="html-italic">p</span> ≤ 0.05) and ns indicates no significance among the treatments.</p> "> Figure 2
<p>Leaf development (cm) monitored during the different steps of the treatment: plants transferred to containers with ventilated caps (T0), transferred to perlite (T1), and transferred to peat and perlite (T2), and their length at the end of the acclimatization phase (TF). The data, reported as mean values ± S.E., were subjected to analysis of variance (ANOVA), the different letters indicate significant differences among means (Tukey post-test, <span class="html-italic">p</span> ≤ 0.05) and ns indicates no significance among the treatments.</p> "> Figure 3
<p>Number of roots (<b>a</b>) and new leaves (<b>b</b>) of <span class="html-italic">I. pallida</span> plants treated with 400 mM of salt (Ctr + salt) and with both melatonin and salt and (50–100 µM + salt) compared to control plants (Ctr). Data, reported as mean values ± S.E., were subjected to analysis of variance (ANOVA), and the different letters indicate significant differences among means (Tukey post-test, <span class="html-italic">p</span> ≤ 0.05).</p> "> Figure 4
<p>Dry weight (g plant<sub>dw</sub> <sup>−1</sup>) of rhizomes (<b>a</b>) and leaves (<b>b</b>) of <span class="html-italic">I. pallida</span> plants treated with 400 mM of salt (Ctr + salt) and with both melatonin and salt (50–100 µM + salt) compared to control plants (Ctr). The data, reported as mean values ± S.E., were subjected to analysis of variance (ANOVA), and the different letters indicate significant differences among means (Tukey post-test, <span class="html-italic">p</span> ≤ 0.05).</p> "> Figure 5
<p>Relative water content (RWC) of leaves of <span class="html-italic">I. pallida</span> plants treated with 400 mM of salt (Ctr + salt) and with both melatonin and salt (50–100 µM + salt) compared to control plants (Ctr). The data, reported as mean values ± S.E., were subjected to analysis of variance (ANOVA), and the different letters indicate significant differences among means (Tukey post-test, <span class="html-italic">p</span> ≤ 0.05).</p> "> Figure 6
<p>Total chlorophyll (ChlTOT) and carotenoid content (µg g<sub>fw</sub><sup>−1</sup>) in leaves of <span class="html-italic">I. pallida</span> plants treated with 400 mM of salt (Ctr + salt) and with both melatonin and salt (50–100 µM + salt) compared to control plants (Ctr). The data, reported as mean values ± S.E., were subjected to analysis of variance (ANOVA), and the different letters indicate significant differences among means (Tukey post-test, <span class="html-italic">p</span> ≤ 0.05).</p> "> Figure 7
<p>Macro-elements content (Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup>, K<sup>+</sup> g kg<sub>dw</sub><sup>−1</sup>) in roots (<b>a</b>), rhizomes (<b>b</b>), and leaves (<b>c</b>) of <span class="html-italic">I. pallida</span> plants treated only with 400 mM of salt and with both melatonin and salt (50–100 µM + salt) compared to control. The data, reported as mean values ± S.E., were subjected to analysis of variance (ANOVA), the different letters indicate significant differences among means (Tukey post-test, <span class="html-italic">p</span> ≤ 0.05) and ns indicates no significance among the treatments.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro Melatonin Treatment
2.2. In Vivo Melatonin and Salt Treatment
2.3. Growth and Biochemical Determinations
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The World Map of Salt Affected Soil [WWW Document]. FOOD Agric. Organ UNITED NATIONS. 2021. Available online: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/global-map-of-salt-affected-soils/en/ (accessed on 18 December 2024).
