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Abstract: In recent decades, the integrity and security of the ecosystem in the Sanjiang Plain have
faced severe challenges due to land reclamation. Understanding the impact of paddy field expansion
on regional ecosystem services (ESs), as well as revealing the trade-offs and synergies (TOS) between
these services to achieve optimal resource allocation, has become an urgent issue to address. This
study employs the InVEST model to map the spatial and temporal dynamics of five key ESs, while
the Optimal Parameter Geodetector (OPGD) identifies primary drivers of these changes. Correlation
analysis and Geographically Weighted Regression (GWR) reveal intricate TOS among ESs at multiple
scales. Additionally, the Partial Least Squares-Structural Equation Model (PLS-SEM) elucidates the
direct impacts of paddy field expansion on ESs. The main findings include the following: (1) The
paddy field area in the Sanjiang Plain increased from 5775 km2 to 18,773.41 km2 from 1990 to 2020, an
increase of 12,998.41 km2 in 40 years. And the area of other land use types has generally decreased.
(2) Overall, ESs showed a recovery trend, with carbon storage (CS) and habitat quality (HQ) initially
decreasing but later improving, and consistent increases were observed in soil conservation, water
yield (WY), and food production (FP). Paddy fields, drylands, forests, and wetlands were the main ES
providers, with soil type, topography, and NDVI emerging as the main influencing factors. (3) Distinct
correlations among ESs, where CS shows synergies with HQ and SC, while trade-offs are noted
between CS and both WY and FP. These TOS demonstrate significant spatial heterogeneity and scale
effects across subregions. (4) Paddy field expansion enhances regional SC, WY, and FP, but negatively
affects CS and HQ. These insights offer a scientific basis for harmonizing agricultural development
with ecological conservation, enriching our understanding of ES interrelationships, and guiding
sustainable ecosystem management and policymaking.

Keywords: land use change; paddy expansion; ecosystem services; Sanjiang Plain; trade-offs
and synergistic

1. Introduction

Ecosystem services (ESs) are the various functions and benefits that nature provides
that are beneficial to humans [1]. As a bridge linking human society and natural ecosystems,
researching ESs is crucial to enhance human well-being and foster regional sustainable
development [2]. However, with ongoing human development, the ecological environment
is deteriorating, leading to a decline in ESs, which seriously affects regional sustainable
development.

Over the past half century, global ESs have declined to varying degrees [3]. The scien-
tific understanding and management of ESs are therefore critical to attaining sustainable
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development goals. ESs are fundamental to sustainable development, supporting liveli-
hoods and ensuring food security, which are essential for reducing poverty and hunger.
They provide critical functions such as carbon sequestration in forests and oceans, which
help mitigate climate change, and they protect forests and biodiversity, maintaining eco-
logical balance and resource availability. An accurate understanding of the interactions
among ESs is essential for effective management and the promotion of regional sustainable
development [4,5].

In recent years, studies on the dynamics of ESs and their interrelationships have
become a prominent focus. Growing emphasis has been placed on the assessment and
evaluation of ESs due to their vital importance for human survival [6–8]. It has shown that
changes in land use can have a significant impact on regional ESs [9,10]. Land use changes,
including urban expansion [11], forest degradation [12], wetland loss [13], grassland degra-
dation [14], and agricultural expansion [15], among others, have garnered increasing
scholarly attention due to their impact on ESs. However, these studies usually address
changes in the ESs of cropland as a whole, overlooking the impacts of changes within
cropland (such as paddy and dryland) on regional ESs. Cropland is divided into two main
categories, paddy, and dryland, with paddy land used for growing aquatic crops that are
generally flooded during the growing season, and dryland used for growing crops that rely
mainly on natural precipitation. Cultivated land can provide a variety of ESs, and food
production, but the ESs provided by paddy fields and dryland differ functionally, with
paddy fields significantly differing from dryland in terms of atmospheric regulation and
water conservation [16]. Studies have shown that paddy fields can be considered a type
of artificial wetland that fulfills some of the ecological functions of natural wetlands [17].
However, paddy fields also consume substantial amounts of irrigation water and are signif-
icant sources of methane (CH4) emissions, with far-reaching impacts on global climate and
the water circulation [18]. Thus, the area and spatial distribution of paddy fields impact not
only human food security but also regional and global ecological changes. The Sanjiang
Plain (SJP) in northeastern China is not only a major grain-producing region but also an
area characterized by extensive swampy wetlands. Previous studies in this region have
primarily addressed the effects of changes in swampy wetlands on regional ESs, with
limited research on the impacts of changes within cropland. Rice paddies have shown a
persistent growth trend in Northeast China since the 1970s [19]. Therefore, it is necessary
to separate paddy fields from drylands in this region to quantify the impact of paddy field
expansion on ESs.

