Comparative Analysis of Climate Change Impacts on Climatic Variables and Reference Evapotranspiration in Tunisian Semi-Arid Region
<p>(<b>a</b>) Taylor diagram for comparison between the performances of bias correction methods and GCM-RCMs in reproducing monthly precipitation; and (<b>b</b>) percent bias in monthly precipitation with the two bias correction methods for all GCM-RCMs combinations.</p> "> Figure 2
<p>Taylor diagram for comparison between performances of GCM-RCM model outputs, after bias correction using two different methods, in reproducing monthly maximum (<b>a</b>); and minimum (<b>b</b>) air temperatures in the Cap-Bon region.</p> "> Figure 3
<p>Boxplots representing the projected changes in mean monthly precipitation, minimum and maximum air temperature, and median values of the raw model outputs under the RCP4.5 scenario. The black horizontal line and the black cross show the models’ median and means, respectively.</p> "> Figure 4
<p>Patterns of annual ET<sub>0</sub> for historical and RCP scenarios.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Collection
2.2. Bias Correction Methods
2.2.1. ISISMIP3
2.2.2. Detrended Quantile Matching
2.3. Reference Evapotranspiration Estimations
2.4. Performance Metrics
3. Results and Discussion
3.1. Performance of Bias Correction Methods
3.1.1. Precipitation
3.1.2. Maximum and Minimum Air Temperature
3.2. Projected Change of Meteorological Variables before Bias Correction
3.3. Projected Changes in Bias-Corrected Tmax and Tmin under Both RCPs Scenarios
3.4. Temporal Changes in ET0 under Both RCP Scenarios
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaghefi, S.A.; Abbaspour, N.; Kamali, B.; Abbaspour, K.C. A toolkit for climate change analysis and pattern recognition for extreme weather conditions e Case study: California-Baja California Peninsula. Environ. Model. Softw. 2017, 96, 181–198. [Google Scholar] [CrossRef]
- Zolghadr-Asli, B.; Bozorg-Haddad, O.; Sarzaeim, P.; Chu, X. Investigating the variability of GCMs’ simulations using time series analysis. J. Water Clim. Change 2018, 10, 449–463. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.; Zhang, X.; Zwiers, F.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Hostetler, S.W.; Alder, J.R.; Allan, A.M. Dynamically Downscaled Climate Simulations over North America: Methods, Evaluation and Supporting Documentation for Users; U.S. Geological Survey Open-File Report 2011-1238; U.S. Geological Survey: Menlo Park, CA, USA, 2011; 64p. [Google Scholar]
- Dibike, Y.B.; Coulibaly, P. Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic models. J. Hydrol. 2005, 307, 145–163. [Google Scholar] [CrossRef]
- Ahmed, K.F.; Wang, G.L.; Silander, J.; Wilson, A.M.; Allen, J.M.; Horton, R.; Anyah, R. Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the US northeast. Glob. Planet. Change 2013, 100, 320–332. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456, 12–29. [Google Scholar] [CrossRef]
