The Phenology of Coffea arabica var. Esperanza L4A5 Under Different Agroforestry Associations and Fertilization Conditions in the Caribbean Region of Costa Rica
<p>Location of agroforestry research area based on hybrids of <span class="html-italic">Coffea arabica</span> var. Esperanza L4A5, established in September 2019. The map base was used: <a href="https://paintmaps.com/blank-maps/52/samples" target="_blank">https://paintmaps.com/blank-maps/52/samples</a>.</p> "> Figure 2
<p>Spatial arrangement of the agroforestry trial: (<b>a</b>) The location of the agroforestry associations and full-sun sectors and (<b>b</b>) the spatial location of the plots under differentiated fertilization and with amendment only.</p> "> Figure 3
<p>Characterization of the aerial vegetative organs: (<b>a</b>,<b>b</b>) floral nodes development, (<b>c</b>) pre-anthesis, and (<b>d</b>) floral anthesis.</p> "> Figure 4
<p>The phenological characterization of the first year: (<b>a</b>) the adaptability stage of the plant material in the nursery; (<b>b</b>) the establishment of the coffee plants in the trial area; (<b>c</b>) the maintenance of the trial area, focused on weed control; (<b>d</b>) the first fertilization of the coffee plants, considering differentiated fertilizations and experimental control areas with only liming; (<b>e</b>) the full development of floral buds; (<b>f</b>) flowering; (<b>g</b>) the start of the fruit-filling process; (<b>h</b>) the general development of the fruits; (<b>i</b>) the full development of the fruit; and (<b>j</b>) fruit maturity, initiating the harvesting process.</p> "> Figure 5
<p>Monthly variations of meteorological variables (2020–2023): (<b>a</b>) average temperature (°C); (<b>b</b>) relative humidity (%); and (<b>c</b>) accumulated precipitation (mm).</p> "> Figure 6
<p>Phenological phases of Esperanza L4A5, established in the Caribbean region of Costa Rica.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Agroforestry Trial
2.2. Climate and Life Zone
2.3. Soils
2.4. Structure of the Experimental Design
2.4.1. Agroforestry Associations
2.4.2. Differentiated Fertilizations
2.5. Data Logging
2.5.1. Characterization of the Aerial Vegetative Organs
2.5.2. Meteorological Variables
2.6. Data Analysis
3. Results
3.1. Phenological Characterization of Esperanza L4A5
3.1.1. Adaptation and First Phenological Year (2019–2021)
3.1.2. Second and Third Phenological Years (2022–2023)
3.2. Quantitative Analysis of the Phenology of the Esperanza L4A5
3.2.1. Floral Nodes Development
3.2.2. Pre-Anthesis
3.2.3. Anthesis
3.2.4. Ripe Fruits
3.3. Phenology of Esperanza L4A5 Considering Meteorological Factors
3.3.1. Temperature
3.3.2. Relative Humidity
3.3.3. Rainfall
3.4. Phenological Phases of C. arabica var Esperanza L4A5
3.5. Analysis of Phenological Stages: Effects of Agroforestry Associations, Differentiated Fertilizations, and Meteorological Variables (Average Temperature, Relative Humidity, and Rainfall)
3.5.1. Presence of Floral Nodes
3.5.2. Presence of Pre-Anthesis
3.5.3. Presence of Anthesis
3.5.4. Presence of Ripe Fruits
