When Less Is Good, Is None Better? The Prognostic and Therapeutic Significance of Peri-Transplant Minimal Residual Disease Assessment in Pediatric Acute Lymphoblastic Leukemia
Abstract
:1. Introduction
2. MRD Assays in Pediatric ALL
2.1. Multicolor Flow Cytometry
2.2. Molecular/Allele-Specific Oligonucleotide PCR-Based
2.3. High Throughput Sequencing PCR
3. Prognostic Significance of MRD
3.1. Pre-HSCT MRD
3.2. Post-HSCT MRD
4. Therapeutic Implications Based on Peri-HSCT MRD
4.1. Pre-HSCT MRD to Minimize Therapy
4.2. Approaches to Eliminate Pre- and Post-HSCT MRD
4.3. Immune Suppression Modulation
4.4. Donor Leukocyte Infusion
5. Conclusions
Acknowledgments
Author Contributions
Conflict of Interest
References
- Hunger, S.P.; Loh, M.L.; Whitlock, J.A.; Winick, N.J.; Carroll, W.L.; Devidas, M.; Raetz, E.A. Children’s oncology group’s 2013 blueprint for research: Acute lymphoblastic leukemia. Pediatr. Blood Cancer 2013, 60, 957–963. [Google Scholar] [CrossRef]
- Appelbaum, F.R. Improved outcomes with allogeneic hematopoietic cell transplantation. Best Pract. Res. Clin. Haematol. 2012, 25, 465–471. [Google Scholar] [CrossRef] [PubMed]
- MacMillan, M.L.; Davies, S.M.; Nelson, G.O.; Chitphakdithai, P.; Confer, D.L.; King, R.J.; Kernan, N.A. Twenty years of unrelated donor bone marrow transplantation for pediatric acute leukemia facilitated by the national marrow donor program. Biol. Blood Marrow Transpl. 2008, 14, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Van den Brink, M.R.; Porter, D.L.; Giralt, S.; Lu, S.X.; Jenq, R.R.; Hanash, A.; Bishop, M.R. Relapse after allogeneic hematopoietic cell therapy. Biol. Blood Marrow Transpl. 2010, 16, S138–S145. [Google Scholar] [CrossRef] [PubMed]
- Oliansky, D.M.; Camitta, B.; Gaynon, P.; Nieder, M.L.; Parsons, S.K.; Pulsipher, M.A.; Dillon, H.; Ratko, T.A.; Wall, D.; McCarthy, P.L., Jr.; et al. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the treatment of pediatric acute lymphoblastic leukemia: Update of the 2005 evidence-based review. Asbmt position statement. Biol. Blood Marrow Transpl. 2012, 18, 979–981. [Google Scholar] [CrossRef] [PubMed]
- Schrappe, M.; Hunger, S.P.; Pui, C.H.; Saha, V.; Gaynon, P.S.; Baruchel, A.; Conter, V.; Otten, J.; Ohara, A.; Versluys, A.B.; et al. Outcomes after induction failure in childhood acute lymphoblastic leukemia. N. Engl. J. Med. 2012, 366, 1371–1381. [Google Scholar] [CrossRef]
- Nachman, J.B.; Heerema, N.A.; Sather, H.; Camitta, B.; Forestier, E.; Harrison, C.J.; Dastugue, N.; Schrappe, M.; Pui, C.H.; Basso, G.; et al. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood 2007, 110, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
- Schultz, K.R.; Bowman, W.P.; Aledo, A.; Slayton, W.B.; Sather, H.; Devidas, M.; Wang, C.; Davies, S.M.; Gaynon, P.S.; Trigg, M.; et al. Improved early event-free survival with imatinib in philadelphia chromosome-positive acute lymphoblastic leukemia: A children’s oncology group study. J. Clin. Oncol. 2009, 27, 5175–5181. [Google Scholar] [CrossRef] [PubMed]
- Schultz, K.R.; Carroll, A.; Heerema, N.A.; Bowman, W.P.; Aledo, A.; Slayton, W.B.; Sather, H.; Devidas, M.; Zheng, H.W.; Davies, S.M.; et al. Long-term follow-up of imatinib in pediatric philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s oncology group study aall0031. Leukemia 2014, 28, 1467–1471. [Google Scholar] [CrossRef] [PubMed]
- Mullighan, C.G.; Jeha, S.; Pei, D.; Payne-Turner, D.; Coustan-Smith, E.; Roberts, K.G.; Waanders, E.; Choi, J.K.; Ma, X.; Raimondi, S.C.; et al. Outcome of children with hypodiploid all treated with risk-directed therapy based on mrd levels. Blood 2015, 126, 2896–2899. [Google Scholar] [CrossRef] [PubMed]
- Eckert, C.; Henze, G.; Seeger, K.; Hagedorn, N.; Mann, G.; Panzer-Grumayer, R.; Peters, C.; Klingebiel, T.; Borkhardt, A.; Schrappe, M.; et al. Use of allogeneic hematopoietic stem-cell transplantation based on minimal residual disease response improves outcomes for children with relapsed acute lymphoblastic leukemia in the intermediate-risk group. J. Clin. Oncol. 2013, 31, 2736–2742. [Google Scholar] [CrossRef] [PubMed]