As human activities increasingly disturb the ecological environment, the negative
impacts also escalate, making the study of regional ESs and their trade-offs and synergies
(TOS) a major research focus across various disciplines [20]. As research progresses globally,
it has been found that various types of ESs are interconnected, often exhibiting TOS [21,22].
Trade-offs arise when the supply of certain ESs diminishes due to the increased utilization
of other services, whereas synergies occur when two or more ESs are simultaneously en-
hanced [23]. ESs are intricately connected to sustainable economic and social development.
It is crucial to thoroughly comprehend the changes in ESs and the complex relationships be-
tween TOS. Analyzing the relationships among various ecosystems, reducing unnecessary
trade-offs, and promoting synergies are crucial for achieving the long-term provisioning
of ESs and sustainable regional development. Achieving the long-term supply of ESs and
sustainable regional development is of great significance [24]. In the early 20th century,
studies on TOS were primarily presented in numerical terms. Research primarily focused
on the theoretical aspects of TOS [25]. The research methods predominantly employed sta-
tistical techniques to reveal the quantitative relationships between ESs [26]. The study area
focuses mainly on administrative areas, such as provinces, cities, and counties. With the
progress of remote sensing technology and extensive research on ESs, a growing number of
scholars are examining the temporal and spatial variations, driving factors, and regional
disparities of ES—ESs TOS from various perspectives [27–29]. TOS and spatial changes
among different ecosystems such as forests, lakes, wetlands, and croplands have also been
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examined [30–32]. Statistical techniques and models such as GWR are frequently employed
to examine the relationships between them [33]. Some studies have also employed GeoDe-
tector, random forests, and prediction models to further investigate the driving factors,
formation mechanisms, and future projections of ES-ESS TOS [10,34,35]. Additionally, the
research areas have expanded from single geographic units to large-scale regions with
complex geographic relationships, such as the Tibetan Plateau of China [36], the Yellow
River Basin [33], and the Karst region [37]. Some studies related to the SJP have focused on
the impacts of wetland changes [38], land cover changes [39], and cropland expansion [17]
on the ESs of the SJP. However, few of these studies provide quantitative analyses of the
TOS among ESs. Most existing research has focused on the valuation of ESs [40], with
limited attention given to the TOS relationships between ESs in the SJP. Therefore, studying
the TOS of ESs in the SJP can help fill gaps in regional ES-ESs research and provide guidance
for regional development.

The SJP, situated in northeastern China, is among the most crucial wetland and
agricultural region. Its fertile soil and abundant water resources support a rich variety of
crops, including rice, corn, and soybeans, making it one of China’s primary grain-producing
areas. In recent years, agricultural modernization has led to the development of highly
efficient and intensive farming practices on the plains. Despite the rapid agricultural
development in the SJP, ecological and environmental issues have become increasingly
prominent. Over the past half-century of development, the SJP’s ecological environment
has deteriorated, with vegetation cover being destroyed, wetland areas shrinking, carbon
storage (CS) declining, and other ecological issues arising frequently. Therefore, this study
centers on the SJP in northeast China. Utilizing the InVEST model, OPGD, GWR, and
correlation analysis, we investigated the expansion of rice paddies and the spatial and
temporal dynamics of ESs from 1990 to 2020. Additionally, we explored the driving factors
influencing ESs and analyzed the TOS relationships among various ESs. Finally, PLS-SEM
was employed to examine the impact of paddy field expansion on ESs. The findings aim
to provide insights for balancing agricultural development and ecological conservation in
the SJP.

The objectives of this study are (1) to analyze the expansion of paddy fields and land
use changes in the SJP over the past 30 years; (2) to quantify the spatial and temporal
evolution characteristics of ESs in the SJP and to identify the driving factors influencing
these services; (3) to uncover the changes in TOS relationships among the five ESs in the SJP;
(4) and to assess the effects of paddy field expansion on ESs. Based on this study’s findings,
targeted recommendations can be made for ecological protection and spatial planning in
the SJP region to promote sustainable environmental development.

2. Materials and Methods

In this study, we first assessed land use changes and five key ESs in the SJP by
integrating multi-source data. Next, we analyzed the main factors influencing ESs. Finally,
we explored the TOS between ESs and evaluated the impact of paddy field expansion on
ESs. The detailed workflow of this study is shown in Figure 1.

2.1. Study Area

The SJP is located in northeastern China (Figure 2). It lies between longitude
130◦13′~135◦05′ E, and latitude 43◦49′~48◦27′ N, covering a total area of about 108,900 km2.
The region has a temperate humid and semi-humid continental monsoon climate, with an
average annual temperature of 2.5–3.6 ◦C and average annual precipitation of 500–650 mm,
predominantly falling between June and September. Soil types primarily include black
soil, planosol soil, meadow soil, and swamp soil, with the latter two being the most widely
distributed [17]. With warm summers, simultaneous rain and heat, and fertile land, the area
is particularly suitable for agricultural production and is a key national food production
area, especially for rice cultivation. Paddy fields are being expanded to meet the grow-
ing demand for food, but such expansion often has far-reaching impacts on local natural
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ecosystems. Therefore, studying how paddy expansion affects ESs can provide a scientific
basis for balancing food security and ecological protection.
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Figure 2. Study area. (a) Location of the study area. (b) Elevation and county boundaries. (c) Land
cover/land use in 2020.

2.2. Data Source and Processing

The data utilized in this study include socio-economic, topographic, remote sensing
imagery, and other data (Table 1). Data from various sources are resampled and projected
in ArcGIS10.6, with the final projected coordinates standardized to the Albers Conic Equal
Area projection.

Table 1. Data sources and descriptions.

Input Data Resolution Data Source and Processing

Digital elevation model (dem) Raster, 30 m https://srtm.csi.cgiar.org/srtmdata/
accessed on 20 May 2024.

Land use/land cover (LULC) Raster, 30 m Resource and Environment Science and Data Center (www.resdc.cn)
accessed on 12 May 2024.

Carbon pools Table Supplementary S2

Threats table Table Supplementary S2

Sensitivity table Table Supplementary S2

Digital elevation model (DEM) Raster, 30 m https://srtm.csi.cgiar.org/srtmdata/
accessed on 20 May 2024.

https://srtm.csi.cgiar.org/srtmdata/
www.resdc.cn
https://srtm.csi.cgiar.org/srtmdata/
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Table 1. Cont.

Input Data Resolution Data Source and Processing

Precipitation Raster, 1 km National Tibetan Plateau Science Data Center (https://data.tpdc.ac.cn)
accessed on 17 May 2024.

Watershed Shapefile Resource and Environment Science and Data Center (www.resdc.cn)

Biophysical table Table Supplementary S2

Potential evapotranspiration Raster, 1 km National Tibetan Plateau Science Data Center (https://data.tpdc.ac.cn)
accessed on 17 May 2024.

Root restricting layer depth Raster, 1 km National Tibetan Plateau Science Data Center (https://data.tpdc.ac.cn)
accessed on 17 May 2024.

