Menstrual Cycle Changes in Vagally-Mediated Heart Rate Variability Are Associated with Progesterone: Evidence from Two Within-Person Studies
Abstract
:1. Introduction
Hypotheses
- Vagally-mediated HRV is lower in the midluteal phase relative to mid-follicular and ovulatory phases.
- Within-person fluctuations of vagally-mediated HRV across the cycle are more strongly associated with P4 than with E2.
- Higher levels of P4 are associated with lower levels of vagally-mediated HRV.
2. Study One (United States)
2.1. Materials and Methods
2.1.1. Overview and Study Design
2.1.2. Participants
2.1.3. HRV Assessment
2.1.4. Hormone Analyses
2.1.5. Procedure
2.1.6. Cycle Phase Criteria
2.1.7. Statistical Analyses
2.2. Results
2.2.1. Descriptive Analyses
2.2.2. Multilevel Regression Models Predicting HFlog from Menstrual Cycle Phase
2.2.3. Multilevel Regression Models Predicting HFlog from E2 and P4
3. Study Two (Germany)
3.1. Materials and Methods
3.1.1. Overview and Study Design
3.1.2. Participants
3.1.3. Ovulation Testing
3.1.4. HRV Assessment
3.1.5. Hormone Analyses
3.1.6. Procedure
3.1.7. Session Scheduling
3.1.8. Cycle Phase Criteria
- Forward- and backward count cycle day. Ovulatory: cycle day −12 to −17; mid-luteal: cycle day −4 to −11; perimenstrual: perimenstrual: cycle day −3 to +3 (where day 1 is menstrual onset and there is no day 0).
- Absolute hormone levels. The company supplying the antibody ELISA kits for the salivary hormone analyses (IBL; Hamburg, Germany) provided a salivary luteal cut-off for P4 of 127 pg/mL. Even though IBL stressed that this cut-off should not be the only reason for any therapeutical consequences, it served the present study as a first reference point and the following criteria: ovulatory: P4 < 127 pg/mL; mid-luteal: P4 ≥ 127 pg/mL; perimenstrual: - (note: Since E2 and P4 levels perimenstrually decline from their mid-luteal peaks, no absolute cut-off could be applied).
- Relative hormone levels. Ovulatory: P4ovulatory < P4mid-luteal; mid-luteal: P4 mid-luteal > P4ovulatory (note: Since P4 shows a singular peak (mid-luteal) while E2 has a primary (ovulatory) and a secondary (mid-luteal) peak, defining relative differences in hormone levels is more reliable regarding P4 than E2. For example, it cannot be said with absolute certainty that E2ovulatory > E2luteal, since E2 peaks shortly before ovulation and then decreases relatively quickly, so that at the time of the positive ovulation test the already slightly decreased E2 levels (i.e., E2ovulatory) might already resemble E2mid-luteal); perimenstrual: E2perimenstrual < E2ovulatory and P4perimenstrual < P4mid-luteal.
3.1.9. (Re)categorizing Cycle Phases
3.1.10. Statistical Analyses
3.2. Results
3.2.1. Descriptive Analyses
3.2.2. Multilevel Regression Models Predicting HFlog from Menstrual Cycle Phase
3.2.3. Multilevel Regression Models Predicting HFlog from E2 and P4
4. General Discussion
4.1. Possible Underlying Mechanisms
4.2. Clinical Implications
4.3. Implications for Future Research
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Balzarotti, S.; Biassoni, F.; Colombo, B.; Ciceri, M.R. Cardiac vagal control as a marker of emotion regulation in healthy adults: A review. Biol. Psychol. 2017, 130, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Geisler, F.C.; Kubiak, T.; Siewert, K.; Weber, H. Cardiac vagal tone is associated with social engagement and self-regulation. Biol. Psychol. 2013, 93, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Park, G.; Thayer, J.F. From the heart to the mind: Cardiac vagal tone modulates top-down and bottom-up visual perception and attention to emotional stimuli. Front. Psychol. 2014, 5, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thayer, J.F.; Hansen, A.L.; Saus-Rose, E.; Johnsen, B.H. Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Ann. Behav. Med. 2009, 37, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Lane, R.D. A model of neurovisceral integration in emotion regulation and dysregulation. J. Affect. Disord. 2000, 61, 201–216. [Google Scholar] [CrossRef] [Green Version]