- Marshall, G.M.; Dalla Pozza, L.; Sutton, R.; Ng, A.; de Groot-Kruseman, H.A.; van der Velden, V.H.; Venn, N.C.; van den Berg, H.; de Bont, E.S.; Maarten Egeler, R.; et al. High-risk childhood acute lymphoblastic leukemia in first remission treated with novel intensive chemotherapy and allogeneic transplantation. Leukemia 2013, 27, 1497–1503. [Google Scholar] [CrossRef]
- Borowitz, M.J.; Wood, B.L.; Devidas, M.; Loh, M.L.; Raetz, E.A.; Salzer, W.L.; Nachman, J.B.; Carroll, A.J.; Heerema, N.A.; Gastier-Foster, J.M.; et al. Prognostic significance of minimal residual disease in high risk b-all: A report from children’s oncology group study aall0232. Blood 2015, 126, 964–971. [Google Scholar] [CrossRef]
- Van Dongen, J.J.; van der Velden, V.H.; Bruggemann, M.; Orfao, A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: Need for sensitive, fast, and standardized technologies. Blood 2015, 125, 3996–4009. [Google Scholar] [CrossRef] [PubMed]
- Lucio, P.; Parreira, A.; van den Beemd, M.W.; van Lochem, E.G.; van Wering, E.R.; Baars, E.; Porwit-MacDonald, A.; Bjorklund, E.; Gaipa, G.; Biondi, A.; et al. Flow cytometric analysis of normal b cell differentiation: A frame of reference for the detection of minimal residual disease in precursor-b-all. Leukemia 1999, 13, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Dworzak, M.N.; Fritsch, G.; Fleischer, C.; Printz, D.; Froschl, G.; Buchinger, P.; Mann, G.; Gadner, H. Comparative phenotype mapping of normal vs. Malignant pediatric b-lymphopoiesis unveils leukemia-associated aberrations. Exp. Hematol. 1998, 26, 305–313. [Google Scholar] [PubMed]
- Uckun, F.M.; Kersey, J.H.; Haake, R.; Weisdorf, D.; Nesbit, M.E.; Ramsay, N.K. Pretransplantation burden of leukemic progenitor cells as a predictor of relapse after bone marrow transplantation for acute lymphoblastic leukemia. N. Engl. J. Med. 1993, 329, 1296–1301. [Google Scholar] [CrossRef] [PubMed]
- Malec, M.; Bjorklund, E.; Soderhall, S.; Mazur, J.; Sjogren, A.M.; Pisa, P.; Bjorkholm, M.; Porwit-MacDonald, A. Flow cytometry and allele-specific oligonucleotide pcr are equally effective in detection of minimal residual disease in all. Leukemia 2001, 15, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Malec, M.; van der Velden, V.H.; Bjorklund, E.; Wijkhuijs, J.M.; Soderhall, S.; Mazur, J.; Bjorkholm, M.; Porwit-MacDonald, A. Analysis of minimal residual disease in childhood acute lymphoblastic leukemia: Comparison between RQ-PCR analysis of Ig/TcR gene rearrangements and multicolor flow cytometric immunophenotyping. Leukemia 2004, 18, 1630–1636. [Google Scholar] [CrossRef] [PubMed]
- Neale, G.A.; Coustan-Smith, E.; Stow, P.; Pan, Q.; Chen, X.; Pui, C.H.; Campana, D. Comparative analysis of flow cytometry and polymerase chain reaction for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 2004, 18, 934–938. [Google Scholar] [CrossRef]
- Kerst, G.; Kreyenberg, H.; Roth, C.; Well, C.; Dietz, K.; Coustan-Smith, E.; Campana, D.; Koscielniak, E.; Niemeyer, C.; Schlegel, P.G.; et al. Concurrent detection of minimal residual disease (mrd) in childhood acute lymphoblastic leukaemia by flow cytometry and real-time pcr. Br. J. Haematol. 2005, 128, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Pedreira, C.E.; Costa, E.S.; Lecrevisse, Q.; van Dongen, J.J.; Orfao, A. Overview of clinical flow cytometry data analysis: Recent advances and future challenges. Trends Biotechnol. 2013, 31, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Van Dongen, J.J. Analysis of immunoglobulin genes and t cell receptor genes as a diagnostic tool for the detection of lymphoid malignancies. Neth. J. Med. 1987, 31, 201–209. [Google Scholar] [PubMed]
- Bruggemann, M.; Schrauder, A.; Raff, T.; Pfeifer, H.; Dworzak, M.; Ottmann, O.G.; Asnafi, V.; Baruchel, A.; Bassan, R.; Benoit, Y.; et al. Standardized MRD Quantification in European All Trials: Proceedings of the Second International Symposium on MRD Assessment in Kiel, Germany, 18–20 September 2008. Leukemia 2010, 24, 521–535. [Google Scholar] [CrossRef] [PubMed]
- Campana, D. Role of minimal residual disease monitoring in adult and pediatric acute lymphoblastic leukemia. Hematol. Oncol. Clin. N. Am. 2009, 23, 1083–1098. [Google Scholar] [CrossRef] [PubMed]