Plant available water content Raster, 1 km National Tibetan Plateau Science Data Center (https://data.tpdc.ac.cn)
accessed on 17 May 2024.

NDVI Raster, 30 m Resource and Environment Science and Data Center (www.resdc.cn)
accessed on 12 May 2024.

Statistical data on grains Table China Agricultural Statistics Yearbook

Slope Raster, 30 m Obtained based on ArcGIS slope analysis tool

Potential evapotranspiration Raster, 1 km National Tibetan Plateau Science Data Center (https://data.tpdc.ac.cn)
accessed on 20 May 2024.

Annual average temperature Raster, 1 km National Earth System Science Data Center (www.geodata.cn)
accessed on 18 May 2024.

Soil type Raster, 1 km Resource and Environment Science and Data Center (www.resdc.cn)
accessed on 20 May 2024.

Distance from the river Raster, 1 km Obtained through the buffer analysis tool in ArcGIS

The extent of farms and localities Raster, 1 km Obtained through the analysis tools in ArcGIS

2.3. Research Methods
2.3.1. ESs Quantification

Given regional conditions and data availability, we selected five ESs to quantify in this
study. These services include carbon storage (CS), soil conservation (SC), habitat quality
(HQ), water yield (WY), and food production (FP). The selection of these five ESs as key
ESs for the Sanjiang Plain was primarily based on the region’s ecological characteristics and
the need for sustainable development. As a critically important wetland and agricultural
area in China, research on CS helps address climate change, while HQ assessments support
regional biodiversity conservation. WY is crucial for regional water resource management,
SC ensures agricultural sustainability, and FP directly impacts the region’s economy and
livelihoods [41]. Overall, these five services comprehensively consider ecological health,
economic development, and social needs, providing scientific support for the region’s
sustainable development.

These ESs were assessed using the InVEST model. The InVEST model integrates ESs
and land use changes, helping decision-makers assess the impacts of different management
scenarios on ecosystems and human well-being [42]. InVEST is highly open and flexible,
allowing for the customization of model parameters according to the specific needs of dif-
ferent ecosystems and regions. Additionally, InVEST integrates GIS data, providing spatial
analysis capabilities that make ESs assessments more intuitive and practical. Although
the model’s simplifications may overlook some ecological complexities, in this study, we
calibrated the model results using previous research and field data to improve accuracy.
Overall, InVEST provides an effective tool for evaluating ecosystem services and, through
its flexibility and integration, bridges the gap between scientific research and practical
decision-making. A summary of the modeling approach for quantifying these services

https://data.tpdc.ac.cn
www.resdc.cn
https://data.tpdc.ac.cn
https://data.tpdc.ac.cn
https://data.tpdc.ac.cn
www.resdc.cn
https://data.tpdc.ac.cn
www.geodata.cn
www.resdc.cn
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is provided in (Table 2). For the rationale behind the model, please refer to the relevant
literature [8,33]. For the basic formula related to this model, please see Supplementary S1.

Table 2. List of methods to quantify ESs.

Ecosystem
Service Methods Formulas

Carbon storage
(CS) InVEST, Carbon module Ctotal = Cabove + Cbelow + Csoil + Cdead

Soil conservation
(SC)

InVEST, SDR: Sediment
Delivery Ratio module SC = RKLS − USLE = R × K × LS × (1 − C × P)

Water yield (WY) InVEST, Annual water yield module Y(x) =
(

1 − AET(x)
P(x)

)
× P(x)

Habitat quality
(HQ) InVEST, Habitat quality module Qxj = Hj ×

(
1 − Dz

xj
Dz

xj+Kz

)
Food production (FP) NDVI Gfp = NDVIx

NDVIsum
× Gsum

2.3.2. OPGD (Optimal Parameter GeoDetector)

The GeoDetector is a spatial analysis method for detecting spatial stratified hetero-
geneity and revealing the driving forces behind it, and is widely used for driver and factor
analysis [43]. Therefore, this paper utilizes factor detection in GeoDetector to reveal the
driving factors affecting ESs in the SJP, based on the optimal parameters.

The attributes of the study area, data availability, and the more significant drivers iden-
tified in related research were considered. For this study, four main drivers were selected:
topographic factors, meteorological factors, soil factors, and policy factors (Table 3). Addi-
tionally, the administrative affiliations of state farms and local farmers in this region differ,
influencing land management practices. For this study, policy factors were categorized into
individual farmers and state farms based on regional administrative distinctions. Using
ArcGIS10.6, agricultural and reclamation areas were categorized into two groups based on
policy criteria and assigned values of 0 and 1, respectively, for categorical differentiation as
policy factors.

Table 3. Driver type selection.

Impact Factor Indicator

X1 Elevation
X2 Slope
X3 Annual precipitation
X4 Annual mean temperature
X5 Annual evapotranspiration
X6 NDVI
X7 Soil type
X8 Distance to river
X9 Policy factors

2.3.3. ESs TOS Assessment Methods

Relationships between ESs can be categorized as trade-offs, synergies, and insignificant.
Insignificant means that one ESs does not change with the other, trade-offs mean that one
ESs decreases with the increase in the other, and synergies means that both ESs change
simultaneously. In this study, the TOS relationships between ESs were quantified using
Pearson analysis and GWR in R (4.3.3). The Pearson analysis reveals the linear relationships
between the variables, and the GWR reveals the spatial heterogeneity among ESs. For
formulas, please refer to [44,45].
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2.3.4. PLS-SEM (Partial Least Squares-Structural Equation Model)

In this study, the PLS-SEM was used to measure the impact of paddy field expansion
on ESs. First, the PLS-SEM can handle multivariate problems with small sample sizes.
Second, the PLS-SEM has greater predictive power, less stringent data requirements, does
not assume a normal distribution, and still produces robust outputs [46].