- Enayati, M.; Bozorg-Haddad, O.; Bazrafshan, J.; Hejabi, S.; Chu, X. Bias correction capabilities of quantile mapping methods for rainfall and temperature variables. J. Water Clim. Change 2021, 12, 401–419. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef]
- Casanueva, A.; Herrera, S.; Iturbide, M.; Lange, S.; Jury, L.; Dosio, A.; Maraun, D.; Gutiérrez, J.M. Testing bias adjustment methods for regional climate change applications under observational uncertainty and resolution mismatch. Atmos. Sci. Lett. 2020, 21, e978. [Google Scholar] [CrossRef]
- Themeßl, M.J.; Gobiet, A.; Leuprecht, A. Empirical statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol. 2011, 31, 1530–1544. [Google Scholar] [CrossRef]
- Silva, D.; Meza, F.J.; Varas, E. Estimating reference evapotranspiration (ET0) using numerical weather forecast data in central Chile. J. Hydrol. 2010, 8, 64–71. [Google Scholar] [CrossRef]
- Tegos, A.; Efstratiais, A.; Malamos, N.; Mamassis, N.; Koutsoyiannis, D. Evaluation of a parametric appraoch for estimating potentiel evapotranspiration across different climates. Agric. Agric. Sci. Procedia 2015, 8, 2–9. [Google Scholar]
- Paredes, P.; Pereira, L.S.; Almorox, J.; Darouich, H. Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables. Agric. Water Manag. 2020, 240, 106210. [Google Scholar] [CrossRef]
- Chebil, A.; Kahil, T.; Oueslati, B. Policy measures for reducing aquifer depletion in a context of climate change: The case of the coastal area of Cap-Bon. New Medit. 2018, 4, 34–44. [Google Scholar] [CrossRef]
- Maeda, E.E.; Wiberg, D.A.; Pellikka, P.K.E. Estimating reference evapotranspiration using remote sensing and empirical models in a region with limited ground data availability in Kenya. Appl. Geogr. 2011, 31, 251–258. [Google Scholar] [CrossRef]
- Lasram, A.; Dellagi, H.; Dessalegn, B.; Dhehibi, B.; Ben Mechlia, N. Farmers’ willingness to adapt to climate change for sustainable water resources management: A case study of Tunisia. J. Water Clim. Change 2018, 9, 598–610. [Google Scholar] [CrossRef]
- Li, C.; Wu, P.T.; Li, X.L.; Zhou, T.W.; Sun, S.K.; Wang, Y.B.; Luan, X.B.; Yu, X. Spatial and temporal evolution of climatic factors and its impacts on potential evapotranspiration in Loess Plateau of Northern Shaanxi, China. Sci. Total Environ. 2017, 589, 165–172. [Google Scholar] [CrossRef]
- Nam, W.H.; Hong, E.M.; Choi, J.Y. Assessment of water delivery efficiency in irrigation canals using performance indicators. Irrig. Sci. 2016, 34, 129–143. [Google Scholar] [CrossRef]
- Tabari, H.; Marofi, S.; Aeini, A.; Hosseinzadeh Talaee, P.; Mohammadi, K. Trend analysis of reference evapotranspiration in the western half of Iran. Agric. For. Meteorol. 2011, 151, 128–136. [Google Scholar] [CrossRef]
- Rahman, M.A.; Yunsheng, L.; Sultana, N.; Ongoma, V. Analysis of reference evapotranspiration (ET0) trends under climate change in Bangladesh using observed and CMIP5 data sets. Meteorol. Atmos. Phys. 2018, 131, 639–655. [Google Scholar] [CrossRef]