- Logan, A.C.; Gao, H.; Wang, C.; Sahaf, B.; Jones, C.D.; Marshall, E.L.; Buno, I.; Armstrong, R.; Fire, A.Z.; Weinberg, K.I.; et al. High-throughput vdj sequencing for quantification of minimal residual disease in chronic lymphocytic leukemia and immune reconstitution assessment. Proc. Natl. Acad. Sci. USA 2011, 108, 21194–21199. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Sherwood, A.; Fromm, J.R.; Winter, S.S.; Dunsmore, K.P.; Loh, M.L.; Greisman, H.A.; Sabath, D.E.; Wood, B.L.; Robins, H. High-throughput sequencing detects minimal residual disease in acute t lymphoblastic leukemia. Sci. Transl. Med. 2012, 4, 134ra163. [Google Scholar] [CrossRef] [PubMed]
- Faham, M.; Zheng, J.; Moorhead, M.; Carlton, V.E.; Stow, P.; Coustan-Smith, E.; Pui, C.H.; Campana, D. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood 2012, 120, 5173–5180. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Emerson, R.O.; Sherwood, A.; Loh, M.L.; Angiolillo, A.; Howie, B.; Vogt, J.; Rieder, M.; Kirsch, I.; Carlson, C.; et al. Detection of minimal residual disease in b lymphoblastic leukemia by high-throughput sequencing of igh. Clin. Cancer Res. 2014, 20, 4540–4548. [Google Scholar] [CrossRef] [PubMed]
- Sierra, J.; Storer, B.; Hansen, J.A.; Bjerke, J.W.; Martin, P.J.; Petersdorf, E.W.; Appelbaum, F.R.; Bryant, E.; Chauncey, T.R.; Sale, G.; et al. Transplantation of marrow cells from unrelated donors for treatment of high-risk acute leukemia: The effect of leukemic burden, donor hla-matching, and marrow cell dose. Blood 1997, 89, 4226–4235. [Google Scholar] [PubMed]
- Horowitz, M.M.; Rowlings, P.A. An update from the international bone marrow transplant registry and the autologous blood and marrow transplant registry on current activity in hematopoietic stem cell transplantation. Curr. Opin. Hematol. 1997, 4, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Knechtli, C.J.; Goulden, N.J.; Hancock, J.P.; Grandage, V.L.; Harris, E.L.; Garland, R.J.; Jones, C.G.; Rowbottom, A.W.; Hunt, L.P.; Green, A.F.; et al. Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood 1998, 92, 4072–4079. [Google Scholar] [PubMed]
- Van der Velden, V.H.; Joosten, S.A.; Willemse, M.J.; van Wering, E.R.; Lankester, A.W.; van Dongen, J.J.; Hoogerbrugge, P.M. Real-time quantitative pcr for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia. Leukemia 2001, 15, 1485–1487. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, J.; Serrano, J.; Gomez, P.; Martinez, F.; Martin, C.; Madero, L.; Herrera, C.; Garcia, J.M.; Casano, J.; Torres, A. Clinical value of immunological monitoring of minimal residual disease in acute lymphoblastic leukaemia after allogeneic transplantation. Br. J. Haematol. 2002, 116, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Bader, P.; Hancock, J.; Kreyenberg, H.; Goulden, N.J.; Niethammer, D.; Oakhill, A.; Steward, C.G.; Handgretinger, R.; Beck, J.F.; Klingebiel, T. Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with all. Leukemia 2002, 16, 1668–1672. [Google Scholar] [CrossRef] [PubMed]
- Krejci, O.; van der Velden, V.H.; Bader, P.; Kreyenberg, H.; Goulden, N.; Hancock, J.; Schilham, M.W.; Lankester, A.; Revesz, T.; Klingebiel, T.; et al. Level of minimal residual disease prior to haematopoietic stem cell transplantation predicts prognosis in paediatric patients with acute lymphoblastic leukaemia: A report of the pre-bmt mrd study group. Bone Marrow Transpl. 2003, 32, 849–851. [Google Scholar] [CrossRef] [PubMed]
- Imashuku, S.; Terui, K.; Matsuyama, T.; Asami, K.; Tsuchiya, S.; Ishii, E.; Kawa, K.; Kosaka, Y.; Eguchi, H.; Tsuchida, M.; et al. Lack of clinical utility of minimal residual disease detection in allogeneic stem cell recipients with childhood acute lymphoblastic leukemia: Multi-institutional collaborative study in Japan. Bone Marrow Transpl. 2003, 31, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