- Hopmans, J.W.; Qureshi, A.S.; Kisekka, I.; Munns, R.; Grattan, S.R.; Rengasamy, P.; Ben-Gal, A.; Assouline, S.; Javaux, M.; Minhas, P.S. Critical knowledge gaps and research priorities in global soil salinity. Adv. Agron. 2021, 169, 191. [Google Scholar]
- Tully, K.L.; Weissman, D.; Wyner, W.J.; Miller, J.; Jordan, T. Soils in transition: Saltwater intrusion alters soil chemistry in agricultural fields. Biogeochemistry 2019, 142, 339–356. [Google Scholar] [CrossRef]
- Smith, P.; Cotrufo, M.F.; Rumpel, C.; Paustian, K.; Kuikman, P.J.; Elliott, J.A.; McDowell, R.; Griffiths, R.I.; Asakawa, S.; Bustamante, M.; et al. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil 2015, 1, 665–685. [Google Scholar] [CrossRef]
- Decock, C.; Lee, J.; Necpalova, M.; Pereira, E.I.P.; Tendall, D.M.; Six, J. Mitigating N2O emissions from soil: From patching leaks to transformative action. Soil 2015, 1, 687–694. [Google Scholar] [CrossRef]
- Panagea, I.S.; Daliakopoulos, I.N.; Tsanis, I.K.; Schwilch, G. The application of three promising technologies for soil salinity amelioration in Timpaki (Crete): A participatory approach. Solid Earth 2016, 7, 177–190. [Google Scholar] [CrossRef]
- Andreu, L.; Moreno, F.; Jarvis, N.J.; Vachaud, G. Application of the model MACRO to water movement and salt leaching in drained and irrigated marsh soils, Marismas, Spain. Agric. Water Manag. 1994, 25, 71–88. [Google Scholar] [CrossRef]
- Taylor, R.; Zilberman, D. Diffusion of drip irrigation: The case of California. Appl. Econ. Perspect. Policy 2017, 39, 16–40. [Google Scholar] [CrossRef]
- Ieri, F.; Vignolini, P.; Urciuoli, S.; Pinelli, P.; Romani, A. The Cultivation of Iris pallida as an Opportunity for the Enhancement of Tuscan Agro-Biodiversity and a Resource for the Local Economy. In Innovation, Quality and Sustainability for a Resilient Circular Economy, AISME, Circular Economy and Sustainability; Lagioia, G., Paiano, A., Amicarelli, V., Gallucci, T., Ingrao, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Belletti, G.; Fani, E.; Marescotti, A.; Scaramuzzi, S. The role of traditional products in the valorisation of marginal rural areas: The case of Iris pallida. Span. J. Rural. Dev. 2013, 4, 11–22. [Google Scholar] [CrossRef]
- Başer, K.H.; Demirci, B.; Orhan, I.E.; Kartal, M.; Sekeroglu, N.; Sener, B. Composition of volatiles from three Iris species of Turkey. J. Essent. Oil Res. 2011, 23, 66–71. [Google Scholar] [CrossRef]
- Roger, B.; Jeannot, V.; Fernandez, X.; Cerantola, S.; Chahboun, J. Characterisation and quantification of flavonoids in Iris germanica L. and Iris pallida Lam. resinoids from Morocco. Phytochem. Anal. 2012, 23, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Krick, W.; Marner, F.J.; Jaenicke, L. Isolation and structure determination of the precursors of α and β-irones and homologous compounds from Iris pallida. Z. Naturforschung 1983, 38, 179–184. [Google Scholar] [CrossRef]
- Bicchi, C.; Rubiolo, P. Analysis of constituents of Iris rhizomes. Part I: High performance liquid chromatographic-particle beammass spectral analysis of iridals from Iris pallida rhizomes. Phytochem. Anal. 1993, 4, 171–177. [Google Scholar]
- Long, X.H.; Chi, J.H.; Liu, L.; Li, Q.; Liu, Z.P. Effect of seawater stress on physiological and biochemical responses of five Jerusalem artichoke ecotypes. Pedosphere 2009, 19, 208–216. [Google Scholar] [CrossRef]
- Li, Z.; Li, G.; Qin, P. The prediction of ecological potential for developing salt-tolerant oil plants on coastal saline land in Sheyang Saltern, China. Ecol. Eng. 2010, 36, 27–35. [Google Scholar] [CrossRef]