- Chaouche, K.; Neppel, L.; Dieulin, C.; Pujol, N.; Ladouche, B.; Martin, E.; Salas, D.; Caballero, Y. Analyses of precipitation, temperature and evapotranspiration in a French Mediterranean region in the context of climate change. Compted Rendus Geosci. 2010, 342, 234–243. [Google Scholar] [CrossRef]
- Yassena, A.N.; Nama, W.H.; Honge, E.M. Impact of climate change on reference evapotranspiration in Egypt. Catena 2020, 194, 104711. [Google Scholar] [CrossRef]
- Sáenz de la Torre, J.J.; Suárez, E.; Iglesias, D.; Sánchez, I.; Pérez, A.; Tuni, M.; García, M.; San-Martín, D.; Iturbide, M.; Gutiérrez, J.M. Climadjust: Easing the Bias Adjustment process through a user-friendly web service. In Proceedings of the EGU General Assembly, Online, 19–30 April 2021. [Google Scholar] [CrossRef]
- Cutillas-Lozano, L.G.; Cruz López, M.S.; Pérez Velasco, A.; Andrés-Doménech, I.; Olcina-Cantos, J. Local-scale regionalisation of climate change efects on rainfall pattern: Application to Alicante City (Spain). Theor. Appl. Climatol. 2023, 154, 377–402. [Google Scholar] [CrossRef]
- D’Oria, M.; Ferraresi, M.; Tanda, M.G. Historical trends and high-resolution future climate projections in northern Tuscany (Italy). J. Hydrol. 2017, 555, 708–723. [Google Scholar] [CrossRef]
- Peres, D.J.; Senatore, A.; Nanni, P.; Cancelliere, A.; Mendicino, G.; Bonaccorso, B. Evaluation of EURO-CORDEX (Coordinated Regional Climate Downscaling Experiment for the Euro-Mediterranean area) historical simulations by high-quality observational datasets in southern Italy: Insights on drought assessment. Nat. Hazards Earth Syst. Sci. 2020, 20, 3057–3082. [Google Scholar] [CrossRef]
- Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 2019, 12, 3055–3070. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Tegegne, G.; Melesse, A.M. Comparison of Trend Preserving Statistical Downscaling Algorithms Toward an Improved Precipitation Extremes Projection in the Headwaters of Blue Nile River in Ethiopia. Environ. Process. 2021, 8, 59–75. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Raziei, T.; Pereira, L.S. Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of climates in Iran. Agric. Water Manag. 2013, 121, 1–18. [Google Scholar] [CrossRef]
- Sabziparvar, A.A.; Tabari, H. Regional Estimation of Reference Evapotranspiration in Arid and Semiarid Regions. J. Irrig. Drain. Eng. 2010, 136, 724–731. [Google Scholar] [CrossRef]
- Jabloun, M.; Sahli, A. Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia. Agric. Water Manag. 2008, 95, 707–715. [Google Scholar] [CrossRef]
- Yu, P.S.; Yang, T.C.; Wu, C.K. Impact of climate change on water resources in southern Taiwan. J. Hydrol. 2002, 260, 161–175. [Google Scholar] [CrossRef]