- Goulden, N.; Bader, P.; Van Der Velden, V.; Moppett, J.; Schilham, M.; Masden, H.O.; Krejci, O.; Kreyenberg, H.; Lankester, A.; Revesz, T.; et al. Minimal residual disease prior to stem cell transplant for childhood acute lymphoblastic leukaemia. Br. J. Haematol. 2003, 122, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Sramkova, L.; Muzikova, K.; Fronkova, E.; Krejci, O.; Sedlacek, P.; Formankova, R.; Mejstrikova, E.; Stary, J.; Trka, J. Detectable minimal residual disease before allogeneic hematopoietic stem cell transplantation predicts extremely poor prognosis in children with acute lymphoblastic leukemia. Pediatr. Blood Cancer 2007, 48, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Paganin, M.; Zecca, M.; Fabbri, G.; Polato, K.; Biondi, A.; Rizzari, C.; Locatelli, F.; Basso, G. Minimal residual disease is an important predictive factor of outcome in children with relapsed ‘high-risk’ acute lymphoblastic leukemia. Leukemia 2008, 22, 2193–2200. [Google Scholar] [CrossRef] [PubMed]
- Bader, P.; Kreyenberg, H.; Henze, G.H.; Eckert, C.; Reising, M.; Willasch, A.; Barth, A.; Borkhardt, A.; Peters, C.; Handgretinger, R.; et al. Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: The all-rez bfm study group. J. Clin. Oncol. 2009, 27, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Elorza, I.; Palacio, C.; Dapena, J.L.; Gallur, L.; Sanchez de Toledo, J.; Diaz de Heredia, C. Relationship between minimal residual disease measured by multiparametric flow cytometry prior to allogeneic hematopoietic stem cell transplantation and outcome in children with acute lymphoblastic leukemia. Haematologica 2010, 95, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Leung, W.; Pui, C.H.; Coustan-Smith, E.; Yang, J.; Pei, D.; Gan, K.; Srinivasan, A.; Hartford, C.; Triplett, B.M.; Dallas, M.; et al. Detectable minimal residual disease before hematopoietic cell transplantation is prognostic but does not preclude cure for children with very-high-risk leukemia. Blood 2012, 120, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, A.; Michel, G.; Dalle, J.H.; Caniglia, M.; Locatelli, F.; Campos, A.; de Heredia, C.D.; Mohty, M.; Hurtado, J.M.; Bierings, M.; et al. Impact of pretransplant minimal residual disease after cord blood transplantation for childhood acute lymphoblastic leukemia in remission: An eurocord, pdwp-ebmt analysis. Leukemia 2012, 26, 2455–2461. [Google Scholar] [CrossRef] [PubMed]
- Bachanova, V.; Burke, M.J.; Yohe, S.; Cao, Q.; Sandhu, K.; Singleton, T.P.; Brunstein, C.G.; Wagner, J.E.; Verneris, M.R.; Weisdorf, D.J. Unrelated cord blood transplantation in adult and pediatric acute lymphoblastic leukemia: Effect of minimal residual disease on relapse and survival. Biol. Blood Marrow Transpl. 2012, 18, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.N.; Borowitz, M.J.; Robey, N.C.; Gamper, C.J.; Symons, H.J.; Loeb, D.M.; Wayne, A.S.; Chen, A.R. Feasibility of treating post-transplantation minimal residual disease in children with acute leukemia. Biol. Blood Marrow Transpl. 2014, 20, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Balduzzi, A.; Di Maio, L.; Silvestri, D.; Songia, S.; Bonanomi, S.; Rovelli, A.; Conter, V.; Biondi, A.; Cazzaniga, G.; Valsecchi, M.G. Minimal residual disease before and after transplantation for childhood acute lymphoblastic leukaemia: Is there any room for intervention? Br. J. Haematol. 2014, 164, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Bar, M.; Wood, B.L.; Radich, J.P.; Doney, K.C.; Woolfrey, A.E.; Delaney, C.; Appelbaum, F.R.; Gooley, T.A. Impact of minimal residual disease, detected by flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute lymphoblastic leukemia. Leuk. Res. Treat. 2014, 2014, 421723. [Google Scholar] [CrossRef] [PubMed]
- Pulsipher, M.A.; Carlson, C.; Langholz, B.; Wall, D.A.; Schultz, K.R.; Bunin, N.; Kirsch, I.; Gastier-Foster, J.M.; Borowitz, M.; Desmarais, C.; et al. IgH-V(D)J NGS-MRD measurement pre- and early post-allotransplant defines very low- and very high-risk all patients. Blood 2015, 125, 3501–3508. [Google Scholar] [CrossRef] [PubMed]