3. Results
3.1. Expansion of Paddy Fields and Land Use Change in the SJP

During the study period, the land use types in the SJP area were dominated by dry
fields, forested lands, and paddy fields (Table 4). In 1990, 2000, 2010, and 2020, the total
areas of drylands, forested lands, and paddy fields comprised 75.99%, 81.56%, 80.32%,
and 82.26% of the SJP, respectively. Dryland area dominated the landscape during the
study period, comprising 36.24%, 38.45%, 35.04%, and 33.11%, showing an increasing and
then decreasing trend. Paddy fields have shown significant changes in area, comprising
5.32%, 9.81%, 14.54%, and 17.28% in 1990, 2000, 2010, and 2020, respectively. Paddy field
area increased by 12,998.41 km2 during the past 30 years, demonstrating a consistent
annual increase.

Table 4. Areas and proportions of various LUTs.

Land Use Type
1990 2000 2010 2020

Area (km2) Proportion Area (km2) Proportion Area (km2) Proportion Area (km2) Proportion

Paddy 5775.00 5.32% 10,660.70 9.81% 15,792.80 14.54% 18,773.41 17.28%
Dry farmland 39,377.07 36.24% 41,769.75 38.45% 38,069.67 35.04% 35,970.49 33.11%

Forest 37,405.84 34.43% 36,176.32 33.30% 33,398.17 30.74% 34,626.71 31.87%
Grassland 7502.25 6.91% 4219.46 3.88% 4233.14 3.90% 4033.78 3.71%

Water 5297.68 4.88% 4955.26 4.56% 4997.57 4.60% 2960.40 2.72%
Settlement 2126.48 1.96% 2112.43 1.94% 2328.82 2.14% 2232.39 2.05%
Wetland 11,146.60 10.26% 8735.59 8.04% 9786.77 9.01% 10,026.52 9.23%

Other 12.96 0.01% 14.27 0.01% 36.60 0.03% 16.61 0.02%

Throughout the study period, the areas of forest, grassland, wetland, and water
exhibited a consistent decline, decreasing by 2.56%, 3.19%, 2.15%, and 1.03%, respectively,
by 2020. The area of settlement decreased and then rose, resulting in an overall increase of
0.10%. The “other” category had the smallest proportion of the area and exhibited minimal
change over the period. The rates of change for each land use types from 1990 to 2020,
in descending order, were as follows: paddy fields, grasslands, drylands, forests, water,
wetlands, settlements, and other categories.

During the study period, the spatial distribution of land use types in the SJP was
basically consistent, but there was a strong transition between different land use types
(Figure 3). Drylands and paddy fields are mainly distributed in the central plains of the
study area, with large changes in area and a clear trend of expansion. Forested land is
mainly distributed in areas with higher terrain; wetlands are mainly distributed near rivers
and water, and grasslands are sporadically distributed around wetlands and forested. Little
spatial change is observed in settlements, water and other.

Figure 3 shows the changes between different land use types in 1990–2000, 2000–2010,
and 2010–2020. Changes in paddy fields and drylands are the most obvious, with paddy
fields increasing by 12,998.41 hm2 during the 30 years; drylands decreased by 3406.59 hm2.
It was caused by the conversion within the cropland and the policy of returning farmland
to forests. Areas of forest, grassland, wetland, and water decreased due to the continuous
expansion of cropland areas. Settlement and other unutilized land showed minimal change.
Overall, the conversion of the various land use types in the study area is more dramatic
over the 2000–2020 period.



Agriculture 2024, 14, 2063 9 of 24
Agriculture 2024, 14, x FOR PEER REVIEW 10 of 25 
 

 

 
Figure 3. (a) Land use changes in the SJP from 1990 to 2020. (b) Land use transition chord diagram 
in the SJP from 1990 to 2020. 

3.2. The Spatiotemporal Changes in ESs 
In this study, five ESs in the SJP were assessed. The results showed that the SJP ex-

hibited significant spatial heterogeneity in ESs during the study period (Figure 4). The 
spatial distribution patterns of CS and HQ were similar and closely related to the LUTs in 
the study area, with the high-value areas all located in woodlands and wetlands in the 
study area. Additionally, watersheds like Xingkai Lake were in low-value CS areas but 
high-value HQ areas. Areas where CS and HQ changed were generally consistent over the 
study period. The areas of increased CS were mainly located near water bodies, and the 
areas of decreased CS were mainly where wetlands, forests, and grasslands had been en-
croached upon. The changes in HQ align with those in wetland, woodland, and grassland 
areas. From 1990 to 2020, significant changes in SC were primarily observed in the higher-
terrain areas of the SJP, while SC in the central plains and areas with low topography 
decreased to varying extents. Rainfall and evapotranspiration are the primary factors in-
fluencing WY, which has shown a noticeable upward trend during the study period along-
side increasing precipitation in the SJP. The areas with significant changes in WY from 

Figure 3. (a) Land use changes in the SJP from 1990 to 2020. (b) Land use transition chord diagram in
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3.2. The Spatiotemporal Changes in ESs