- Wu, X.H.; Zhang, H.S.; Li, G.; Liu, X.C.; Qin, P. Ameliorative effect of castor bean (Ricinus communis L.) planting on physico-chemical and biological properties of seashore saline soil. Ecol. Eng. 2012, 38, 97–100. [Google Scholar] [CrossRef]
- Van Zandt, P.A.; Tobler, M.A.; Mouton, E.; Hasenstein, K.H.; Mopper, S. Positive and negative consequences of salinity stress for the growth and reproduction of the clonal plant, Iris hexagona. J. Ecol. 2003, 91, 837–846. [Google Scholar] [CrossRef]
- Bai, W.B.; Li, P.F.; Li, B.G.; Fujiyama, H.; Fan, F.C. Some physiological responses of Chinese iris to salt stress. Pedosphere 2008, 18, 454–463. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, T.; Cheng, Y.; Wang, F.; Zhao, X. Morphological and metabolic responses of four Iris germanica cultivars under salinity stress. Sci. Hortic. 2021, 281, 109960. [Google Scholar] [CrossRef]
- Khalid, F.; Rasheed, Y.; Asif, K.; Ashraf, H.; Maqsood, M.F.; Shahbaz, M.; Zulfiqar, U.; Sardar, R.; Haider, F.U. Plant Biostimulants: Mechanisms and Applications for Enhancing Plant Resilience to Abiotic Stresses. J. Soil Sci. Plant Nutr. 2024. [Google Scholar] [CrossRef]
- Nawaz, K.; Chaudhary, R.; Sarwar, A.; Ahmad, B.; Gul, A.; Hano, C.; Abbasi, B.H.; Anjum, S. Melatonin as master regulator in plant growth, development and stress alleviator for sustainable agricultural production: Current status and future Perspectives. Sustainability 2020, 13, 294. [Google Scholar] [CrossRef]
- Iqbal, N.; Fatma, M.; Gautam, H.; Umar, S.; Sofo, A.; D’ippolito, I.; Khan, N.A. The crosstalk of melatonin and hydrogen sulfide determines photosynthetic performance by regulation of carbohydrate metabolism in wheat under heat stress. Plants 2021, 10, 1778. [Google Scholar] [CrossRef]
- Lerner, A.B.; Case, J.D.; Takahashi, Y.; Lee, T.H.; Mori, W. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Am. Chem. Soc. 1958, 80, 2587. [Google Scholar] [CrossRef]
- Dubbels, R.; Reiter, R.J.; Klenke, E.; Goebel, A.; Schnakenberg, E.; Ehlers, C.; Schiwara, H.W.; Schloot, W. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J. Pineal Res. 1995, 18, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.X.; Reiter, R.J. An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plants. J. Exp. Bot. 2020, 71, 4677–4689. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.E.D.S.; Silva, A.G.D.; Coêlho, E.D.S.; Oliveira, P.H.D.A.; Silva, E.F.D.; Oliveira, A.K.D.; Santos, G.L.D.; Lima, J.V.L.; Silva, T.I.D.; Silveira, L.M.D. Melatonin mitigates salt stress effects on the growth and production aspects of radish. Rev. Bras. Eng. Agrícola Ambient. 2024, 28, e279006. [Google Scholar] [CrossRef]
- Hassan, M.U.; Mahmood, A.; Awan, M.I.; Maqbool, R.; Aamer, M.; Alhaithloul, H.A.S.; Huang, G.; Skalicky, M.; Brestic, M.; Pandey, S.; et al. Melatonin-Induced Protection Against Plant Abiotic Stress: Mechanisms and Prospects. Front. Plant Sci. 2022, 13, 902694. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Hernández, M.; López-Delacalle, M.; Rivero, R.M. ROS and NO regulation by melatonin under abiotic stress in plants. Antioxidants 2020, 9, 1078. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin as a plant biostimulant in crops and during post-harvest: A new approach is needed. J. Sci. Food Agric. 2021, 101, 5297–5304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, X.; Zhang, Z.; Liu, N.; Li, D.; Hu, L. Melatonin improved waterlogging tolerance in alfalfa (Medicago sativa) by reprogramming polyamine and ethylene metabolism. Front. Plant Sci. 2019, 10, 44. [Google Scholar] [CrossRef]