- Sutton, R.; Shaw, P.J.; Venn, N.C.; Law, T.; Dissanayake, A.; Kilo, T.; Haber, M.; Norris, M.D.; Fraser, C.; Alvaro, F.; et al. Persistent mrd before and after allogeneic bmt predicts relapse in children with acute lymphoblastic leukaemia. Br. J. Haematol. 2015, 168, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Eckert, C.; Hagedorn, N.; Sramkova, L.; Mann, G.; Panzer-Grumayer, R.; Peters, C.; Bourquin, J.P.; Klingebiel, T.; Borkhardt, A.; Cario, G.; et al. Monitoring minimal residual disease in children with high-risk relapses of acute lymphoblastic leukemia: Prognostic relevance of early and late assessment. Leukemia 2015, 29, 1648–1655. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.S.; Liu, Y.R.; Zhu, H.H.; Xu, L.P.; Liu, D.H.; Liu, K.Y.; Huang, X.J. Monitoring mrd with flow cytometry: An effective method to predict relapse for all patients after allogeneic hematopoietic stem cell transplantation. Ann. Hematol. 2012, 91, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Bader, P.; Kreyenberg, H.; von Stackelberg, A.; Eckert, C.; Salzmann-Manrique, E.; Meisel, R.; Poetschger, U.; Stachel, D.; Schrappe, M.; Alten, J.; et al. Monitoring of minimal residual disease after allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia allows for the identification of impending relapse: Results of the all-bfm-sct 2003 trial. J. Clin. Oncol. 2015, 33, 1275–1284. [Google Scholar] [CrossRef] [PubMed]
- Willard, V.W.; Leung, W.; Huang, Q.; Zhang, H.; Phipps, S. Cognitive outcome after pediatric stem-cell transplantation: Impact of age and total-body irradiation. J. Clin. Oncol. 2014, 32, 3982–3988. [Google Scholar] [CrossRef] [PubMed]
- Freycon, F.; Trombert-Paviot, B.; Casagranda, L.; Mialou, V.; Berlier, P.; Berger, C.; Armari-Alla, C.; Faure-Conter, C.; Glastre, C.; Langevin, L.; et al. Final height and body mass index after fractionated total body irradiation and allogeneic stem cell transplantation in childhood leukemia. Pediatr. Hematol. Oncol. 2012, 29, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Armenian, S.H.; Sun, C.L.; Kawashima, T.; Arora, M.; Leisenring, W.; Sklar, C.A.; Baker, K.S.; Francisco, L.; Teh, J.B.; Mills, G.; et al. Long-term health-related outcomes in survivors of childhood cancer treated with hsct versus conventional therapy: A report from the bone marrow transplant survivor study (BMTSS) and childhood cancer survivor study (CCSS). Blood 2011, 118, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Inaba, H.; Yang, J.; Kaste, S.C.; Hartford, C.M.; Motosue, M.S.; Chemaitilly, W.; Triplett, B.M.; Shook, D.R.; Pui, C.H.; Leung, W. Longitudinal changes in body mass and composition in survivors of childhood hematologic malignancies after allogeneic hematopoietic stem-cell transplantation. J. Clin. Oncol. 2012, 30, 3991–3997. [Google Scholar] [CrossRef] [PubMed]
- Hoffmeister, P.A.; Madtes, D.K.; Storer, B.E.; Sanders, J.E. Pulmonary function in long-term survivors of pediatric hematopoietic cell transplantation. Pediatr. Blood Cancer 2006, 47, 594–606. [Google Scholar] [CrossRef] [PubMed]
- Gurney, J.G.; Ness, K.K.; Rosenthal, J.; Forman, S.J.; Bhatia, S.; Baker, K.S. Visual, auditory, sensory, and motor impairments in long-term survivors of hematopoietic stem cell transplantation performed in childhood: Results from the bone marrow transplant survivor study. Cancer 2006, 106, 1402–1408. [Google Scholar] [CrossRef] [PubMed]
- Davies, S.M.; Ramsay, N.K.; Klein, J.P.; Weisdorf, D.J.; Bolwell, B.; Cahn, J.Y.; Camitta, B.M.; Gale, R.P.; Giralt, S.; Heilmann, C.; et al. Comparison of preparative regimens in transplants for children with acute lymphoblastic leukemia. J. Clin. Oncol. 2000, 18, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Eapen, M.; Raetz, E.; Zhang, M.J.; Muehlenbein, C.; Devidas, M.; Abshire, T.; Billett, A.; Homans, A.; Camitta, B.; Carroll, W.L.; et al. Outcomes after hla-matched sibling transplantation or chemotherapy in children with b-precursor acute lymphoblastic leukemia in a second remission: A collaborative study of the children’s oncology group and the center for international blood and marrow transplant research. Blood 2006, 107, 4961–4967. [Google Scholar] [PubMed]
- Gossai, N.; Verneris, M.R.; Karras, N.A.; Gorman, M.F.; Patel, N.J.; Burke, M.J. A clofarabine-based bridging regimen in patients with relapsed all and persistent minimal residual disease (MRD). Bone Marrow Transpl. 2014, 49, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.J.; Cao, Q.; Trotz, B.; Weigel, B.; Kumar, A.; Smith, A.; Verneris, M.R. Allogeneic hematopoietic cell transplantation (allogeneic hct) for treatment of pediatric philadelphia chromosome-positive acute lymphoblastic leukemia (ALL). Pediatr. Blood Cancer 2009, 53, 1289–1294. [Google Scholar] [CrossRef] [PubMed]