In this study, five ESs in the SJP were assessed. The results showed that the SJP
exhibited significant spatial heterogeneity in ESs during the study period (Figure 4). The
spatial distribution patterns of CS and HQ were similar and closely related to the LUTs
in the study area, with the high-value areas all located in woodlands and wetlands in
the study area. Additionally, watersheds like Xingkai Lake were in low-value CS areas
but high-value HQ areas. Areas where CS and HQ changed were generally consistent
over the study period. The areas of increased CS were mainly located near water bodies,
and the areas of decreased CS were mainly where wetlands, forests, and grasslands had
been encroached upon. The changes in HQ align with those in wetland, woodland, and
grassland areas. From 1990 to 2020, significant changes in SC were primarily observed in the
higher-terrain areas of the SJP, while SC in the central plains and areas with low topography
decreased to varying extents. Rainfall and evapotranspiration are the primary factors
influencing WY, which has shown a noticeable upward trend during the study period
alongside increasing precipitation in the SJP. The areas with significant changes in WY from
1990 to 2020 correspond closely with changes in wetlands and grasslands. High-value FP
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is concentrated in the central area where cropland is contiguous and extensive, whereas
low-value areas are predominantly found in fragmented cultivated lands surrounding this
central area. FP has generally shown a notable upward trend throughout the study period,
with only a small portion of croplands experiencing declines.
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From 1990 to 2020, ESs in the SJP exhibited varying trends (Figure 5). CS, HQ, and SC
initially showed decreases followed by increases, with CS decreasing by 0.01 × 109 t and
HQ by 0.04. SC decreased from 1990 to 2010 and significantly increased from 2010 to 2020,
resulting in SC increasing by 1.78 × 108 t over the 30 years. WY increased by 1.32 × 1010 t
over 30 years. Grain production increased by 2.32 × 107 t over the last 30 years, attributed
to the cultivation of improved varieties, the rational use of fertilizers and pesticides, and
advancements in agricultural mechanization.
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3.3. Changes in ESs Across Land Use Types

In this study, the mean ESs value for each land category was calculated separately
using spatial statistics tools in ArcGIS10.6, and the ESs of each land category were normal-
ized and plotted in a rose diagram (Figure 6). The results showed that forests and wetlands
had the highest CS from 1990 to 2020, reaching 25.71 t and 19.68 t, respectively. Forests
and water primarily provide regional HQ functions, and changes in HQ reveal significant
decreasing trends for each category from 1990 to 2020. Forests and grasslands, as the largest
regional providers of SC functions, exhibit fluctuating upward trends in their SC levels. WY
is the most important ecosystem service for settlement and other land uses. FP activities are
generally carried out only on cropland; thus, paddy fields and drylands contribute most
significantly to regional FP functions. As the largest land use types in the SJP, paddy fields
and drylands not only perform all five ESs functions, but also deliver relatively high levels
of ESs. Grasslands, forests, and wetlands, as important ecological barriers in the region,
also assume most of the ESs functions. Water, settlement, and other land uses, on the other
hand, contribute relatively singular ESs functions.
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In terms of the proportion of ESs provided by each LUT in the SJP (Figure 7), paddy
fields, drylands, and forests have strong ESs provisioning capacity, and the proportion
of ESs provided by these three land use types consistently exceeds 50%. Overall, the
proportion of ESs provided by each land use types in the SJP remained relatively stable
from 1990 to 2020. Additionally, the ESs capacity of paddy fields increased during this
period due to the expansion of paddy fields and the increase in grain production per unit
area. Conversely, due to the implementation of the drought-to-water conversion policy,
some of the dryland was converted to paddy land or other land types, resulting in a
decreasing trend in CS, WY, and FP functions. Wetlands and forests exhibited a decreasing
trend in all services except for WY, which increased. The ESs functions represented by
each of the land classes changed over the 1990–2020 period, with CS remaining unchanged,
while the other four services fluctuated. There was a small increase in HQ for paddy fields,
and HQ services for all other land classes showed a constant or decreasing trend, while SC,
WY, and FP services primarily exhibited increasing trends over the 30-year period.

3.4. Impact of Drivers on ESs

A total of nine indicators, including topography, climate, soil, and policy, were selected
as the driving factors for this study. Compared with some studies that use the simple natural
segment point method to discretize the data, this paper uses OPGD to discretize the data
with optimal parameters, which is more robust and scientific. For the single factor detected
of the factors affecting ESs in the SJP from 1990 to 2020 (Table 5), it was evident that the
elevation, slope, and soil type, were the top three among in the explanatory power of ESs
changes. The results showed that in the case of CS, HQ, and SC, the explanatory power of
soil and topographic factors for these three ESs was notably stronger, and soil type, DEM,
and slope were the main drivers of changes in CS, HQ, and SC. For WY and FP services, soil
type and NDVI had higher explanatory power. The main drivers affecting WY were soil
type, NDVI, and slope, with 16.58%, 13.97%, and 11.72%, respectively. The main drivers
affecting FP were NDVI, soil type, elevation and slope, where the explanatory power of
policy factors on FP was also stronger at 10.70%. Overall, topography, soil type, and NDVI
were the main drivers affecting the spatial heterogeneity of ESs in the SJP.
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Table 5. Ecosystem services factor detection results.

q Statistic X1 X2 X3 X4 X5 X6 X7 X8 X9

CS 0.1424 0.1236 0.0539 0.07 0.0352 0.043 0.1935 0.0163 0.022
HQ 0.1458 0.1074 0.0774 0.1146 0.04 0.0649 0.1483 0.0374 0.0704
SC 0.5155 0.4899 0.132 0.0725 0.0148 0.1612 0.3425 0.0372 0.1128
WY 0.1072 0.1172 0.0204 0.0654 0.0418 0.1397 0.1658 0.0252 0.0706
FP 0.2207 0.1861 0.1275 0.0792 0.042 0.2726 0.2034 0.0194 0.107

This study showed that the interactive effects of two indicators affecting the regional
heterogeneity of ESs in the SJP had stronger explanatory power than a single factor
(Figure 8). The significant increase in the explanatory power after interaction suggests that
no single factor can completely determine the variations in ESs in the SJP. The explanatory
power of the interaction between elevation∩soil type on the spatial heterogeneity of CS
was the largest, at 19.39%, larger than that between soil type∩other factors. And all factors
were greater than 21%. The interactions involving elevation, annual mean temperature, and
soil type were stronger, with the interaction between annual mean temperature∩soil type
having the most significant effect on HQ, with an explanatory power of 31.64%. For SC
service, it had the greatest explanatory power, at 59.51% between elevation∩slope, followed
by the interaction of slope∩elevation alone on other factors. For WY service, it was 25.11%
between NDVI∩soil type. In FP, it was generally greater than 20%, and the explanatory
power of the interaction between NDVI∩other factors was relatively strong, all greater
than 30%. The interaction between NDVI∩soil type had the greatest explanatory power for
the spatial heterogeneity of FP, which was 38.88%. It was also above 10% between policy
factors∩other factors. Overall, the interaction detection revealed that soil type, NDVI, slope,
DEM, and policy factors are important factors for understanding the changes in ESs in
the SJP.
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3.5. Spatial and Temporal Characteristics of Ecosystem Services Trade-Offs and Synergies in the
Sanjiang Plain

