Genome-Wide Analysis and Genomic Prediction of Chilling Tolerance of Maize During Germination Stage Using Genotyping-by-Sequencing SNPs
<p>Violin plots of RGR for AM population.</p> "> Figure 2
<p>Quantile–quantile plot of GWAS result of RGRs under four models.</p> "> Figure 3
<p>Manhattan plot of GWAS of RGRs. The dots mean −log(<span class="html-italic">p</span>) of each markers, the solid line stands for the threshold of significant level and the value is 6.74.</p> "> Figure 4
<p>Comparison of the prediction accuracy of different models for RGR: the red triangle represents the mean of the prediction accuracy, while the black solid line indicates the median of the prediction accuracy, the dot of circle type represents outliers.</p> "> Figure 5
<p>Influence of training population size on the prediction accuracy of the natural population (the red triangle symbol is the mean prediction accuracy, and the black long horizontal solid line is the median prediction accuracy, the dot of circle type represents outliers).</p> "> Figure 6
<p>Influence of number of significant markers and random markers on prediction accuracy to natural population.</p> "> Figure 7
<p>Influence of MAF on prediction accuracy of natural population. (The red triangle symbol is the mean prediction accuracy, and the black long horizontal solid line is the median prediction accuracy, the dot of circle type represents outliers).</p> "> Figure 8
<p>Influence of MAF 0.40–0.50 marker and random marker on prediction accuracy of natural population. The black solid dot represents outliers.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials, Field Test, and Collecting of Phenotypic Data
2.2. Genotypic Data and GWAS
2.3. Genomic Prediction
2.3.1. The Impact of Statistical Models on Prediction Accuracy
2.3.2. The Effect of Training Group Size on Prediction Accuracy
2.3.3. The Effect of Marker Density and Quality on Prediction Accuracy
2.3.4. The Effect of Significant Markers on Prediction Accuracy
3. Results
3.1. Analysis of Phenotype
3.2. Genome Wide Association Mapping
3.3. Genomic Prediction of RGR
3.3.1. Influence of Statistical Models to Prediction Accuracy
3.3.2. Influence of Training Set to Prediction Accuracy
3.3.3. Influence of Marker Density and Significant Markers
3.3.4. Influence of Markers Minor Allele Frequency to Prediction Accuracy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, F.; Pei, Z.; Wang, S.; Gao, Y.; Lu, B.; Liu, J.; Dong, X. Study of Temporal Change Characteristics of Agrometeorological Chilling Injury and Hail and Tornadoe Disasters for 36 Years in Heilongjiang Province. Heilongjiang Agric. Sci. 2019, 6, 36–39. [Google Scholar]
- Ma, S.; Xi, Z.; Wang, Q. Risk evaluation of cold damage to corn in Northeast China. J. Nat. Disasters 2003, 3, 138–141. [Google Scholar]
- Ma, Y.; Tan, R.; Zhao, J. Chilling Tolerance in Maize: Insights into Advances—Toward Physio-Biochemical Responses’ and QTL/Genes’ Identification. Plants 2022, 11, 2082. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Yu, T.; Hu, G.; Wang, C.; Cao, J. Research progress on the identification methods of cold tolerance during maize germination period. China Seed Ind. 2018, 8, 29–33. [Google Scholar] [CrossRef]