- De Couck, M.; Caers, R.; Spiegel, D.; Gidron, Y. The role of the vagus nerve in cancer prognosis: A systematic and a comprehensive review. J. Oncol. 2018, 2018, ID1236787. [Google Scholar] [CrossRef]
- Pavlov, V.A.; Tracey, K.J. The vagus nerve and the inflammatory reflex—linking immunity and metabolism. Nat. Rev. Endocrinol. 2012, 8, 743–754. [Google Scholar] [CrossRef]
- Schuster, A.K.; Fischer, J.E.; Thayer, J.F.; Mauss, D.; Jarczok, M.N. Decreased heart rate variability correlates to increased cardiovascular risk. Int. J. Cardiol. 2016, 203, 728–730. [Google Scholar] [CrossRef]
- Thayer, J.F.; Yamamoto, S.S.; Brosschot, J.F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 2010, 141, 122–131. [Google Scholar] [CrossRef]
- Williams, D.P.; Koenig, J.; Carnevali, L.; Sgoifo, A.; Jarczok, M.N.; Sternberg, E.M.; Thayer, J.F. Heart rate variability and inflammation: A meta-analysis of human studies. Brain Behav. Immun. 2019, 80, 219–226. [Google Scholar] [CrossRef]
- Beauchaine, T.P.; Thayer, J.F. Heart rate variability as a transdiagnostic biomarker of psychopathology. Int. J. Psychophysiol. 2015, 98, 338–350. [Google Scholar] [CrossRef]
- Thayer, J.F.; Åhs, F.; Fredrikson, M.; Sollers III, J.J.; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 2009, 33, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Goedhart, A.D.; Van der Sluis, S.; Houtveen, J.H.; Willemsen, G.; De Geus, E.J.C. Comparison of time and frequency domain measures of RSA in ambulatory recordings. Psychophysiology 2007, 44, 203–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koenig, J.; Kemp, A.H.; Feeling, N.R.; Thayer, J.F.; Kaess, M. Resting state vagal tone in borderline personality disorder: A meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 64, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Psychiatric Association (APA). Practice Guideline for the Treatment of Patients with Borderline Personality Disorder; American Psychiatric Association Publishing: Washington, DC, USA, 2001. [Google Scholar]
- American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders (DSM-5), 5th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Fujimura, T.; Okanoya, K. Heart rate variability predicts emotional flexibility in response to positive stimuli. Psychology 2012, 3, 578–582. [Google Scholar] [CrossRef] [Green Version]
- Krypotos, A.M.; Jahfari, S.; Van Ast, V.A.; Kindt, M.; Forstmann, B.U. Individual differences in heart rate variability predict the degree of slowing during response inhibition and initiation in the presence of emotional stimuli. Front. Psychol. 2011, 2, 278. [Google Scholar] [CrossRef] [Green Version]
- Park, G.; Van Bavel, J.J.; Vasey, M.W.; Thayer, J.F. Cardiac vagal tone predicts inhibited attention to fearful faces. Emotion 2012, 12, 1292–1302. [Google Scholar] [CrossRef]
- Gehlert, S.; Song, I.; Chang, C.-H.; Hartlage, S. The prevalence of premenstrual dysphoric disorder in a randomly selected group of urban and rural women. Psychol. Med. 2009, 39, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Martel, M.M.; Eisenlohr-Moul, T.A.; Roberts, B. Interactive effects of ovarian steroid hormones on alcohol use and binge drinking across the menstrual cycle. J. Abnorm. Psychol. 2017, 126, 1104–1113. [Google Scholar] [CrossRef]