The results showed significant relationships between ESs in the SJP, with a p-value of
<0.001 (Figure 9). From 1990 to 2020, there were varying degrees of correlation between each
pair of ESs, and their correlation coefficients showed notable similarities. CS was positively
correlated with HQ and SC, indicating synergy relationships with their respective increases
and decreases. Conversely, CS was negatively correlated with WY and FP, indicating
trade-offs. HQ had a significant synergy relationship with SC and notable trade-offs with
both WY and FP. SC also exhibited trade-offs with WY and FP, while WY demonstrated a
significant synergy relationship with FP.

To understand the spatial TOS among different ESs in SJP, the GWR was employed
to illustrate the spatial heterogeneity of these relationships (Figure 10). The results are
presented in Figure 10. Overall, the TOS relationships among various ESs exhibited signifi-
cant spatial heterogeneity and scale effects. The TOS at raster and county scales showed
inconsistencies and notable differences among subregions. From the spatial changes in
ESs TOS from 1990 to 2020, the areas of CS and HQ trade-offs were predominantly in the
western and southeastern regions, while the areas of synergy were primarily in the central
region. The trade-offs between CS and SC, HQ and SC, and CS and WY were mainly
located in the central region around the city of Jiamusi and the southeastern region, with
synergy areas localized in the central region.
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The areas of HQ and WY trade-offs are mainly clustered in the northwestern and
southeastern counties and cities, while the synergy areas are scattered across a few counties
and cities in the northeast and southwest. The TOS relationships between SC and WY are
dominated by trade-offs, with the majority of the eastern part of the region characterized
by trade-offs. In contrast, the TOS relationships between CS, HQ, SC, WY, and FP exhibit
pronounced spatial heterogeneity. In 1990, the relationships among CS, HQ, and FP were
predominantly synergies, whereas those among SC, WY, and FP were predominantly
characterized by trade-offs. By 2020, weak trade-off relationships dominated most areas
between CS, HQ, SC, WY, and FP. At the raster scale, the TOS relationships among the five
ESs from 1990 to 2020, although differing in small regions, showed spatial similarities at
a larger regional scale. In conclusion, the TOS relationships among ESs in the SJP exhibit
significant scale effects as well as spatial heterogeneity.



Agriculture 2024, 14, 2063 16 of 24

Agriculture 2024, 14, x FOR PEER REVIEW 17 of 25 
 

 

mainly located in the central region around the city of Jiamusi and the southeastern re-
gion, with synergy areas localized in the central region. 

 
Figure 10. Spatial distribution of TOS of ESs in the SJP. 

The areas of HQ and WY trade-offs are mainly clustered in the northwestern and 
southeastern counties and cities, while the synergy areas are scattered across a few coun-
ties and cities in the northeast and southwest. The TOS relationships between SC and WY 
are dominated by trade-offs, with the majority of the eastern part of the region character-
ized by trade-offs. In contrast, the TOS relationships between CS, HQ, SC, WY, and FP 
exhibit pronounced spatial heterogeneity. In 1990, the relationships among CS, HQ, and 
FP were predominantly synergies, whereas those among SC, WY, and FP were predomi-
nantly characterized by trade-offs. By 2020, weak trade-off relationships dominated most 
areas between CS, HQ, SC, WY, and FP. At the raster scale, the TOS relationships among 
the five ESs from 1990 to 2020, although differing in small regions, showed spatial simi-
larities at a larger regional scale. In conclusion, the TOS relationships among ESs in the 
SJP exhibit significant scale effects as well as spatial heterogeneity. 

3.6. Impacts of Paddy Field Expansion on ESs 
We analyzed the effects of paddy field expansion on five ESs using the PLS-SEM (Fig-

ure 11). Since this study explored the relationship between paddy field expansion and five 
ESs, we analyzed only the path coefficients of paddy field area on these services and the 
R2 values. Between 1990 and 2020, paddy field expansion negatively impacted regional CS 
and HQ, with the greatest impact on HQ (path coefficient: −0.83) and a significant impact 
on CS (path coefficient: −0.41). Paddy field expansion positively contributed to SC, WY, 
and FP, having the greatest impact on FP (path coefficient: 0.90). It also significantly im-
pacted SC and WY, with path coefficients of 0.69 and 0.83, respectively. 

Figure 10. Spatial distribution of TOS of ESs in the SJP.

3.6. Impacts of Paddy Field Expansion on ESs

We analyzed the effects of paddy field expansion on five ESs using the PLS-SEM
(Figure 11). Since this study explored the relationship between paddy field expansion and
five ESs, we analyzed only the path coefficients of paddy field area on these services and
the R2 values. Between 1990 and 2020, paddy field expansion negatively impacted regional
CS and HQ, with the greatest impact on HQ (path coefficient: −0.83) and a significant
impact on CS (path coefficient: −0.41). Paddy field expansion positively contributed to SC,
WY, and FP, having the greatest impact on FP (path coefficient: 0.90). It also significantly
impacted SC and WY, with path coefficients of 0.69 and 0.83, respectively.
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4. Discussion
4.1. Dynamics and Drivers of ESs in the SJP

