Natural Killer T Cells in Liver Ischemia–Reperfusion Injury
Abstract
:1. Introduction
2. T Lymphocytes and Post-Ischemic Liver Pathology
3. NKT Cells and Liver Pathology
4. NKT Cell Activation and Liver IRI
5. A Protective Role for Type II NKT Cells in the Liver
6. Comment
Author Contributions
Conflicts of Interest
References
- Zimmerman, M.A.; Kam, I.; Eltzschig, H.; Grenz, A. Biological implications of extracellular adenosine in hepatic ischemia and reperfusion injury. Am. J. Transplant. 2013, 13, 2524–2529. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Petrowsky, H.; Hong, J.C.; Busuttil, R.W.; Kupiec-Weglinski, J.W. Ischaemia-reperfusion injury in liver transplantation—From bench to bedside. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Datta, G.; Fuller, B.J.; Davidson, B.R. Molecular mechanisms of liver ischemia reperfusion injury: Insights from transgenic knockout models. World J. Gastroenterol. 2013, 19, 1683–1698. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Busuttil, R.W.; Kupiec-Weglinski, J.W. Liver ischemia and reperfusion injury: New insights into mechanisms of innate-adaptive immune-mediated tissue inflammation. Am. J. Transplant. 2011, 11, 1563–1569. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, L.A.; Grisham, M.B.; Twohig, B.; Arfors, K.E.; Harlan, J.M.; Granger, D.N. Role of neutrophils in ischemia-reperfusion-induced microvascular injury. Am. J. Physiol. 1987, 253, H699–H703. [Google Scholar] [PubMed]
- Jaeschke, H.; Farhood, A.; Smith, C.W. Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo. FASEB J. 1990, 4, 3355–3359. [Google Scholar] [PubMed]
- Komatsu, H.; Koo, A.; Ghadishah, E.; Zeng, H.; Kuhlenkamp, J.F.; Inoue, M.; Guth, P.H.; Kaplowitz, N. Neutrophil accumulation in ischemic reperfused rat liver: Evidence for a role for superoxide free radicals. Am. J. Physiol. 1992, 262, G669–G676. [Google Scholar] [PubMed]
- Langdale, L.A.; Flaherty, L.C.; Liggitt, H.D.; Harlan, J.M.; Rice, C.L.; Winn, R.K. Neutrophils contribute to hepatic ischemia-reperfusion injury by a CD18-independent mechanism. J. Leukoc. Biol. 1993, 53, 511–517. [Google Scholar] [PubMed]
- Suzuki, S.; Toledo-Pereyra, L.H.; Rodriguez, F.J. Role of neutrophils during the first 24 h after liver ischemia and reperfusion injury. Transplant. Proc. 1994, 26, 3695–3700. [Google Scholar] [PubMed]
- Jaeschke, H.; Bautista, A.P.; Spolarics, Z.; Spitzer, J.J. Superoxide generation by Kupffer cells and priming of neutrophils during reperfusion after hepatic ischemia. Free Radic. Res. Commun. 1991, 15, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Jaeschke, H.; Farhood, A.; Bautista, A.P.; Spolarics, Z.; Spitzer, J.J.; Smith, C.W. Functional inactivation of neutrophils with a Mac-1 (CD11b/CD18) monoclonal antibody protects against ischemia-reperfusion injury in rat liver. Hepatology 1993, 17, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Doherty, D.G.; O’Farrelly, C. Innate and adaptive lymphoid cells in the human liver. Immunol. Rev. 2000, 174, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Norris, S.; Collins, C.; Doherty, D.G.; Smith, F.; McEnte, G.; Traynor, O.; Nolan, N.; Hegarty, J.; O’Farrelly, C. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J. Hepatol. 1998, 28, 84–90. [Google Scholar] [CrossRef]