4. Discussion
4.1. Adaptation and Early Phenological Development
4.2. Quantitative Analysis of Phenological Stages
4.3. Influence of Agroforestry Associations, Differentiated Fertilization, and Climatic Variables
4.4. Coffea arabica var Esperanza in Lowland Areas
4.5. Limitations and Perspectives of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Estimate | Standard Error | t Value | p Value |
---|---|---|---|---|
Intercept | −2379.81 | 1260.89 | −1.887 | 0.062 (.) |
Temperature | 93.54 | 57.17 | 1.636 | 0.105 |
Humidity | 27.98 | 14.87 | 1.881 | 0.063 (.) |
Rainfall | 2.45 | 0.72 | 3.406 | 0.001 ** |
Espavel-Poró | 0.04 | 3.08 | 0.014 | 0.989 |
Full sun 1 | 2.77 | 3.20 | 0.868 | 0.388 |
Full sun 2 | −8.15 | 3.18 | −2.560 | 0.012 * |
Guapinol-Poró | −1.01 | 3.19 | −0.318 | 0.751 |
Fertilization/F2 | 4.25 | 2.55 | 1.666 | 0.099 (.) |
Fertilization/Lime | −17.37 | 2.51 | −6.919 | <0.001 *** |
Temperature + Humidity | −1.09 | 0.67 | −1.619 | 0.108 |
Temperature + Rainfall | 0.0002 | 0.03 | 0.007 | 0.994 |
Humidity + Rainfall | −0.03 | 0.01 | −2.639 | 0.010 ** |
Variable | %IncMSE (Increase in MSE) | IncNodePurity (Increase in Node Purity) |
---|---|---|
Temperature | 5.93 | 1774.70 |
Humidity | 7.43 | 2228.17 |
Rainfall | 6.75 | 1899.74 |
Coverages | 4.49 | 3045.12 |
Fertilization | 25.88 | 10,972.02 |
Temperature + Humidity | 7.97 | 2449.89 |
Temperature + Rainfall | 5.33 | 1389.83 |
Humidity + Rainfall | 6.07 | 1672.80 |
R2 = 0.777 |
Variable | Estimate | Standard Error | t Value | p Value |
---|---|---|---|---|
Intercept | 2079.70 | 3209.90 | 0.648 | 0.518 |
Temperature | −98.32 | 125.81 | −0.782 | 0.436 |
Humidity | −25.48 | 39.99 | −0.637 | 0.525 |
Rainfall | 1.38 | 0.49 | 2.831 | 0.006 ** |
Espavel-Poró | −1.35 | 3.41 | −0.396 | 0.693 |
Full sun 1 | −4.40 | 3.54 | −1.241 | 0.217 |
Full sun 2 | −10.87 | 3.53 | −3.082 | 0.003 ** |
Guapinol-Poró | −2.17 | 3.54 | −0.613 | 0.541 |
Fertilization/F2 | 3.95 | 2.84 | 1.394 | 0.166 |
Fertilization/Lime | −19.02 | 2.78 | −6.845 | <0.001 *** |
Temperature + Humidity | 1.21 | 1.57 | 0.776 | 0.440 |
Temperature + Rainfall | −0.01 | 0.01 | −0.855 | 0.395 |
Humidity + Rainfall | −0.01 | 0.004 | −3.204 | 0.002 ** |
Variable | %IncMSE (Increase in MSE) | IncNodePurity (Increase in Node Purity) |
---|---|---|
Temperature | 5.63 | 2346.80 |
Humidity | 8.73 | 3199.95 |
Rainfall | 5.79 | 2102.53 |
Coverages | 2.63 | 4334.41 |
Fertilization | 24.04 | 13,043.14 |
Temperature + Humidity | 3.87 | 1421.37 |
Temperature + Rainfall | 4.23 | 1582.24 |
Humidity + Rainfall | 4.56 | 1710.45 |
R2 = 0.822 |
Variable | Estimate | Standard Error | t Value | p Value |
---|---|---|---|---|
Intercept | 2746.03 | 1775.33 | 1.55 | 0.1263 |
Temperature | −104.18 | 67.72 | −1.54 | 0.1284 |
Humidity | −35.11 | 21.66 | −1.62 | 0.1094 |
Rainfall | −0.29 | 0.31 | −0.95 | 0.3446 |
Espavel-Poró | 1.64 | 3.37 | 0.49 | 0.6272 |
Full sun 1 | −5.25 | 3.44 | −1.53 | 0.1318 |
Full sun 2 | −12.51 | 3.34 | −3.74 | 0.0003 *** |
Guapinol-Poró | 1.37 | 3.30 | 0.41 | 0.6799 |
Fertilization/F2 | 1.79 | 2.57 | 0.70 | 0.4883 |