The distribution pattern of ESs is closely linked with the land use pattern [47]. The
southwest and a small part of the east are mountainous areas with higher terrain, min-
imal human disturbance, high vegetation cover, and rich biodiversity, which are areas
with high values of CS, HQ, and SC. Conversely, WY is strongly influenced by rainfall
and evapotranspiration and is mainly distributed in plains with lower terrain, and FP is
concentrated in cropland. From 1990 to 2020, CS and HQ in the SJP generally declined,
while SC, WY, and FP generally increased, consistent with existing studies [38]. At the
same time, the conversion of farmland to forest and grassland, wetland protection policies,
and the establishment of nature reserves increased vegetation cover [48]. Consequently,
the ecological environment was restored, and the water demand for vegetation and water
retention on the ground increased, resulting in an increase in WY. The areas of high value
for CS, SC, and HQ were mainly dominated by woodlands, grasslands, and wetlands.
The protection policies contributed to the restoration of vegetation cover and the ecolog-
ical environment. Studies indicated that photosynthetic carbon sequestration and root
sequestration by vegetation enhanced carbon sink capacity [49,50], and regional HQ was
influenced by vegetation cover, with CS and HQ recovering in the last 10 years. Good
vegetation cover slows runoff and absorbs precipitation, reduces soil erosion, and increases
SC capacity [51]. Factors such as advances in agricultural science and technology, policy
support, and infrastructure development have led to a significant increase in FP.

Changes in ESs are caused by a range of factors, such as topography, climate change,
and human activities [52]. Studies have shown that changes in CS are mainly influenced by
land use patterns [44]. Over the past 30 years, the CS capacity of forest land, grassland, and
wetland has decreased due to the expansion of cropland, resulting in a decreasing trend
in CS. Simultaneously, the reduction in forest and grassland areas diminished biological
habitats, and the construction of irrigation reservoirs exacerbated the negative impacts
on HQ, leading to a decline in HQ and SC. Between 2010 and 2020, policies drove the
restoration of woodland and grassland areas, leading to increased vegetation cover and
the subsequent recovery of HQ and SC. These findings are consistent with recent studies
indicating that fallow forest programs improved SC in the Loess Plateau and Liaohe River
Basin [53,54]. Precipitation is the primary source of water recharge in temperate regions,
and precipitation patterns directly determine changes in WY. Over the past 30 years, the
climate of the SJP has become progressively warmer and wetter (Figure 12), with increased
precipitation and temperature contributing to higher WY. FP is strongly influenced by
meteorology, topography, and soil type. Appropriate precipitation, suitable temperature,
and sufficient light directly affect crop yields; topography affects precipitation distribution
and soil erosion, which in turn impacts FP; and different soil types influence crop suitability
and yields. This study also found that policy factors significantly impact FP.

4.2. TOS Relationships Between ESs in the SJP

In this paper, the relationship between ESs TOS in the SJP was investigated using
Pearson analysis and GWR in R. It was found that there were trade-offs between WY and
CS, and HQ and SC; similar trade-offs were observed between FP and these three services.
Synergy relationships were found between CS and HQ and SC, HQ and SC, and WY and
FP. Additionally, the spatial heterogeneity of ESs within the region was analyzed using
the GWR.
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It was found that there are trade-offs between ESs due to the limited nature of resources
and the mutual exclusion of ESs. Due to the finite nature of regional water resources, trade-
offs exist between WY and CS, HQ, and SC, because these services jointly utilize limited
water resources. An increase in WY reduces the amount of water in the soil, affecting
vegetation growth and CS changes in the region [55,56]. Additionally, regional land
resources are limited; FP requires a large amount of land. Land used for food cultivation
cannot maintain HQ or increase CS. Agricultural activities often necessitate the clearing
of cropland and the use of fertilizers and pesticides, which can harm HQ and reduce SC
functions [57]. On the other hand, trade-offs between ESs may also occur due to the mutual
exclusion of the functions of each ESs [58]. CS are generally associated with areas of forest
or other high vegetation cover, which may not be suitable for agricultural production. Thus,
increasing CS and HQ may necessitate a reduction in the area of arable land. Agricultural
production frequently leads to ecosystem disturbances, such as soil erosion and pesticide
pollution, which can reduce SC and HQ. Several studies have shown that complementarities
and co-facilitators of ESs lead to synergy relationships between ESs [59]. The synergy
relationship between CS, HQ, and SC is due to the combined effects of vegetation. Healthy
vegetation not only stores significant amounts of carbon but also protects habitats and
maintains soil stability [60]. For example, forests and grasslands reduce soil erosion
through their root structure while providing habitat for organisms. Healthy ecosystems
typically exhibit multiple functions that support each other. High-quality habitats promote
soil retention, while stable soils help maintain vegetation cover and CS. Moreover, some
ecological restoration programs initiated by the government often enhance multiple ESs [61].
For example, reforestation projects not only increase CS but also enhance HQ and soil
retention. For agricultural production, the adoption of sustainable agricultural practices
can enhance FP while protecting soil and HQ. Simultaneously, differences in geographic
conditions and the impact of some human activities lead to significant spatial heterogeneity
among ESs. Mountainous areas are ideal for forest cover and CS accumulation, while plains
are suitable for agricultural production. Differences in soil type and fertility across different
regions can also lead to spatial heterogeneity in ESs. High-intensity agricultural activities
may concentrate in some areas, while nature reserves may be concentrated in others. The
phenomenon of TOS among ESs in the SJP results from a combination of multiple natural
factors and human activities. These factors interact to form a complex dynamic relationship
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within ESs. Comprehending these factors is essential for developing effective ecological
management and sustainable development strategies.