- Schmidt, P.J.; Nieman, L.K.; Danaceau, M.A.; Adams, L.F.; Rubinow, D.R. Differential behavioral effects of gonadal steroids in women with and in those without premenstrual syndrome. N. Engl. J. Med. 1998, 338, 209–216. [Google Scholar] [CrossRef]
- Maner, J.K.; Miller, S.L. Hormones and social monitoring: Menstrual cycle shifts in progesterone underlie women’s sensitivity to social information. Evol. Hum. Behav. 2014, 35, 9–16. [Google Scholar] [CrossRef]
- Draper, C.F.; Duisters, K.; Weger, B.; Chakrabarti, A.; Harms, A.C.; Brennan, L.; Hankemeier, T.; Goulet, L.; Konz, T.; Martin, F.P.; et al. Menstrual cycle rhythmicity: Metabolic patterns in healthy women. Sci. Rep. 2018, 8, 14568. [Google Scholar] [CrossRef]
- Devries, M.C.; Hamadeh, M.J.; Phillips, S.M.; Tarnopolsky, M.A. Menstrual cycle phase and sex influence muscle glycogen utilization and glucose turnover during moderate-intensity endurance exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 291, R1120–R1128. [Google Scholar] [CrossRef] [Green Version]
- Armbruster, D.; Grage, T.; Kirschbaum, C.; Strobel, A. Processing emotions: Effects of menstrual cycle phase and premenstrual symptoms on the startle reflex, facial EMG and heart rate. Behav. Brain Res. 2018, 351, 178–187. [Google Scholar] [CrossRef]
- Schmalenberger, K.M.; Eisenlohr-Moul, T.A.; Würth, L.; Schneider, E.; Thayer, J.F.; Ditzen, B.; Jarczok, M.N. A systematic review and meta-analysis of within-person changes in cardiac vagal activity across the menstrual cycle: Implications for female health and future studies. J. Clin. Med. 2019, 8, 1946. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Approximate power and sample size determination for common one-sample and two-sample hypothesis tests. Educ. Psychol. Meas. 1970, 30, 811–831. [Google Scholar] [CrossRef]
- Stadler, A.; Weidlinger, S.; Stute, P. Impact of endogenous and exogenous progesterone exposure on stress biomarkers: A systematic review. Climacteric 2019, 22, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Li, J.; Zhou, L.; Li, X. Influence of the menstrual cycle on nonlinear properties of heart rate variability in young women. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H765–H774. [Google Scholar] [CrossRef]
- Balayssac-Siransy, E.; Ouattara, S.; Adoubi, A.; Kouame, A.; Sall, F.; Bogui, R. Effects of menstrual cycle on vagal reactivation in post-exercise recovery among young black African women. Sci. Sport 2014, 29, 196–202. [Google Scholar] [CrossRef]
- De Zambotti, M.; Nicholas, C.L.; Colrain, I.M.; Trinder, J.A.; Baker, F.C. Autonomic regulation across phases of the menstrual cycle and sleep stages in women with premenstrual syndrome and healthy controls. Psychoneuroendocrinology 2013, 38, 2618–2627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leicht, A.S.; Hirning, D.A.; Allen, G.D. Heart rate variability and endogenous sex hormones during the menstrual cycle in young women. Exp. Physiol. 2003, 88, 441–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, T.; Ushiroyama, T.; Morimura, M.; Moritani, T.; Hayashi, T.; Suzuki, T.; Tatsumi, N. Autonomic nervous system activity in the late luteal phase of eumenorrheic women with premenstrual symptomatology. J. Psychosom. Obst. Gyn. 2006, 27, 131–139. [Google Scholar] [CrossRef]
- Weissman, A.; Lowenstein, L.; Tal, J.; Ohel, G.; Calderon, I.; Lightman, A. Modulation of heart rate variability by estrogen in young women undergoing induction of ovulation. Eur. J. Appl. Physiol. 2009, 105, 381–386. [Google Scholar] [CrossRef]