- Thiel, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. Part 3. Proc. Koninalijke Ned. Akad. Van Weinenschatpen A 1950, 53, 1397–1412. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Latrech, B.; Yacoubi, S.; Hermassi, T.; Slatni, A.; Jarray, F.; Pouget, L. Homogeneity and Trend Analysis of Climatic Variables in Cap-Bon Region of Tunisia. Appl. Sci. 2023, 13, 10593. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Gado, T.A.; Mohameden, M.B.; Rashwan, I.M.H. Bias correction of regional climate model simulations for the impact assessment of the climate change in Egypt. Environ. Sci. Pollut. Res. 2021, 29, 20200–20220. [Google Scholar] [CrossRef]
- Alexandaris, S.; Stricevic, R.; Petkovic, S. Comparative analysis of reference evapotranspiration from the surface of rainfed grass in central Serbia calculated by six empirical methods against the Penman-Monteith formula. Eur. Water 2008, 21, 17–28. [Google Scholar]
- Senatore, A.; Fuoco, D.; Maiolo, M.; Mendicino, G.; Smiatek, G.; Kunstmann, H. Evaluating the uncertainty of climate model structure and bias correction on the hydrological impact of projected climate change in a Mediterranean catchment. J. Hydrol. Reg. Stud. 2022, 42, 101120. [Google Scholar] [CrossRef]
- Sellami, H.; Benabdallah, S.; La Jeunesse, I.; Vanclooster, M. Quantifying hydrological responses of small Mediterranean catchments under climate change projections. Sci. Total Environ. 2016, 543, 924–936. [Google Scholar] [CrossRef]
- Sundaram, G.; Radhakrishnan, S. Assessment of various bias correction methods and future projection of minimum and maximum temperatures using regional climate model over Thanjavur district. Arab. J. Geosci. 2022, 15, 1162. [Google Scholar] [CrossRef]
- Tabari, H.; Hosseinzadeh Talaee, P. Recent trends of mean maximum and minimum air temperatures in the western half of Iran. Meteorol. Atmos. Phys. 2011, 111, 121–131. [Google Scholar] [CrossRef]
- Lin, P.; He, Z.; Du, J.; Chen, L.; Zhu, X.; Li, J. Impacts of climate change on reference evapotranspiration in the Qilian Mountains of China: Historical trends and projected changes. Int. J. Climatol. 2018, 38, 2980–2993. [Google Scholar] [CrossRef]
- Zhao, J.; Xia, H.; Yue, Q.; Wang, Z. Spatiotemporal variation in reference evapotranspiration and its contributing climatic factors in China under future scenarios. Int. J. Climatol. 2023, 40, 3813–3831. [Google Scholar] [CrossRef]
GCM | RCM | Acronym |
---|---|---|
MOHC-HadGEM2-ES | CCLM4-8-17 | HadCCLM |
MPI-M-MPI-ESM-LR | REMO2009 | MPIREMOr2 |
MPI-M-MPI-ESM-LR | REMO2009 | MPIREMO |
CNRM-CERFACS-CNRM-CM5 | RACMO22E | CM5RACM |
ICHEC-EC-EARTH | RCA4 | ECERCA4 |
MOHC-HadGEM2-ES | HIRHAM5 | HadHIRH |
IPSL-IPSL-CM5A-MR | RCA4 | IPSRCA4 |
NCC-NorESM1 | REMO2015 | NorREMO15 |
Models | Tmax | Tmin | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw Data | ISIMIP3 | DQM | Raw Data | ISIMIP | DQM | |||||||
PBIAS | MAE | PBIAS | MAE | PBIAS | MAE | PBIAS | MAE | PBIAS | MAE | PBIAS | MAE | |
HadCCLM | −6.35 | 1.65 | 0.04 | 1.09 | 0.03 | 1.09 | 8.44 | 4.06 | 0.20 | 3.41 | 0.06 | 1.13 |
MPIREMOr2 | 6.56 | 2.06 | −0.03 | 1.17 | 0.13 | 1.42 | −6.33 | 3.41 | 0.05 | 3.48 | −0.08 | 1.16 |
MPIREMO | 6.40 | 2.01 | −0.03 | 1.16 | 0.07 | 1.39 | −6.01 | 3.36 | 0.07 | 3.42 | 0.01 | 1.04 |
CM5RACM | −8.02 | 2.04 | 0.03 | 1.15 | 0.02 | 1.31 | −20.32 | 4.11 | 0.09 | 3.43 | −0.01 | 1.18 |