- Brandolini, A.; Landi, P.; Monfredini, G.; Tano, F. Variation among Andean races of maize for cold tolerance during heterotrophic and early autotrophic growth. Euphytica 2000, 111, 33–41. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Cao, J.; Shi, G.; Guo, X.L.; Cai, Q.; Yin, Y.; Yu, T. Evaluation and Utilization of Low Temperature Tolerance of Maize Inbred Lines from Different Sources. J. Maize Sci. 2019, 6, 7–12. [Google Scholar]
- Bhosale, S.; Rymen, B.; Beemster, G.; Melchinger, A.; Reif, C. Chilling tolerance of Central European maize lines and their factorial crosses. Ann. Bot. 2007, 6, 1315–1321. [Google Scholar] [CrossRef]
- Mcconnell, R.L.; Gardner, C. Inheritance of Several Cold Tolerance Traits in Corn. Crop Sci. 1979, 19, 847–852. [Google Scholar] [CrossRef]
- Frascaroli, E.; Landi, P. Cold tolerance in field conditions, its inheritance, agronomic performance and genetic structure of maize lines divergently selected for germination at low temperature. Euphytica Int. J. Plant Breed. 2016, 209, 771–788. [Google Scholar] [CrossRef]
- Fracheboud, Y.; Ribaut, J.; Vargas, M.; Messmer, R.; Stamp, P. Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.). J. Exp. Bot. 2002, 376, 1967–1977. [Google Scholar] [CrossRef]
- Strigens, A.; Freitag, N.; Gilbert, X.; Grieder, C.; Riedelsheimer, C.; Schrag, T.; Messmer, R.; Melchinger, A. Association mapping for chilling tolerance in elite flint and dent maize inbred lines evaluated in growth chamber and field experiments. Plant Cell Environ. 2013, 10, 1871–1887. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Xia, C.; Li, L.; Wei, R.; Rong, T.; Liu, H.; Lan, H. Genomic prediction of yield-related traits and genome-based establishment of heterotic pattern in maize hybrid breeding of Southwest China. Front. Plant Sci. 2024, 15, 1441555. [Google Scholar] [CrossRef] [PubMed]
- Wientjes, Y.C.J.; Bijma, P.; Calus, M.P.L.; Zwaan, B.J.; Vitezica, Z.G.; van den Heuvel, J. The long-term effects of genomic selection: 1. Response to selection, additive genetic variance, and genetic architecture. Genet. Sel. Evol. 2022, 54, 19. [Google Scholar] [CrossRef] [PubMed]
- Gowda, M.; Das, B.; Makumbi, D.; Babu, R.; Semagn, K.; Mahuku, G.; Olsen, M.; Bright, J.M.; Beyene, Y.; Prasanna, B. Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. Theor. Appl. Genet. 2015, 128, 1957–1968. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hu, G.; Zhang, A.; Loladze, A.; Hu, Y.; Wang, H.; Qu, J.; Zhang, X.; Olsen, M.; Vicente, F.; et al. Genome-wide association study and genomic prediction of Fusarium ear rot resistance in tropical maize germplasm. Crop J. 2021, 9, 325–341. [Google Scholar] [CrossRef]
- Cao, S.; Loladze, A.; Yuan, Y.; Wu, Y.; Zhang, A.; Chen, J.; Huestis, G.; Cao, J.; Chaikam, V.; Olsen, M.; et al. Genome-Wide Analysis of Tar Spot Complex Resistance in Maize Using Genotyping-by-Sequencing SNPs and Whole-Genome Prediction. Plant Genome 2017, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Wang, H.; Beyene, Y.; Semagn, K.; Liu, Y.; Cao, S.; Cui, Z.; Ruan, Y.; Burgueño, J.; San, V.F.; et al. Effect of Trait Heritability, Training Population Size and Marker Density on Genomic Prediction Accuracy Estimation in 22 bi-parental Tropical Maize Populations. Front. Plant Sci. 2017, 8, 1916. [Google Scholar] [CrossRef]