- Singer, J.D.; Willett, J.B. Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence; Oxford University Press: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Nosek, B.A.; Errington, T.M. Reproducibility in cancer biology: Making sense of replications. Elife 2017, 6, e23383. [Google Scholar] [CrossRef]
- Eisenlohr-Moul, T.A.; DeWall, C.N.; Girdler, S.S.; Segerstrom, S.C. Ovarian hormones and borderline personality disorder features: Preliminary evidence for interactive effects of estradiol and progesterone. Biol. Psychol. 2015, 109, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Marván, M.L.; Cortés-Iniestra, S. Women’s beliefs about the prevalence of premenstrual syndrome and biases in recall of premenstrual changes. Health Psychol. 2001, 20, 276–280. [Google Scholar] [CrossRef]
- Marván, M.L.; Islas, M.; Vela, L.; Chrisler, J.C.; Warren, E.A. Stereotypes of women in different stages of their reproductive life: Data from Mexico and the United States. Health Care Women Int. 2008, 29, 673–687. [Google Scholar] [CrossRef]
- Castaldo, R.; Melillo, P.; Bracale, U.; Caserta, M.; Triassi, M.; Pecchia, L. Acute mental stress assessment via short term HRV analysis in healthy adults: A systematic review with meta-analysis. Biomed. Signal Proces. Control 2015, 18, 370–377. [Google Scholar] [CrossRef] [Green Version]
- Morey, L.C. The Personality Assessment Inventory Professional Manual; Psychological Assessment Resources: Odessa, FL, USA, 1991. [Google Scholar]
- First, M.B.; Spitzer, R.L.; Gibbon, M.; Williams, J.B. The structured clinical interview for DSM-III-R personality disorders (SCID-II). Part I: Description. J. Pers. Disord. 1995, 9, 83–91. [Google Scholar] [CrossRef]
- Malik, M.; Bigger, J.T.; Camm, A.J.; Kleiger, R.E.; Malliani, A.; Moss, A.J.; Schwartz, P.J. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart. J. 1996, 17, 354–381. [Google Scholar] [CrossRef] [Green Version]
- Brinton, R.D.; Thompson, R.F.; Foy, M.R.; Baudry, M.; Wang, J.; Finch, C.E.; Morgan, T.E.; Pike, C.J.; Mack, W.J.; Stanczyk, F.Z.; et al. Progesterone receptors: Form and function in brain. Front. Neuroendocrinol. 2008, 29, 313–339. [Google Scholar] [CrossRef] [Green Version]
- Salerni, S.; Di Francescomarino, S.; Cadeddu, C.; Acquistapace, F.; Maffei, S.; Gallina, S. The different role of sex hormones on female cardiovascular physiology and function: Not only oestrogens. Eur. J. Clin. Investig. 2015, 45, 634–645. [Google Scholar] [CrossRef]
- Sundström Poromaa, I.; Gingnell, M. Menstrual cycle influence on cognitive function and emotion processing—from a reproductive perspective. Front. Neurosci. 2014, 8, 380. [Google Scholar] [CrossRef] [Green Version]
- Bäckström, T.; Haage, D.; Löfgren, M.; Johansson, I.M.; Strömberg, J.; Nyberg, S.; Andréen, L.; Ossewaarde, L.; Van Wingen, G.A.; Turkmen, S.; et al. Paradoxical effects of GABA-A modulators may explain sex steroid induced negative mood symptoms in some persons. Neuroscience 2011, 191, 46–54. [Google Scholar] [CrossRef]
- Andréen, L.; Nyberg, S.; Turkmen, S.; Van Wingen, G.; Fernández, G.; Bäckström, T. Sex steroid induced negative mood may be explained by the paradoxical effect mediated by GABAA modulators. Psychoneuroendocrinology 2009, 34, 1121–1132. [Google Scholar] [CrossRef]
- Weise, F.; Krell, D.; Brinkhoff, N. Acute alcohol ingestion reduces heart rate variability. Drug Alcohol Depend. 1986, 17, 89–91. [Google Scholar] [CrossRef]
- Quintana, D.S.; McGregor, I.S.; Guastella, A.J.; Malhi, G.S.; Kemp, A.H. A meta-analysis on the impact of alcohol dependence on short-term resting-state heart rate variability: Implications for cardiovascular risk. Alcohol. Clin. Exp. Res. 2013, 37, E23–E29. [Google Scholar] [CrossRef]