- Arend, V.S.; Franco, L.; Gerhard, Z.; Rupert, H.; Tanya, M.T.; Carmelo, R.; Peter, B.; Maureen, M.O.; Benoit, B.; Deepa, B.; et al. Phase I/Phase II Study of Blinatumomab in Pediatric Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2016, 34, 4381–4389. [Google Scholar]
- Horowitz, M.M.; Gale, R.P.; Sondel, P.M.; Goldman, J.M.; Kersey, J.; Kolb, H.J.; Rimm, A.A.; Ringden, O.; Rozman, C.; Speck, B.; et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990, 75, 555–562. [Google Scholar] [PubMed]
- Weiden, P.L.; Flournoy, N.; Thomas, E.D.; Prentice, R.; Fefer, A.; Buckner, C.D.; Storb, R. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N. Engl. J. Med. 1979, 300, 1068–1073. [Google Scholar] [CrossRef] [PubMed]
- Passweg, J.R.; Tiberghien, P.; Cahn, J.Y.; Vowels, M.R.; Camitta, B.M.; Gale, R.P.; Herzig, R.H.; Hoelzer, D.; Horowitz, M.M.; Ifrah, N.; et al. Graft-versus-leukemia effects in t lineage and b lineage acute lymphoblastic leukemia. Bone Marrow Transpl. 1998, 21, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Zecca, M.; Messina, C.; Rondelli, R.; Lanino, E.; Sacchi, N.; Uderzo, C.; Fagioli, F.; Conter, V.; Bonetti, F.; et al. Improvement over time in outcome for children with acute lymphoblastic leukemia in second remission given hematopoietic stem cell transplantation from unrelated donors. Leukemia 2002, 16, 2228–2237. [Google Scholar] [CrossRef] [PubMed]
- Dini, G.; Zecca, M.; Balduzzi, A.; Messina, C.; Masetti, R.; Fagioli, F.; Favre, C.; Rabusin, M.; Porta, F.; Biral, E.; et al. No difference in outcome between children and adolescents transplanted for acute lymphoblastic leukemia in second remission. Blood 2011, 118, 6683–6690. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, J.J.; Carston, M.; Kollman, C.; King, R.; Dekker, A.W.; Lowenberg, B.; Anasetti, C. Unrelated marrow transplantation for adult patients with poor-risk acute lymphoblastic leukemia: Strong graft-versus-leukemia effect and risk factors determining outcome. Blood 2001, 97, 1572–1577. [Google Scholar] [CrossRef] [PubMed]
- Pulsipher, M.A.; Langholz, B.; Wall, D.A.; Schultz, K.R.; Bunin, N.; Carroll, W.; Raetz, E.; Gardner, S.; Goyal, R.K.; Gastier-Foster, J.; et al. Risk factors and timing of relapse after allogeneic transplantation in pediatric all: For whom and when should interventions be tested? Bone Marrow Transpl. 2015, 50, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Zecca, M.; Rondelli, R.; Bonetti, F.; Dini, G.; Prete, A.; Messina, C.; Uderzo, C.; Ripaldi, M.; Porta, F.; et al. Graft versus host disease prophylaxis with low-dose cyclosporine-a reduces the risk of relapse in children with acute leukemia given hla-identical sibling bone marrow transplantation: Results of a randomized trial. Blood 2000, 95, 1572–1579. [Google Scholar] [PubMed]
- Li Pira, G.; Malaspina, D.; Girolami, E.; Biagini, S.; Cicchetti, E.; Conflitti, G.; Broglia, M.; Ceccarelli, S.; Lazzaro, S.; Pagliara, D.; et al. Selective depletion of alphabeta t cells and b cells for human leukocyte antigen-haploidentical hematopoietic stem cell transplantation. A three-year follow-up of procedure efficiency. Biol. Blood Marrow Transpl. 2016, 22, 2056–2064. [Google Scholar] [CrossRef] [PubMed]
- Horn, B.; Petrovic, A.; Wahlstrom, J.; Dvorak, C.C.; Kong, D.; Hwang, J.; Expose-Spencer, J.; Gates, M.; Cowan, M.J. Chimerism-based pre-emptive immunotherapy with fast withdrawal of immunosuppression and donor lymphocyte infusions after allogeneic stem cell transplantation for pediatric hematologic malignancies. Biol. Blood Marrow Transpl. 2015, 21, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Bader, P.; Kreyenberg, H.; Hoelle, W.; Dueckers, G.; Handgretinger, R.; Lang, P.; Kremens, B.; Dilloo, D.; Sykora, K.W.; Schrappe, M.; et al. Increasing mixed chimerism is an important prognostic factor for unfavorable outcome in children with acute lymphoblastic leukemia after allogeneic stem-cell transplantation: Possible role for pre-emptive immunotherapy? J. Clin. Oncol. 2004, 22, 1696–1705. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H.J.; Schattenberg, A.; Goldman, J.M.; Hertenstein, B.; Jacobsen, N.; Arcese, W.; Ljungman, P.; Ferrant, A.; Verdonck, L.; Niederwieser, D.; et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 1995, 86, 2041–2050. [Google Scholar] [PubMed]