4.3. Causes of Paddy Field Expansion and Impacts on ESs

Over the past 30 years, the paddy field area in the SJP has expanded from 5775 km2 in
1990 to 18,773 km2 in 2020, nearly quadrupling in size. Some studies have shown that policy
support plays a crucial role in promoting agricultural plantation restructuring [62]. Since
the reclamation of the SJP, policy support has underpinned every large-scale expansion of
paddy fields (Figure 13). Between 1956 and 1996, wetlands were primarily cultivated, and
many were drained and converted into rice paddies. In the 21st century, a series of national
policies and related laws have led to the implementation of strategies such as “curing floods
with rice and enriching the people with rice.” Furthermore, projects such as “converting
drought to water” and “converting wetland to water” have been executed [63]. Driven
by food market prices, some farmers have spontaneously converted drylands into paddy
fields. This series of initiatives has significantly facilitated the conversion of drylands into
paddy fields.
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Although paddy field expansion promotes FP, it also affects regional ESs. We analyzed
the effects of paddy field expansion on five ESs using the PLS-SEM model, and the results
showed that paddy field expansion had a negative effect on CS and HQ, with coefficients of
−0.409 and −0.827, respectively. Paddy field expansion directly contributed to SC, WY, and
FP, with coefficients of 0.689, 0.828, and 0.898. Our study found that paddy field expansion
leads to a reduction in the area of wetlands, forests, and grasslands, and that ecosystems
such as wetlands and forests have high CS capacity. Converting these ecosystems to paddy
fields reduces the vegetation cover and leads to a decrease in the regional CS. In addition,
paddy field expansion can lead to the destruction of natural ecosystems such as wetlands
and forests, reducing wildlife habitat and biodiversity, resulting in a decline in HQ [64].
Although paddy field expansion has a negative effect on CS and HQ, Paddy field expansion
has a positive effect on the other three ESs. On the one hand, paddy farming can reduce
soil erosion and improve soil retention through the root system of rice and soil moisture
conditions. Irrigation systems and water management practices in paddy fields can increase
WY in the region and promote water recycling. On the other hand, paddy field expansion
directly increases the area under rice cultivation and enhances FP. In conclusion, paddy
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field expansion has had a complex impact on the ESs of the SJP, yielding both positive and
negative effects.

To balance agricultural production and ecological protection, the following measures
should be taken: first, optimize land use patterns by prioritizing land with low ecological
value and avoiding important wetlands and forest resources for agriculture. Second, im-
plement ecological compensation measures for transformed wetlands and forests, such as
establishing nature reserves and ecological restoration projects, to restore and maintain
ES functions. Finally, actively promote sustainable and smart agriculture by adopting
techniques like water-saving irrigation, ecological planting, and variable fertilizer appli-
cation to minimize environmental impacts and protect water resources and soil quality.
These measures can safeguard FP, minimize negative ecosystem impacts, and promote the
sustainable development of the SJP.

4.4. Limitations

This study comprehensively examines the changes in paddy field expansion and
five ESs in the SJP from 1990 to 2020, discusses the drivers influencing these ESs, and
explores their TOS, with the aim of contributing to regional ESs research. However, this
study has the following shortcomings: (1) Although the study used 30 years of data,
these data may have temporal and spatial limitations of ecosystem changes. For instance,
external influences such as climate change and policy shifts can significantly affect ESs,
yet these factors were not sufficiently addressed and measured. (2) Although the InVEST
model, the OPGD, the GWR model, and the PLS-SEM were used, each model has its
limitations and assumptions. The choice of models and their parameter configurations
may impact the precision and dependability of the results. Future research might utilize
alternative models or refine current ones to improve analytical accuracy. (3) Five ESs were
selected for analysis in this paper. However, other significant services, such as cultural
and regulatory services, may have been overlooked. Future studies should consider
additional ESs indicators to achieve a more comprehensive assessment of ecosystem health.
(4) Although spatial heterogeneity was explored in this paper, the heterogeneity analysis
across different scales and regions may not be sufficiently detailed. Future research could
explore the heterogeneity in its driving mechanisms across regions and scales in greater
detail. (5) Paddy fields are important sources of methane emissions. Due to a series of
limitations, greenhouse gas emissions were not considered an ESs in this study. Future
research should include the contribution of greenhouse gasses as a crucial ESs, especially
since rice cultivation plays a substantial role in methane emissions, which may have
important implications for climate change and regional environmental dynamics.

5. Conclusions

This study analyzes the expansion of paddy fields from 1990 to 2020 and quantifies
five representative ESs in the SJP using the InVEST model. The main drivers of ESs changes
were examined using OPGD, while TOS relationships among ESs were explored through
Pearson analysis in R and the GWR. Moreover, the effects of paddy field expansion on
regional ESs were evaluated using PLS-SEM, with the goal of reconciling agricultural
output and ecological conservation in the SJP. The primary findings are as follows:

(1) From 1990 to 2020, the area of rice paddies in the SJP increased by 12,998.41 km2,
nearly quadrupling. With the exception of rice paddies and settlements, all other land
categories exhibited an overall decline.

(2) Regional ESs showed a recovery trend. CS, HQ, and SC initially showed decreases
followed by increases, with CS decreasing by 0.01 × 109 t and HQ by 0.04. SC decreased
from 1990 to 2010 and significantly increased from 2010 to 2020, resulting in SC increasing
by 1.78 × 108 t over the 30 years. WY increased by 1.32 × 1010 t over 30 years. The
ecosystem service functions of different land types varied significantly, with paddy fields,
drylands, forests, and wetlands being the main providers. Soil type, topography, and NDVI
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were the primary drivers of ESs changes, with elevation and slope explaining 59.51% of
spatial variation in SC, and soil type and NDVI explaining 38.88% of spatial variation in FP.

(3) There were varying degrees of correlation among ESs. CS showed synergy rela-
tionships with HQ and SC, as well as with WY and FP. However, there were trade-offs
between CS and WY and FP, HQ and WY and FP, and SC and WY and FP. These TOS
exhibited significant spatial heterogeneity and scale effects, with large variations across
different subregions.

(4) The expansion of paddy fields promoted increases in SC, WY, and FP, but had
negative effects on CS and HQ.
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