- Varga, K.; Kunos, G. Cardiovascular effects of ethanol in rats selectively bred for high or low sensitivity to the hypnotic effects of ethanol. Alcohol. Clin. Exp. Res. 1997, 21, 1024–1029. [Google Scholar] [CrossRef]
- Pirker, S.; Schwarzer, C.; Wieselthaler, A.; Sieghart, W.; Sperk, G. GABAA receptors: Immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 2000, 101, 815–850. [Google Scholar] [CrossRef]
- Van Wingen, G.A.; Van Broekhoven, F.; Verkes, R.J.; Petersson, K.M.; Bäckström, T.; Buitelaar, J.K.; Fernández, G. How progesterone impairs memory for biologically salient stimuli in healthy young women. J. Neurosci. 2007, 27, 11416–11423. [Google Scholar] [CrossRef] [Green Version]
- Van Wingen, G.A.; Van Broekhoven, F.; Verkes, R.J.; Petersson, K.M.; Bäckström, T.; Buitelaar, J.K.; Fernandez, G. Progesterone selectively increases amygdala reactivity in women. Mol. Psychiatry 2008, 13, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Nugent, A.C.; Bain, E.E.; Thayer, J.F.; Sollers, J.J.; Drevets, W.C. Sex differences in the neural correlates of autonomic arousal: A pilot PET study. Int. J. Psychophysiol. 2011, 80, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Jarczok, M.N.; Koenig, J.; Wittling, A.; Fischer, J.E.; Thayer, J.F. First evaluation of an index of low vagally-mediated heart rate variability as a marker of health risks in human adults: Proof of concept. J. Clin. Med. 2019, 8, 1940. [Google Scholar] [CrossRef] [Green Version]
- Rubinow, D.R.; Schmidt, P.J. The treatment of premenstrual syndrome—Forward into the past. N. Engl. J. Med. 1995, 332, 1574–1575. [Google Scholar] [CrossRef] [PubMed]
- Pilver, C.E.; Levy, B.R.; Libby, D.J.; Desai, R.A. Posttraumatic stress disorder and trauma characteristics are correlates of premenstrual dysphoric disorder. Arch. Women’s Ment. Health 2011, 14, 383. [Google Scholar] [CrossRef] [Green Version]
- Bertone-Johnson, E.R.; Whitcomb, B.W.; Missmer, S.A.; Manson, J.E.; Hankinson, S.E.; Rich-Edwards, J.W. Early life emotional, physical, and sexual abuse and the development of premenstrual syndrome: A longitudinal study. J. Women’s Health 2014, 23, 729–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenlohr-Moul, T.A.; Rubinow, D.R.; Schiller, C.E.; Johnson, J.L.; Leserman, J.; Girdler, S.S. Histories of abuse predict stronger within-person covariation of ovarian steroids and mood symptoms in women with menstrually related mood disorder. Psychoneuroendocrinology 2016, 67, 142–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkonigg, A.; Yonkers, K.A.; Pfister, H.; Lieb, R.; Wittchen, H.-U. Risk factors for premenstrual dysphoric disorder in a community sample of young women: The role of traumatic events and posttraumatic stress disorder. J. Clin. Psychiatry 2004, 65, 1314–1322. [Google Scholar] [CrossRef]
- Jarczok, M.N.; Aguilar-Raab, C.; Koenig, J.; Kaess, M.; Borniger, J.C.; Nelson, R.J.; Hall, M.; Ditzen, B.; Thayer, J.F.; Fischer, J.E. The heart’s rhythm ‘n’ blues: Sex differences in circadian variation patterns of vagal activity vary by depressive symptoms in predominantly healthy employees. Chronobiol. Int. 2018, 35, 896–909. [Google Scholar] [CrossRef]
- Jarczok, M.N.; Guendel, H.; McGrath, J.J.; Balint, E.M. Circadian rhythms of the autonomic nervous system: Scientific implication and practical implementation. In Chronobiology—The Science of Biological Time Structure, 1st ed.; Svorc, P., Ed.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
Menstrual Cycle Phase | E2 | P4 | HFlog |
---|---|---|---|