- Shi, H.; Jiang, C.; Ye, T.; Tan, D.-X.; Reiter, R.J.; Zhang, H.; Liu, R.; Chan, Z. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. J. Exp. Bot. 2015, 66, 681–694. [Google Scholar] [CrossRef] [PubMed]
- Moustafa-Farag, M.; Mahmoud, A.; Arnao, M.B.; Sheteiwy, M.S.; Dafea, M.; Soltan, M.; Elkelish, A.; Hasanuzzaman, M.; Ai, S. Melatonin-I nduced water stress tolerance in plants: Recent Advances. Antioxidants 2020, 9, 809. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.S.; Samsampour, D.; Zahedi, S.M.; Zamanian, K.; Rahman, M.M.; Mostofa, M.G.; Tran, L.S.P. Melatonin alleviates drought impact on growth and essential oil yield of lemon verbena by enhancing antioxidant responses, mineral balance, and abscisic acid content. Physiol. Plant. 2021, 172, 1363–1375. [Google Scholar] [CrossRef]
- Gu, X.; Xue, L.; Lu, L.; Xiao, J.; Song, G.; Xie, M.; Zhang, H. Melatonin enhances the waterlogging tolerance of Prunus persica by modulating antioxidant metabolism and anaerobic respiration. J. Plant Growth Regul. 2020, 40, 2178–2190. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Q.; Chen, W.; Guo, Q.; Xia, Y.; Wu, D.; Jing, D.; Liang, G. Melatonin treatment maintains quality and delays lignification in loquat fruit during cold storage. Sci. Hortic. 2021, 284, 110126. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Xie, Q.; Liu, Y.; Lv, H.; Bai, R.; Ma, R.; Li, X.; Zhang, X.; Guo, Y.-D.; et al. SlSNAT interacts with HSP40, a molecular chaperone, to regulate melatonin biosynthesis and promote thermotolerance in tomato. Plant Cell Physiol. 2020, 61, 909–921. [Google Scholar] [CrossRef] [PubMed]
- Jahan, M.S.; Guo, S.; Baloch, A.R.; Sun, J.; Shu, S.; Wang, Y.; Ahammed, G.J.; Kabir, K.; Roy, R. Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicol. Environ. Saf. 2020, 197, 110593. [Google Scholar] [CrossRef]
- Wei, W.Z.; Li Chao, L.C.; Gao TengTeng, G.T.; Zhang ZhiJun, Z.Z.; Liang BoWen, L.B.; Lv ZuoSen, L.Z.; Ma FengWang, M.F. Melatonin increases the performance of Malus hupehensis after UV-B exposure. Plant Physiol. Biochem. 2019, 139, 630–641. [Google Scholar] [CrossRef]
- Yang, S.J.; Huang, B.; Zhao, Y.Q.; Hu, D.; Chen, T.; Ding, C.B.; Chen, Y.E.; Yuan, S.; Yuan, M. Melatonin enhanced the tolerance of Arabidopsis thaliana to high light through improving anti-oxidative system and photosynthesis. Front. Plant Sci. 2021, 12, 752584. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Zheng, G.; Li, W.; Wang, Y.; Hu, B.; Wang, H.; Qian, Y.; Zhu, X.; Tian, D.; Chu, C. Melatonin delays leaf senescence and enhances salt stress tolerance in rice. J. Pineal Res. 2015, 59, 91–101. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, H.; Cao, K.; Hu, L.; Du, T.; Baluška, F.; Zou, Z. Beneficial roles of melatonin on redox regulation of photosynthetic electron transport and synthesis of D1 protein in tomato seedlings under salt stress. Front. Plant Sci. 2016, 7, 1823. [Google Scholar] [CrossRef]
- Chen, Z.; Gu, Q.; Yu, X.; Huang, L.; Xu, S.; Wang, R.; Shen, W. Hydrogen peroxide acts downstream of melatonin to induce lateral root formation. Ann. Bot. 2018, 121, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Wei, H.; Ding, Y.; Li, W.; Liu, Z.; Chen, L.; Tang, S.; Ding, C.; Jiang, Y.; Li, G. Melatonin regulates antioxidant strategy in response to continuous salt stress in rice seedlings. Plant Physiol. Biochem. 2021, 165, 239–250. [Google Scholar] [CrossRef]
- Li, X.; Yu, B.; Cui, Y.; Yin, Y. Melatonin application confers enhanced salt tolerance by regulating Na+ and Cl− accumulation in rice. Plant Growth Regul. 2017, 83, 441–454. [Google Scholar] [CrossRef]