Fertilization/Lime | −20.95 | 2.62 | −8.01 | <0.001 *** |
Temperature + Humidity | 1.35 | 0.83 | 1.64 | 0.1054 |
Temperature + Rainfall | −0.02 | 0.01 | −1.69 | 0.0958 (.) |
Humidity + Rainfall | 0.01 | 0.00 | 2.48 | 0.0155 * |
Variable | %IncMSE (Increase in MSE) | IncNodePurity (Increase in Node Purity) |
---|---|---|
Temperature | 2.87 | 1358.82 |
Humidity | 4.85 | 1557.58 |
Rainfall | 2.17 | 490.20 |
Coverages | 8.19 | 4001.25 |
Fertilization | 18.87 | 8353.87 |
Temperature + Humidity | 8.62 | 3568.44 |
Temperature + Rainfall | 2.69 | 512.00 |
Humidity + Rainfall | 3.76 | 581.88 |
R2 = 0.816 |
Variable | Estimate | Standard Error | t Value | p Value |
---|---|---|---|---|
Intercept | −1958.59 | 687.29 | −2850.00 | 0.005 ** |
Temperature | 74.39 | 28.04 | 2653.00 | 0.009 ** |
Humidity | 25.04 | 8.38 | 2989.00 | 0.003 ** |
Rainfall | 0.46 | 0.26 | 1741.00 | 0.084 (.) |
Espavel-Poró | −0.07 | 2.05 | −0.036 | 0.971 |
Full sun 1 | −1.68 | 2.13 | −0.788 | 0.433 |
Full sun 2 | −13.48 | 2.12 | −6349.00 | <0.001 *** |
Guapinol-Poró | −0.38 | 2.13 | −0.177 | 0.860 |
Fertilization/F2 | 0.92 | 1.70 | 0.543 | 0.589 |
Fertilization/Lime | −16.84 | 1.67 | −10,060.00 | <0.001 *** |
Temperature + Humidity | −0.95 | 0.34 | −2772.00 | 0.007 ** |
Temperature + Rainfall | 0.02 | 0.004 | 3832.00 | <0.001 *** |
Humidity + Rainfall | −0.01 | 0.004 | −2745.00 | 0.007 ** |
Variable | %IncMSE (Increase in MSE) | IncNodePurity (Increase in Node Purity) |
---|---|---|
Temperature | 1.53 | 399.73 |
Humidity | 2.94 | 916.62 |
Rainfall | 4.76 | 901.05 |
Coverages | 9.95 | 3996.62 |
Fertilization | 24.96 | 7113.79 |
Temperature + Humidity | 2.56 | 551.01 |
Temperature + Rainfall | 4.70 | 642.41 |
Humidity + Rainfall | 4.37 | 921.93 |
R2 = 0.697 |
References
- ICO (International Coffee Organization). Coffee Development Report 2019. 2019. Available online: https://www.ico.org/documents/cy2018-19/ed-2318e-overview-flagship-report.pdf (accessed on 10 October 2024).
- ICAFE (Instituto del Café de Costa Rica). Historia del Café de Costa Rica. 2015. Available online: https://www.icafe.cr/nuestro-cafe/historia/ (accessed on 2 May 2024).
- Avelino, J.; Cristancho, M.; Georgiou, S.; Imbach, P.; Aguilar, L.; Bornemann, G.; Läderach, P.; Anzueto, F.; Hruska, A.J.; Morales, C. The coffee rust crises in Colombia and Central America (2008–2013): Impacts, plausible causes and proposed solutions. Food Secur. 2015, 7, 303–321. [Google Scholar] [CrossRef]
- Ghambari, L.; Sakulclanuwat, P.; Marrocco, J. Experts Share Emerging Coffee Industry Trends of 2024. Fresh Cup Magazine. 29 March 2024. Available online: https://freshcup.com/experts-share-emerging-coffee-industry-trends-of-2024/ (accessed on 26 October 2024).
- NielsenIQ. The Future of Coffee: 5 Coffee Trends to Watch. NielsenIQ. 14 August 2023. Available online: https://nielseniq.com/global/en/insights/education/2023/5-coffee-trends/ (accessed on 26 October 2024).
- WCR (World Coffee Research). Hybrid Coffea arabica var. Esperanza L4A5. 2023. Available online: https://varieties.worldcoffeeresearch.org/varieties/esperanza (accessed on 3 April 2024).