ECERCA4 | −9.56 | 2.27 | −0.04 | 1.19 | −0.06 | 1.20 | −21.29 | 4.03 | 0.08 | 3.36 | −0.08 | 1.11 |
HadHIRH | 0.88 | 1.55 | 0.04 | 1.08 | 0.10 | 1.29 | 2.18 | 3.80 | 0.34 | 3.42 | 0.03 | 1.08 |
IPSRCA4 | −2.59 | 1.45 | −0.05 | 1.19 | 0.05 | 1.35 | −16.28 | 3.78 | 0.11 | 3.44 | −0.08 | 1.09 |
NorREMO15 | 1.65 | 1.36 | 0.13 | 1.17 | 0.04 | 1.35 | −0.68 | 3.53 | 0.25 | 3.38 | −0.06 | 1.21 |
Tmax | Tmin | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | |||||||||
2025–2049 | 2050–2074 | 2075–2098 | 2025–2049 | 2050–2074 | 2075–2098 | 2025–2049 | 2050–2074 | 2075–2098 | 2025–2049 | 2050–2074 | 2075–2098 | |
Annual | 1.53 | 2.29 | 2.82 | 1.72 | 3.07 | 4.69 | 1.55 | 2.33 | 2.86 | 1.74 | 3.12 | 4.83 |
January | 1.49 | 2.06 | 2.49 | 1.44 | 2.33 | 3.76 | 1.53 | 1.98 | 2.46 | 1.37 | 2.34 | 3.88 |
February | 0.85 | 1.67 | 2.01 | 1.57 | 2.13 | 3.79 | 0.84 | 1.69 | 2.00 | 1.59 | 2.23 | 3.97 |
March | 1.06 | 1.64 | 1.96 | 1.29 | 2.23 | 3.56 | 0.84 | 1.42 | 1.86 | 1.13 | 2.14 | 3.39 |
April | 1.52 | 1.77 | 2.26 | 1.47 | 2.61 | 3.55 | 1.34 | 1.84 | 1.81 | 1.41 | 2.47 | 3.31 |
May | 1.48 | 2.25 | 2.84 | 2.03 | 3.22 | 4.48 | 1.54 | 2.24 | 3.02 | 1.87 | 3.06 | 4.73 |
June | 1.57 | 2.21 | 3.07 | 1.51 | 3.26 | 5.10 | 1.91 | 2.25 | 3.23 | 1.70 | 3.59 | 5.20 |
July | 2.47 | 3.06 | 3.74 | 2.49 | 4.10 | 6.38 | 2.47 | 3.15 | 3.85 | 2.59 | 4.08 | 6.51 |
August | 1.87 | 2.75 | 3.21 | 2.05 | 4.00 | 5.75 | 1.85 | 2.69 | 3.39 | 1.94 | 3.56 | 5.61 |
September | 1.46 | 2.68 | 3.19 | 1.56 | 3.71 | 5.48 | 1.56 | 2.74 | 2.95 | 1.77 | 3.71 | 5.77 |
October | 1.83 | 2.77 | 3.51 | 1.94 | 3.59 | 5.29 | 2.01 | 3.12 | 3.63 | 1.97 | 3.86 | 5.75 |
November | 1.03 | 2.23 | 2.65 | 1.54 | 2.67 | 4.62 | 0.97 | 2.34 | 2.88 | 1.72 | 3.03 | 5.09 |
December | 1.70 | 2.38 | 2.93 | 1.77 | 2.95 | 4.52 | 1.78 | 2.54 | 3.18 | 1.83 | 3.36 | 4.72 |
Historical | RCP4.5 | RCP8.5 | |||||
---|---|---|---|---|---|---|---|
1982–2006 | 2025–2049 | 2050–2074 | 2075–2098 | 2025–2049 | 2050–2074 | 2075–2098 | |
Annual | |||||||
ET0 (mm) | 1169.20 | 1214.81 | 1237.20 | 1254.88 | 1221.60 | 1266.04 | 1307.73 |
Change (mm) | 45.61 | 68.00 | 85.68 | 52.40 | 96.84 | 138.53 | |
Change (%) | 3.90 | 5.82 | 7.33 | 4.48 | 8.28 | 11.85 | |
Spring season | |||||||
ET0 (mm) | 310.95 | 324.89 | 327.80 | 334.03 | 351.68 | 337.63 | 345.82 |
Change (mm) | 13.94 | 16.85 | 23.07 | 40.73 | 26.67 | 34.87 | |
Change (%) | 4.17 | 5.04 | 6.91 | 12.19 | 7.99 | 10.44 | |
Summer season | |||||||
ET0 (mm) | 470.24 | 488.09 | 498.28 | 501.67 | 490.77 | 510.63 | 530.59 |
Change (mm) | 17.85 | 28.04 | 31.43 | 20.53 | 40.39 | 60.35 | |
Change (%) | 5.34 | 8.39 | 9.41 | 6.15 | 12.09 | 18.07 |
Historical Period | RCP 4.5 | RCP 8.5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1982–2006 | 2025–2049 | 2050–2074 | 2075–2098 | 2025–2049 | 2050–2074 | 2075–2098 | ||||||||
MK Z-Value | Sen’s Slope | MK Z-Value | Sen’s Slope | MK Z-Value | Sen’s Slope | MK Z-Value | Sen’s Slope | MK Z-Value | Sen’s Slope | MK Z-Value | Sen’s Slope | MK Z-Value | Sen’s Slope | |