Midluteal | 3.52 (0.73) | 14.87 (8.81) | 5.61 (1.06) |
Perimenstrual | 3.14 (0.86) | 9.97 (5.12) | 5.89 (1.05) |
Mid-follicular | 3.40 (1.22) | 8.10 (3.95) | 6.15 (1.06) |
Ovulatory | 3.85 (0.88) | 7.13 (4.36) | 6.01 (1.09) |
Within-Person Contrasts | |||||
---|---|---|---|---|---|
Midluteal Phase Reference | Perimenstrual Phase Reference | Mid-Follicular Phase Reference | |||
v. Mid-follicular | v. Ovulatory | v. Peri- menstrual | v. Ovulatory | v. Follicular | v. Ovulatory |
0.55* (0.24) | 0.60* (0.29) | 0.52* (0.23) | 0.08 (.21) | 0.03 (0.15) | 0.04 (0.21) |
Parameter | Outcome: HFlog (Vagally-Mediated Heart Rate Variability) | |
---|---|---|
Estimate | SE | |
Fixed Effects | ||
Intercept (γ00) | 5.98 | 0.16 |
Sample-Standardized Age (γ01) | 0.06 | 0.15 |
Person-Centered E2 (γ10) | −0.037 | 0.085 |
Person-Centered P4 (γ20) | −0.036 *** | 0.011 |
E2 * P4 (γ30) | −0.015 | 0.025 |
Variance Components | ||
Intercept (u0j) | 0.86 | 0.22 |
Person-Centered P4 (u2j) | 0.016 * | 0.0076 |
Autoregressive (visit-1) Term | −0.14 | 0.14 |
Residual (eij) | 0.30 | 0.043 |
Menstrual Cycle Phase | E2 | P4 | HFlog |
---|---|---|---|
Midluteal | 4.79 (2.70) | 17.95 (7.98) | 5.94 (1.42) |
Perimenstrual | 3.43 (2.62) | 5.78 (3.22) | 6.39 (1.17) |
Ovulatory | 6.01 (2.94) | 6.13 (2.97) | 6.12 (1.06) |
Within-Person Phase Contrast | ||
---|---|---|
Midluteal Phase Reference | Perimenstrual Phase Reference | |
v. Ovulatory | v. Perimenstrual | v. Ovulatory |
0.17 (0.17) | 0.45 * (0.17) | −0.28 (0.17) |
Parameter | Outcome: HFlog (Vagally-Mediated Heart Rate Variability) | |
---|---|---|
Estimate | SE | |
Fixed Effects | ||
Intercept (γ00) | 6.21 | 0.18 |
Sample-Standardized Age (γ01) | −0.23 | 0.17 |
Person-Centered E2 (γ10) | −0.005 | 0.037 |
Person-Centered P4 (γ20) | −0.024 * | 0.010 |
E2 * P4 (γ30) | 0.003 | 0.008 |
Variance Components | ||
Intercept (u0j) | 1.12 | 0.33 |
Person-Centered P4 (u2j) | 0.02 * | 0.009 |
Autoregressive (visit-1) Term | 0.19 | 0.26 |
Residual (eij) | 0.58 | 0.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmalenberger, K.M.; Eisenlohr-Moul, T.A.; Jarczok, M.N.; Eckstein, M.; Schneider, E.; Brenner, I.G.; Duffy, K.; Schweizer, S.; Kiesner, J.; Thayer, J.F.; et al. Menstrual Cycle Changes in Vagally-Mediated Heart Rate Variability Are Associated with Progesterone: Evidence from Two Within-Person Studies. J. Clin. Med. 2020, 9, 617. https://doi.org/10.3390/jcm9030617
Schmalenberger KM, Eisenlohr-Moul TA, Jarczok MN, Eckstein M, Schneider E, Brenner IG, Duffy K, Schweizer S, Kiesner J, Thayer JF, et al. Menstrual Cycle Changes in Vagally-Mediated Heart Rate Variability Are Associated with Progesterone: Evidence from Two Within-Person Studies. Journal of Clinical Medicine. 2020; 9(3):617. https://doi.org/10.3390/jcm9030617
Chicago/Turabian StyleSchmalenberger, Katja M., Tory A. Eisenlohr-Moul, Marc N. Jarczok, Monika Eckstein, Ekaterina Schneider, Ines G. Brenner, Kathleen Duffy, Sophie Schweizer, Jeff Kiesner, Julian F. Thayer, and et al. 2020. "Menstrual Cycle Changes in Vagally-Mediated Heart Rate Variability Are Associated with Progesterone: Evidence from Two Within-Person Studies" Journal of Clinical Medicine 9, no. 3: 617. https://doi.org/10.3390/jcm9030617
APA StyleSchmalenberger, K. M., Eisenlohr-Moul, T. A., Jarczok, M. N., Eckstein, M., Schneider, E., Brenner, I. G., Duffy, K., Schweizer, S., Kiesner, J., Thayer, J. F., & Ditzen, B. (2020). Menstrual Cycle Changes in Vagally-Mediated Heart Rate Variability Are Associated with Progesterone: Evidence from Two Within-Person Studies. Journal of Clinical Medicine, 9(3), 617. https://doi.org/10.3390/jcm9030617