- Hidalgo Rodríguez, J.C. Mejoramiento Genético del Café en Costa Rica: Pasado, Presente y Futuro. Agrociencia 2007, 11, 15–22. [Google Scholar]
- Van der Vossen, H.; Bertrand, B.; Charrier, A. Next generation variety development for sustainable production of arabica coffee (Coffea arabica L.): A review. Euphytica 2015, 204, 243–256. [Google Scholar] [CrossRef]
- Meylan, L.; Gary, C.; Allinne, C.; Ortiz, J.; Jackson, L.; Rapidel, B. Evaluating the effect of shade trees on the net carbon balance of smallholder coffee plantations. Agric. Ecosyst. Environ. 2017, 243, 53–63. [Google Scholar] [CrossRef]
- Vaast, P.; Bertrand, B.; Perriot, J.J.; Guyot, B.; Genard, M. Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J. Sci. Food Agric. 2006, 86, 197–204. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis, 5th ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Liaw, A.; Wiener, M. Classification and Regression by random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Morales Peña, V.H.; Mora Garcés, A.; Virginio Filho, E.D.M.; Villatoro Sánchez, M. Growth and Productivity of Coffea arabica var. Esperanza L4A5 in Different Agroforestry Systems in the Caribbean Region of Costa Rica. Agriculture 2024, 14, 1723. [Google Scholar] [CrossRef]
- Universidad EARTH. Base de Datos Climáticos de la Estación Meteorológica Institucional; Correspondencia: Guácimo, Costa Rica, 2024. [Google Scholar]
- Holdridge, L.R. Life Zone Ecology; Tropical Science Center: San José, Costa Rica, 1967; Available online: https://app.ingemmet.gob.pe/biblioteca/pdf/Amb-56.pdf (accessed on 25 January 2019).
- Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria de Costa Rica (INTA). Suelos de Costa Rica: Orden Inceptisol (Boletín Técnico No. 5). Available online: https://www.mag.go.cr/bibliotecavirtual/Av-1825.PDF (accessed on 20 June 2024).
- Henríquez, C.; Cabalceta, G.; Bertsch, F.; Alvarado, A. Principales Suelos de Costa Rica: Orígenes, Características y Manejo [En Línea]; MAG: San José, Costa Rica, 2006; Available online: https://www.infoagro.go.cr/Inforegiones/RegionCentralOriental/Documents/Suelos/tipos%20de%20suelos%20CR.pdf (accessed on 22 September 2024).
- Martins, E.; Guzmán, M. Respuesta Inicial de Coffea arabica var. Esperanza L4A5 a la Fertilización Diferenciada en Suelos de Origen Aluvial del Caribe de Costa Rica. Bachelor’s Thesis, Universidad EARTH, Guácimo, Costa Rica, 2019. [Google Scholar]
- DaMatta, F.M.; Ronchi, C.P.; Maestri, M.; Barros, R.S. Ecophysiology of coffee growth and production. Braz. J. Plant Physiol. 2007, 19, 485–510. [Google Scholar] [CrossRef]
- Carr, M.K.V. The water relations and irrigation requirements of coffee. Exp. Agric. 2001, 37, 1–36. [Google Scholar] [CrossRef]
- Donnelly, A.; Yu, R. The rise of phenology with climate change: An evaluation of IJB publications. Int. J. Biometeorol. 2017, 61 (Suppl. S1), 29–50. [Google Scholar] [CrossRef] [PubMed]
- Chuine, I.; Yiou, P.; Viovy, N.; Seguin, B.; Daux, V.; Le Roy Ladurie, E. Historical phenology: Grape ripening as a past climate indicator. Nature 2010, 432, 289–290. [Google Scholar] [CrossRef]
- Vignola, R.; Watler, W.; Poveda Coto, K.; Vargas Céspedes, A.; Mora Aguilar, M.; Rivera Vargas, P. Prácticas Efectivas para la Reducción de Impactos por Eventos Climáticos en el Cultivo de Café en Costa Rica; CATIE: Turrialba, Costa Rica, 2018; Available online: https://www.mag.go.cr/bibliotecavirtual/F01-8206.pdf (accessed on 21 December 2023).