- Cao, S.; Song, J.; Yuan, Y.; Zhang, A.; Ren, J.; Liu, Y.; Qu, J.; Hu, G.; Zhang, J.; Wang, C.; et al. Genomic Prediction of Resistance to Tar Spot Complex of Maize in Multiple Populations Using Genotyping-by-Sequencing SNPs. Front. Plant Sci. 2021, 12, 672525. [Google Scholar] [CrossRef]
- e Sousa, M.B.; Galli, G.; Lyra, D.H.; Granato, I.S.C.; Matias, F.I.; Alves, F.C.; Fritsche-Neto, R. Increasing accuracy and reducing costs of genomic prediction by marker selection. Euphytica 2019, 215, 18. [Google Scholar] [CrossRef]
- Alvarado, G.; Rodríguez, M.F.R.; Pacheco, A.; Burgueño, J.; Crossa, J.; Vargas, M.; Pérez-Rodríguez, P.; Lopez-Cruz, M.A. Meta-r: A software to analyze data from multi-environment plant breeding trials. Crop J. 2020, 8, 754–756. [Google Scholar] [CrossRef]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Glaubitz, J.C.; Casstevens, T.M.; Lu, F.; Harriman, J.; Elshire, R.J.; Sun, Q.; Buckler, E.S. TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. PLoS ONE 2014, 92, e90346. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Swarts, K.; Li, H.; Navarro, J.A.R.; An, D.; Romay, M.C.; Hearne, S.; Acharyae, C.; Glaubitze, J.C.; Mitchelle, S.; Elshireg, R.J.; et al. Novel methods to optimize genotypic imputation for low-coverage, next-generation sequence data in crop plants. Plant Genome 2014, 7, 175–177. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Gowda, M.; Liu, W.; Würschum, T.; Maurer, H.P.; Longin, F.H.; Ranc, N.; Reif, J.C. Accuracy of genomic selection in European maize elite breeding populations. Theor. Appl. Genet. 2012, 124, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Endelman, J.B. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 2011, 4, 250–255. [Google Scholar] [CrossRef]
- Pérez, P.; de los Campos, G. Genome-wide regression and prediction with the BGLR statistical package. Genetics 2014, 198, 483–495. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Li, Z.; Zhang, Z.; Zhang, J.; Luo, Y.; Zhang, L. A new framework to quantify maize production risk from chilling injury in northeast china. Clim. Risk Manag. 2021, 3, 100299. [Google Scholar] [CrossRef]
- Jiang, L.; Gong, L.; Jiang, L.; Li, X.; Cheng, M.; Zhang, X. Chilling injury monitoring and intensity identification of dryland maize in Heilongjiang. J. Sci. Food Agric. 2023, 103, 4573–4583. [Google Scholar] [CrossRef]
- Hu, H. Genome-Wide Association Study and Genomic Selection on Chilling During Germination and Seedling Stage in Maize (Zea mays L.). Ph.D. Dissertation, Northeast Agricultural University, Harbin, China, 2018; p. 6. [Google Scholar]
- Zhang, H.; Zhang, J.; Xu, Q.; Wang, D.; Di, H.; Huang, J.; Yang, X.; Wang, Z.; Zhang, L.; Dong, L.; et al. Identification of candidate tolerance genes to low-temperature during maize germination by GWAS and RNA-seq approaches. BMC Plant Biol. 2020, 20, 333. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Cheng, Q.; Yan, J.; Fu, R.; Wang, X. Genome optimization for improvement of maize breeding. Theor. Appl. Genet. 2020, 133, 1491–1502. [Google Scholar] [CrossRef] [PubMed]
- Resende, M.; Munoz, P.; Resende, M.; Garrick, D.J.; Fernando, R.L.; Davis, J.M.; Jokela, E.J.; Martin, T.A.; Peter, G.F.; Kirst, M. Accuracy of Genomic Selection Methods in a Standard Data Set of Loblolly Pine (Pinus taeda L.). Genetics 2012, 190, 1503–1510. [Google Scholar] [CrossRef] [PubMed]