Annual | 1.48 | 1.01 | 2.55 | 1.41 | 1.71 | 1.49 | −0.37 | −0.23 | 2.06 | 1.56 | 3.54 | 2.7 | 1.16 | 0.81 |
Spring | 3.17 | 0.79 | 1.9 | 0.64 | 1.58 | 0.65 | 0.63 | 0.25 | 2.69 | 0.91 | 2.96 | 1.02 | 0.26 | 0.15 |
Summer | 0.58 | 0.29 | 2.64 | 1.32 | −0.21 | −0.16 | 0.05 | 0.10 | 2.22 | 1.29 | 2.01 | 1.15 | 2.27 | 0.96 |
January | 1.80 | 0.14 | −0.32 | −0.02 | 1.90 | 0.12 | −0.68 | −0.05 | 0.22 | 0.018 | 0.025 | 0.002 | 0.1 | 0.01 |
February | 0.53 | 0.04 | 0.62 | 0.04 | 1.81 | 0.13 | 0.10 | 0.02 | 1.04 | 0.14 | 0.17 | 0.02 | −2.16 | −0.25 |
March | 0.90 | 0.16 | 1.86 | 0.19 | 1.56 | 0.22 | −0.32 | −0.04 | 2.5 | 0.3 | 2.65 | 0.35 | 0 | 0.008 |
April | 3.43 | 0.48 | 1.36 | 0.21 | 0.62 | 0.15 | −0.05 | −0.04 | 0.96 | 0.28 | 1.01 | 0.2 | −0.21 | −0.06 |
May | 0.05 | 0.01 | 0.12 | 0.05 | 1.26 | 0.34 | 0.69 | 0.18 | 1.51 | 0.27 | 1.61 | 0.37 | 0.95 | 0.3 |
June | −0.80 | −0.14 | 1.21 | 0.33 | −0.37 | −0.08 | 0.32 | 0.08 | 1.46 | 0.39 | 1.86 | 0.4 | 2.27 | 0.73 |
July | 1.27 | 0.38 | 2.80 | 0.57 | −0.71 | −0.25 | 0.37 | 0.15 | 0.47 | 0.09 | −0.27 | −0.08 | 0.63 | 0.14 |
August | 0.53 | 0.15 | 1.16 | 0.26 | 0.02 | 0.01 | −0.89 | −0.26 | −0.22 | −0.05 | 2.75 | 0.78 | 0.89 | 0.28 |
September | 0.30 | 0.10 | 1.56 | 0.29 | 3.20 | 0.63 | −0.63 | −0.05 | −0.17 | −0.02 | 1.31 | 0.27 | 0.05 | 0.01 |
October | −0.60 | −0.09 | 0.03 | 0.01 | 0.32 | 0.04 | 0.58 | 0.07 | 0.77 | 0.099 | −0.07 | −0.01 | −1.26 | −0.17 |
November | 0.10 | 0.02 | 0.07 | 0.01 | 1.86 | 0.12 | −0.42 | −0.04 | 0.57 | 0.03 | 0.27 | 0.02 | −0.15 | −0.008 |
December | −1.16 | −0.02 | −0.76 | −0.03 | 1.86 | 0.09 | −0.73 | −0.04 | 0.91 | 0.07 | 0.47 | 0.03 | 1 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latrech, B.; Hermassi, T.; Yacoubi, S.; Slatni, A.; Jarray, F.; Pouget, L.; Ben Abdallah, M.A. Comparative Analysis of Climate Change Impacts on Climatic Variables and Reference Evapotranspiration in Tunisian Semi-Arid Region. Agriculture 2024, 14, 160. https://doi.org/10.3390/agriculture14010160
Latrech B, Hermassi T, Yacoubi S, Slatni A, Jarray F, Pouget L, Ben Abdallah MA. Comparative Analysis of Climate Change Impacts on Climatic Variables and Reference Evapotranspiration in Tunisian Semi-Arid Region. Agriculture. 2024; 14(1):160. https://doi.org/10.3390/agriculture14010160
Chicago/Turabian StyleLatrech, Basma, Taoufik Hermassi, Samir Yacoubi, Adel Slatni, Fathia Jarray, Laurent Pouget, and Mohamed Ali Ben Abdallah. 2024. "Comparative Analysis of Climate Change Impacts on Climatic Variables and Reference Evapotranspiration in Tunisian Semi-Arid Region" Agriculture 14, no. 1: 160. https://doi.org/10.3390/agriculture14010160
APA StyleLatrech, B., Hermassi, T., Yacoubi, S., Slatni, A., Jarray, F., Pouget, L., & Ben Abdallah, M. A. (2024). Comparative Analysis of Climate Change Impacts on Climatic Variables and Reference Evapotranspiration in Tunisian Semi-Arid Region. Agriculture, 14(1), 160. https://doi.org/10.3390/agriculture14010160