- Shen, J.; Chen, D.; Zhang, X.; Song, L.; Dong, J.; Xu, Q.; Hu, M.; Cheng, Y.; Shen, F.; Wang, W. Mitigation of salt stress response in upland cotton (Gossypium hirsutum) by exogenous melatonin. J. Plant Res. 2021, 134, 857–871. [Google Scholar] [CrossRef]
- Yang, H.; Dai, L.; Wei, Y.; Deng, Z.; Li, D. Melatonin enhances salt stress tolerance in rubber tree (Hevea brasiliensis) seedlings. Ind. Crops Prod. 2019, 145, 111990. [Google Scholar] [CrossRef]
- Li, C.; Wang, P.; Wei, Z.; Liang, D.; Liu, C.; Yin, L.; Jia, D.; Fu, M.; Ma, F. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J. Pineal Res. 2012, 53, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.A.; Saleem, M.; Fariduddin, Q. Recent advances and mechanistic insights on melatonin-mediated salt stress signaling in plants. Plant Physiol. Biochem. 2022, 188, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, R.; Khan, T. Application of exogenous melatonin in vitro and in planta: A review of its effects and mechanisms of action. Biotechnol. Lett. 2022, 44, 933–950. [Google Scholar] [CrossRef] [PubMed]
- Meucci, A.; Ghelardi, C.; Chietera, G.; Mensuali, A. Synthetic Seed Production and Slow Growth Storage of In Vitro Cultured Plants of Iris pallida Lam. Horticulturae 2024, 10, 272. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473. [Google Scholar] [CrossRef]
- Gamborg, O.L.; Miller, R.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.A.; Tungmunnithum, D.; Garros, L.; Drouet, S.; Hano, C.; Abbasi, B.H. Effect of ultraviolet-C radiation and melatonin stress on biosynthesis of antioxidant and antidiabetic metabolites produced in in vitro callus cultures of Lepidium sativum L. Int. J. Mol. Sci. 2019, 20, 1787. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. In Methods Enzymol; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. [Google Scholar]
- Khan, T.; Ullah, M.A.; Garros, L.; Hano, C.; Abbasi, B.H. Synergistic effects of melatonin and distinct spectral lights for enhanced production of anti-cancerous compounds in callus cultures of Fagonia indica. J. Photochem. Photobiol. B Biol. 2019, 190, 163–171. [Google Scholar] [CrossRef]
- Murch, S.J.; Campbell, S.S.; Saxena, P.K. The role of serotonin and melatonin in plant morphogenesis: Regulation of auxin-induced root organogenesis in in vitro-cultured explants of St. John’s wort (Hypericum perforatum L.). Vitr. Cell Dev. Biol.-Plant 2021, 37, 786–793. [Google Scholar] [CrossRef]
- Mao, J.; Niu, C.; Li, K.; Chen, S.; Tahir, M.M.; Han, M.; Zhang, D. Melatonin promotes adventitious root formation in apple by promoting the function of MdWOX11. BMC Plant Biol. 2020, 20, 536. [Google Scholar] [CrossRef] [PubMed]
- Kozai, T. Acclimatization of Micropropagated Plants. In High-Tech and Micropropagation I Biotechnology in Agriculture and Forestry 17; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Lv, S.; Jiang, P.; Chen, X.; Fan, P.; Wang, X.; Li, Y. Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea. Plant Physiol. Biochem. 2012, 51, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Li, L.M.; Wang, R.G. Effects of NaCl stress on physiological and biochemical characteristics of Belamcanda chinensis and zirs germanic two ground cover plants. Chin Agric Sci Bull 2012, 28, 181–184. [Google Scholar]
- Zhang, Y. Study on Tolerant Ability of Four Species of Iris l. Under NaCl Stress. Master′s Thesis, Nanjing Forestry University, Nanjing, China, 2008. [Google Scholar]
- Flowers, T.J.; Munns, R.; Colmer, T.D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann. Bot. 2015, 115, 419–431. [Google Scholar] [CrossRef]