- Hoffstetter, A.; Cabrera, A.; Huang, M.; Sneller, C. Optimizing Training Population Data and Validation of Genomic Selection for Economic Traits in Soft Winter Wheat. G3 2016, 6, 2919–2928. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, J.Y.; Kim, N. GMStool: GWAS-based marker selection tool for genomic prediction from genomic data. Sci. Rep. 2020, 10, 19653. [Google Scholar] [CrossRef]
Statistical Parameter | 2018 | 2019 | 2020 | Combination Analysis |
---|---|---|---|---|
sample number | 287 | 287 | 287 | 287 |
Mean (%) | 49.54 | 51.18 | 59.89 | 53.54 |
SD | 5.91 | 7.54 | 11.33 | 16.34 |
Median (%) | 50.71 | 51.97 | 59.95 | 54.84 |
Min (%) | 32.74 | 28.89 | 26.97 | 6.03 |
Max (%) | 60.66 | 65.62 | 81.02 | 84.41 |
Range (%) | 27.93 | 36.73 | 54.05 | 78.38 |
Skew | −0.58 | −0.52 | −0.31 | −0.46 |
Kurtosis | 0.07 | 0.07 | −0.40 | −0.11 |
SE | 0.35 | 0.45 | 0.67 | 0.96 |
Heritability | 0.34 | 0.44 | 0.55 | 0.68 |
Model | SNP | Chr. | Position | p Value | MAF * | Effect | PVE * (%) |
---|---|---|---|---|---|---|---|
GLM | CORbnaG.10957 | 1 | 27819106 | 8.92 × 10−8 | 0.33 | 7.60 | 0.49 |
GLM | CORbnaG.11778 | 1 | 29840462 | 1.72 × 10−7 | 0.42 | 6.15 | 0.77 |
GLM | CORbnaG.32511 | 1 | 105975282 | 1.72 × 10−7 | 0.20 | 6.87 | 0.46 |
GLM | CORbnaG.189504 | 3 | 129160674 | 1.72 × 10−7 | 0.23 | 6.17 | 0.09 |
GLM | CORbnaG.193035 | 3 | 144220149 | 1.41 × 10−7 | 0.41 | 5.54 | 2.46 |
GLM | CORbnaG.312335 | 5 | 78150895 | 1.56 × 10−7 | 0.30 | 5.72 | 0.69 |
GLM | CORbnaG.312336 | 5 | 78150917 | 1.56 × 10−7 | 0.30 | −5.72 | 0.51 |
GLM | CORbnaG.375482 | 6 | 105660873 | 1.46 × 10−7 | 0.22 | 7.90 | 2.78 |
GLM | CORbnaG.577939 | 10 | 138708366 | 1.32 × 10−7 | 0.33 | 5.87 | 0.89 |
FarmCPU | CORbnaG.45953 | 1 | 164876718 | 1.47 × 10−7 | 0.42 | −3.09 | 1.26 |
FarmCPU | CORbnaG.193035 | 3 | 144220149 | 2.54 × 10−16 | 0.41 | 5.39 | 7.07 |
FarmCPU | CORbnaG.392909 | 6 | 163324992 | 2.89 × 10−9 | 0.33 | −3.97 | 2.29 |
FarmCPU | CORbnaG.577939 | 10 | 138708366 | 1.13 × 10−9 | 0.33 | 4.49 | 7.13 |
BLINK | CORbnaG.193035 | 3 | 144220149 | 2.49 × 10−8 | 0.41 | 4.41 | 8.26 |
BLINK | CORbnaG.392908 | 6 | 163324961 | 1.69 × 10−7 | 0.33 | 4.58 | 0.47 |
BLINK | CORbnaG.392909 | 6 | 163324992 | 1.69 × 10−7 | 0.33 | −4.58 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, S.; Yu, T.; Yang, G.; Li, W.; Ma, X.; Zhang, J. Genome-Wide Analysis and Genomic Prediction of Chilling Tolerance of Maize During Germination Stage Using Genotyping-by-Sequencing SNPs. Agriculture 2024, 14, 2048. https://doi.org/10.3390/agriculture14112048
Cao S, Yu T, Yang G, Li W, Ma X, Zhang J. Genome-Wide Analysis and Genomic Prediction of Chilling Tolerance of Maize During Germination Stage Using Genotyping-by-Sequencing SNPs. Agriculture. 2024; 14(11):2048. https://doi.org/10.3390/agriculture14112048
Chicago/Turabian StyleCao, Shiliang, Tao Yu, Gengbin Yang, Wenyue Li, Xuena Ma, and Jianguo Zhang. 2024. "Genome-Wide Analysis and Genomic Prediction of Chilling Tolerance of Maize During Germination Stage Using Genotyping-by-Sequencing SNPs" Agriculture 14, no. 11: 2048. https://doi.org/10.3390/agriculture14112048