- Slavin, S.; Naparstek, E.; Nagler, A.; Ackerstein, A.; Samuel, S.; Kapelushnik, J.; Brautbar, C.; Or, R. Allogeneic cell therapy with donor peripheral blood cells and recombinant human interleukin-2 to treat leukemia relapse after allogeneic bone marrow transplantation. Blood 1996, 87, 2195–2204. [Google Scholar] [PubMed]
- Herbert, K.E.; Spencer, A.; Grigg, A.; Ryan, G.; McCormack, C.; Prince, H.M. Graft-versus-lymphoma effect in refractory cutaneous t-cell lymphoma after reduced-intensity hla-matched sibling allogeneic stem cell transplantation. Bone Marrow Transpl. 2004, 34, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Corradini, P.; Tarella, C.; Olivieri, A.; Gianni, A.M.; Voena, C.; Zallio, F.; Ladetto, M.; Falda, M.; Lucesole, M.; Dodero, A.; et al. Reduced-intensity conditioning followed by allografting of hematopoietic cells can produce clinical and molecular remissions in patients with poor-risk hematologic malignancies. Blood 2002, 99, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Rujkijyanont, P.; Morris, C.; Kang, G.; Gan, K.; Hartford, C.; Triplett, B.; Dallas, M.; Srinivasan, A.; Shook, D.; Pillai, A.; et al. Risk-adapted donor lymphocyte infusion based on chimerism and donor source in pediatric leukemia. Blood Cancer J. 2013, 3, e137. [Google Scholar] [CrossRef] [PubMed]
- Atra, A.; Millar, B.; Shepherd, V.; Shankar, A.; Wilson, K.; Treleaven, J.; Pritchard-Jones, K.; Meller, S.T.; Pinkerton, C.R. Donor lymphocyte infusion for childhood acute lymphoblastic leukaemia relapsing after bone marrow transplantation. Br. J. Haematol. 1997, 97, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, A.A.; Schultze, J.L.; Boussiotis, V.A.; Freeman, G.J.; Seamon, M.J.; Laszlo, S.; Billet, A.; Sallan, S.E.; Gribben, J.G.; Nadler, L.M. Pre-b acute lymphoblastic leukemia cells may induce T-cell anergy to alloantigen. Blood 1996, 88, 41–48. [Google Scholar] [PubMed]
- Scarisbrick, J.J.; Dignan, F.L.; Tulpule, S.; Gupta, E.D.; Kolade, S.; Shaw, B.; Evison, F.; Shah, G.; Tholouli, E.; Mufti, G.; et al. A multicentre uk study of gvhd following dli: Rates of gvhd are high but mortality from gvhd is infrequent. Bone Marrow Transpl. 2015, 50, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Rettinger, E.; Merker, M.; Salzmann-Manrique, E.; Kreyenberg, H.; Krenn, T.; Durken, M.; Faber, J.; Huenecke, S.; Cappel, C.; Bremm, M.; et al. Pre-emptive immunotherapy for clearance of molecular disease in childhood acute lymphoblastic leukemia after transplantation. Biol. Blood Marrow Transpl. 2017, 23, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Lankester, A.C.; Bierings, M.B.; van Wering, E.R.; Wijkhuijs, A.J.; de Weger, R.A.; Wijnen, J.T.; Vossen, J.M.; Versluys, B.; Egeler, R.M.; van Tol, M.J.; et al. Preemptive alloimmune intervention in high-risk pediatric acute lymphoblastic leukemia patients guided by minimal residual disease level before stem cell transplantation. Leukemia 2010, 24, 1462–1469. [Google Scholar] [CrossRef] [PubMed]
Modality | Target | Sensitivity | Turnaround | Standardization | Diagnostic Sample | Patient-Specific Assays |
---|---|---|---|---|---|---|
MFC | Aberrant immunophenotype | 10−4 | Fast | Non-standardized (unless on study) | No | No |
ASO-PCR | Ig/TCR variable junctional region | 10−4–10−5 | Slow | Standardized | Yes | Yes |
HTS-PCR | Ig/TCR V-D-J gene | 10−6 | Medium | Non-standardized | Ideally | No |
Author | Year | Study Type | Technique | Sensitivity | N | Age, Years, Median (Range) | Remission | Results |
---|---|---|---|---|---|---|---|---|
Knechtli [32] | 1998 | R | PCR | <10−3–10−5 | 64 | <18 | CR1, CR2 | 2-year EFS 73% MRD− vs. 0% MRD+ p < 0.001 |
Van der Velden [33] | 2001 | R | PCR | <10−4 | 17 | <15 | CR1, CR2 | 5-year RFS 80% MRD− vs. 33% MRD+ |