- DaMatta, F. Ecophysiological constraints on the production of shaded and unshaded coffee: A review. Field Crops Res. 2004, 86, 99–114. [Google Scholar] [CrossRef]
- Muschler, R.G. Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agrofor. Syst. 2001, 51, 131–139. [Google Scholar] [CrossRef]
- Salazar, R. Shading Practices and Their Effects on Coffee Growth. Coffee Res. Bull. 1999, 12, 123–130. [Google Scholar]
- Vaast, P.; Bertrand, B. Agroforestry systems and coffee productivity: A review of results and research priorities. In Agroforestry Systems for Sustainable Land Use; Springer: Dordrecht, The Netherlands, 2003; pp. 113–136. [Google Scholar]
- Avelino, J.; Zelaya, H.; Merlo, A.; Pineda, A.; Ordoñez, M.; Savary, S. The intensity of a coffee rust epidemic is dependent on production situations. Ecol. Model. 2004, 180, 301–314. Available online: https://publications.cirad.fr/une_notice.php?dk=533318 (accessed on 25 November 2023). [CrossRef]
- Sakai, S.; Momose, K.; Yumoto, T.; Nagamasu, H. Plant reproductive phenology over four years including an episode of general flowering in a lowland mixed dipterocarp forest, Sarawak, Malaysia. Am. J. Bot. 2006, 93, 491–507. Available online: https://pubmed.ncbi.nlm.nih.gov/10523283/ (accessed on 16 July 2023).
- Villers, M.; Hernandez, S.; Torres, J. Humidity’s Role in Fruit Maturation of Coffee Plants. Plant Physiol. Rep. 2009, 20, 789–798. [Google Scholar]
- Chacón, L.; Pérez, A.; Gómez, R. Synergistic Effects of Humidity and Rainfall on Coffee Phenology. J. Trop. Agric. 2021, 15, 245–260. [Google Scholar]
- Zapata, R. Fertilization Techniques and Reproductive Success in Coffee Hybrids. J. Plant Nutr. 2013, 36, 1125–1134. [Google Scholar]
Year | Plants with Developing Nodes | % of Plants with Developing Nodes | Plants with Pre-Anthesis | % of Plants with Pre-Anthesis | Plants with Anthesis | % of Plants with Anthesis | Plants with Ripe Fruits | % of Plants with Ripe Fruits |
---|---|---|---|---|---|---|---|---|
2020 | 447 | 23.09% | 151 | 7.80% | 69 | 3.56% | 200 | 10.33% |
2021 | 820 | 42.35% | 1106 | 57.12% | 481 | 24.85% | 745 | 38.48% |
2022 | 1035 | 53.47% | 851 | 43.96% | 841 | 43.44% | 751 | 38.79% |
2023 | 1083 | 55.95% | 940 | 48.55% | 674 | 34.81% | 852 | 44.02% |
Total number of coffee trees: 1936 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales Peña, V.H.; Mora Garcés, A.; Virginio Filho, E.d.M.; Villatoro Sánchez, M.; Pazmiño Pachay, W.W.; Chanto Ares, E. The Phenology of Coffea arabica var. Esperanza L4A5 Under Different Agroforestry Associations and Fertilization Conditions in the Caribbean Region of Costa Rica. Agriculture 2024, 14, 1988. https://doi.org/10.3390/agriculture14111988
Morales Peña VH, Mora Garcés A, Virginio Filho EdM, Villatoro Sánchez M, Pazmiño Pachay WW, Chanto Ares E. The Phenology of Coffea arabica var. Esperanza L4A5 Under Different Agroforestry Associations and Fertilization Conditions in the Caribbean Region of Costa Rica. Agriculture. 2024; 14(11):1988. https://doi.org/10.3390/agriculture14111988
Chicago/Turabian StyleMorales Peña, Victor Hugo, Argenis Mora Garcés, Elias de Melo Virginio Filho, Mario Villatoro Sánchez, Willy William Pazmiño Pachay, and Esteban Chanto Ares. 2024. "The Phenology of Coffea arabica var. Esperanza L4A5 Under Different Agroforestry Associations and Fertilization Conditions in the Caribbean Region of Costa Rica" Agriculture 14, no. 11: 1988. https://doi.org/10.3390/agriculture14111988
APA StyleMorales Peña, V. H., Mora Garcés, A., Virginio Filho, E. d. M., Villatoro Sánchez, M., Pazmiño Pachay, W. W., & Chanto Ares, E. (2024). The Phenology of Coffea arabica var. Esperanza L4A5 Under Different Agroforestry Associations and Fertilization Conditions in the Caribbean Region of Costa Rica. Agriculture, 14(11), 1988. https://doi.org/10.3390/agriculture14111988