- Mann, A.; Lata, C.; Kumar, N.; Kumar, A.; Kumar, A.; Sheoran, P. Halophytes as new model plant species for salt tolerance strategies. Front. Plant Sci. 2023, 14, 1137211. [Google Scholar] [CrossRef] [PubMed]
- Bonacina, C.; da Cruz, R.M.S.; Nascimento, A.B.; Barbosa, L.N.; Gonçalves, J.E.; Gazim, Z.C.; Magalhães, H.M.; de Souza, S.G.H. Salinity modulates growth, oxidative metabolism, and essential oil profile in Curcuma longa L.(Zingiberaceae) rhizomes. South Afr. J. Bot. 2022, 146, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.; Nii, N. Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J. Hortic. Sci. Biotechnol. 2000, 75, 623–627. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef] [PubMed]
- Trivellini, A.; Lucchesini, M.; Ferrante, A.; Carmassi, G.; Scatena, G.; Vernieri, P.; Mensuali-Sodi, A. Survive or die? A molecular insight into salt-dependant signaling network. Environ. Exp. Bot. 2016, 132, 140–153. [Google Scholar] [CrossRef]
- Lin, S.; Song, X.F.; Mao, H.T.; Li, S.Q.; Gan, J.Y.; Yuan, M.; Zhang, Z.W.; Yuan, S.; Zhang, H.Y.; Su, Y.Q.; et al. Exogenous melatonin improved photosynthetic efficiency of photosystem II by reversible phosphorylation of thylakoid proteins in wheat under osmotic stress. Front. Plant Sci. 2022, 13, 966181. [Google Scholar] [CrossRef]
- Tester, M.; Davenport, R. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 2003, 91, 503–527. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, L. Osmotic adjustment of plants to saline media. II. Dyn. Phase. Am. J. Bot. 1963, 50, 360–370. [Google Scholar] [CrossRef]
- Shabala, S.; Pottosin, I. Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiol. Plant. 2014, 151, 257–279. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Cui, Q.; Feng, K.; Xu, D.; Li, C.; Zheng, Q. Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiol. Plant. 2016, 38, 82. [Google Scholar] [CrossRef]
- Liu, C.; Mao, B.; Yuan, D.; Chu, C.; Duan, M. Salt tolerance in rice: Physiological responses and molecular mechanisms. Crop J. 2022, 10, 13–25. [Google Scholar] [CrossRef]
K+/Na+ | Roots | Rhizomes | Leaves |
---|---|---|---|
Ctr | 4.13 ± 0.7 a | 2.74 ± 0.37 ns | 21.74 ± 1.74 a |
Ctr + salt | 2.03 ± 0.34 b | 2.76 ± 0.46 ns | 9.37 ± 0.61 b |
50 µM + salt | 2.03 ± 0.16 b | 3.19 ± 0.35 ns | 13.89 ± 1.36 b |
100 µM + salt | 2.13 ± 0.26 b | 3.15 ± 0.14 ns | 14.31 ± 1.3 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meucci, A.; Ghelardi, C.; Maggini, R.; Malorgio, F.; Pezzarossa, B.; Rosellini, I.; Mensuali, A. Insights into Orris (Iris pallida Lam.) In Vivo Acclimatization and Response to Salt Stress via Exogenous Melatonin Application. Agriculture 2024, 14, 2353. https://doi.org/10.3390/agriculture14122353
Meucci A, Ghelardi C, Maggini R, Malorgio F, Pezzarossa B, Rosellini I, Mensuali A. Insights into Orris (Iris pallida Lam.) In Vivo Acclimatization and Response to Salt Stress via Exogenous Melatonin Application. Agriculture. 2024; 14(12):2353. https://doi.org/10.3390/agriculture14122353
Chicago/Turabian StyleMeucci, Annalisa, Cristina Ghelardi, Rita Maggini, Fernando Malorgio, Beatrice Pezzarossa, Irene Rosellini, and Anna Mensuali. 2024. "Insights into Orris (Iris pallida Lam.) In Vivo Acclimatization and Response to Salt Stress via Exogenous Melatonin Application" Agriculture 14, no. 12: 2353. https://doi.org/10.3390/agriculture14122353
APA StyleMeucci, A., Ghelardi, C., Maggini, R., Malorgio, F., Pezzarossa, B., Rosellini, I., & Mensuali, A. (2024). Insights into Orris (Iris pallida Lam.) In Vivo Acclimatization and Response to Salt Stress via Exogenous Melatonin Application. Agriculture, 14(12), 2353. https://doi.org/10.3390/agriculture14122353