Sanchez [34] | 2002 | P | MCF | <10−4 | 24 | 18 (3–49) | ≥CR1 | 2-year RFS 73% MRD− vs. 33% MRD+ p = 0.03 |
Bader [35] | 2002 | R | PCR | <10−4 | 41 | 9.8 (1.5–17.8) | ≥CR1 | 5-year EFS 78% MRD− vs. 32% MRD+ p = 0.011 |
Krejci [36] | 2003 | R | PCR | <10−4 | 140 | <19 | ≥CR1 | 5-year EFS 75.2% MRD− vs. 29.8% MRD+ |
Imashuku [37] | 2003 | P | PCR | <10−4 | 95 | 9 (0.3–20) | Not remission, ≥CR1 | Available data in 19 relapses, all 19 were MRD+ |
Goulden [38] | 2003 | R | PCR | <10−4 | 64 | Pediatric | ≥CR1 | 3-year EFS 73% MRD− vs. 17% MRD+ p < 0.001 |
Sramkova [39] | 2007 | P | PCR | <10−4 | 25 | 1.1–19 | Partial remission, CR1, CR2 | EFS 94% MRD− vs. 13% MRD+ p < 0.001 |
Paganin [40] | 2008 | P | PCR | <10−4 | 60 | 5 (0.6–17) | CR2 | 3-year EFS 73% MRD− vs. 19% MRD+ p < 0.05 |
Bader [41] | 2009 | P | PCR | 10−4 | 91 | 11.1 (3–22.6) | CR2, CR3 | 3-year EFS 60% MRD− vs. 27% MRD+ |
Elorza [42] | 2010 | P | MCF | 10−4 | 31 | 7 (<1–16) | ≥CR1 | 2-year EFS 74% MRD− vs. 20% MRD+ |
Leung [43] | 2012 | R | MFC | 10−4 | 64 | 11.3 (0.6–25.1) | ≥CR1 | 5-year OS 87.5% MRD− vs. 48.5% MRD+ |
Ruggeri [44] | 2012 | R | PCR/MFC | 10−3−5 | 170 | 6.5 (<1–17) | CR1,CR2, CR3 | 4-year CIR 24% MRD− vs. 39% MRD+ |
Bachanova [45] | 2012 | P | MFC | 10−3 | 86 | 20 (6–63) | CR1, CR2, CR3 | 2-year RR 26% MRD− vs. 30% MRD+ |
Shah [46] | 2014 | R | MFC | 10−4 | 34 | <21 | CR2 | RR 35% MRD− vs. 64% MRD+ |
Balduzzi [47] | 2014 | P | PCR | 10−4 | 82 | 8 (<1–20) | CR1, CR2, CR3 | 5-year EFS 77.7% MRD− vs. 30.8% MRD+ p < 0.001 |
Bar [48] | 2014 | R | MCF | 10−3–10−4 | 153 (62 ped) | 24.6 (0.6–61.8) | ≥CR1 | 3-year EOR 17% MRD− vs. 38% MRD+ |
Pulsipher [49] | 2015 | R | HTS-PCR | 10−6 | 41 | 1–21 | CR1, CR2 | 2-year RR 0% MRD− vs. 53% MRD+ |
Sutton [50] | 2015 | P | PCR | 10−4 | 69 | Pediatric | CR1, CR2, CR3 | LFS 83% MRD− vs. 41% MRD+ |
Eckert [51] | 2015 | P | PCR | 10−3 | 71 | Pediatric | CR1 | DFS 58% MRD− vs. 26% MRD+ |
Author | Year | Study Type | Technique | Sensitivity | N | Age, Years, Median (Range) | Remission | Results |
---|---|---|---|---|---|---|---|---|
Sanchez [34] | 2002 | P | MCF | <10−4 | 40 | 18 (3–49) | ≥CR1 | RR3% MRD− vs. 88% MRD+ |
Imashuku [37] | 2003 | P | PCR | <10−4 | 95 | 9 (0.3–20) | Active disease, ≥CR1 | RR 26% MRD− vs. 27% MRD+ (p = 1) |
Zhao [52] | 2012 | P | MFC | <10−4 | 139 (35 ped) | 24 (4–55) | ≥CR1 | EFS 80% MRD− vs. 54% MRD+ (p = 0.001) |
Balduzzi [47] | 2014 | P | PCR | 10−4 | 82 | 8 (<1–20) | CR1, CR2, CR3 | 5-yr EFS 40.3% MRD+ |
Bar [48] | 2014 | R | MCF | 10−3–10−4 | 144 | 24.6 (0.6–61.8) | ≥CR1 | HR 7.47 risk of relapse if MRD+ |
Bader [53] | 2015 | P | PCR | 10−4 | 113 | Pediatric | No remission and ≥CR2 | MRD inversely correlated with EFS at all time points (p = 0.004) |
Pulsipher [49] | 2015 | R | HTS | 10−6 | 53 | 1–21 | CR1, CR2 | RR 13% MRD− vs. 73% MRD+ |
Sutton [50] | 2015 | P | PCR | 10−4 | 47 | Pediatric | CR1, CR2, CR3 | LFS 67% MRD− vs. 36% MRD+ |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamble, A.; Phelan, R.; Burke, M. When Less Is Good, Is None Better? The Prognostic and Therapeutic Significance of Peri-Transplant Minimal Residual Disease Assessment in Pediatric Acute Lymphoblastic Leukemia. J. Clin. Med. 2017, 6, 66. https://doi.org/10.3390/jcm6070066
Lamble A, Phelan R, Burke M. When Less Is Good, Is None Better? The Prognostic and Therapeutic Significance of Peri-Transplant Minimal Residual Disease Assessment in Pediatric Acute Lymphoblastic Leukemia. Journal of Clinical Medicine. 2017; 6(7):66. https://doi.org/10.3390/jcm6070066
Chicago/Turabian StyleLamble, Adam, Rachel Phelan, and Michael Burke. 2017. "When Less Is Good, Is None Better? The Prognostic and Therapeutic Significance of Peri-Transplant Minimal Residual Disease Assessment in Pediatric Acute Lymphoblastic Leukemia" Journal of Clinical Medicine 6, no. 7: 66. https://doi.org/10.3390/jcm6070066
APA StyleLamble, A., Phelan, R., & Burke, M. (2017). When Less Is Good, Is None Better? The Prognostic and Therapeutic Significance of Peri-Transplant Minimal Residual Disease Assessment in Pediatric Acute Lymphoblastic Leukemia. Journal of Clinical Medicine, 6(7), 66. https://doi.org/10.3390/jcm6070066