- Caldwell, C.C.; Tschoep, J.; Lentsch, A.B. Lymphocyte function during hepatic ischemia/reperfusion injury. J. Leukoc. Biol. 2007, 82, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Zwacka, R.M.; Zhang, Y.; Halldorson, J.; Schlossberg, H.; Dudus, L.; Engelhardt, J.F. CD4(+) T-lymphocytes mediate ischemia/reperfusion-induced inflammatory responses in mouse liver. J. Clin. Investig. 1997, 100, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.D.; Ke, B.; Zhai, Y.; Amersi, F.; Gao, F.; Anselmo, D.M.; Anselmo, D.M.; Busuttil, R.W.; Kupiec-Weglinski, J.W. CD154-CD40 T-cell costimulation pathway is required in the mechanism of hepatic ischemia/reperfusion injury, and its blockade facilitates and depends on heme oxygenase-1 mediated cytoprotection. Transplantation 2002, 74, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, C.C.; Okaya, T.; Martignoni, A.; Husted, T.; Schuster, R.; Lentsch, A.B. Divergent functions of CD4+ T lymphocytes in acute liver inflammation and injury after ischemia-reperfusion. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 289, G969–G976. [Google Scholar] [CrossRef] [PubMed]
- Khandoga, A.; Hanschen, M.; Kessler, J.S.; Krombach, F. CD4+ T cells contribute to postischemic liver injury in mice by interacting with sinusoidal endothelium and platelets. Hepatology 2006, 43, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Reng, F.; Gao, F.; Uchida, Y.; Busuttil, R.W.; Kupiec-Weglinski, J.W.; Zhai, Y. Alloimmune activation enhances innate tissue inflammation/injury in a mouse model of liver ischemia/reperfusion injury. Am. J. Transplant. 2010, 10, 1729–1737. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, X.; Song, S.; Liu, F.; Fu, Z.; Wang, Q. Near-term anti-CD25 monoclonal antibody administration protects murine liver from ischemia-reperfusion injury due to reduced numbers of CD4+ T cells. PLoS ONE 2014, 9, e106892. [Google Scholar] [CrossRef] [PubMed]
- Viale, R.; Ware, R.; Maricic, I.; Chaturvedi, V.; Kumar, V. NKT Cell Subsets Can Exert Opposing Effects in Autoimmunity, Tumor Surveillance and Inflammation. Curr. Immunol. Rev. 2012, 8, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Huang, L.; Sung, S.S.; Lobo, P.I.; Brown, M.G.; Gregg, R.K.; Engelhard, V.H.; Okusa, M.D. NKT cell activation mediates neutrophil IFN-gamma production and renal ischemia-reperfusion injury. J. Immunol. 2007, 178, 5899–5911. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; LaPar, D.J.; Zhao, Y.; Li, L.; Lau, C.L.; Kron, I.L.; Iwakura, Y.; Okusa, M.D.; Laubach, V.E. Natural killer T cell-derived IL-17 mediates lung ischemia-reperfusion injury. Am. J. Respir. Crit. Care Med. 2011, 183, 1539–1549. [Google Scholar] [CrossRef] [PubMed]
- Kita, H.; Naidenko, O.V.; Kronenberg, M.; Ansari, A.A.; Rogers, P.; He, X.S.; Koning, F.; Mikayama, T.; Van de Water, J.; Coppel, R.L.; et al. Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD1d tetramer. Gastroenterology 2002, 123, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
- Tsuneyama, K.; Yasoshima, M.; Harada, K.; Hiramatsu, K.; Gershwin, M.E.; Nakanuma, Y. Increased CD1d expression on small bile duct epithelium and epithelioid granuloma in livers in primary biliary cirrhosis. Hepatology 1998, 28, 620–623. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.H.; Lian, Z.X.; Yang, G.X.; Shu, S.A.; Moritoki, Y.; Ridgway, W.M.; Ansari, A.A.; Kronenberg, M.; Flavell, R.A.; Gao, B.; et al. Natural killer T cells exacerbate liver injury in a transforming growth factor beta receptor II dominant-negative mouse model of primary biliary cirrhosis. Hepatology 2008, 47, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.J.; Yang, Y.H.; Tsuneyama, K.; Leung, P.S.C.; Illarionov, P.; Gershwin, M.E.; Chuang, Y.H. Innate immunity and primary biliary cirrhosis: activated invariant natural killer T cells exacerbate murine autoimmune cholangitis and fibrosis. Hepatology 2011, 53, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, S.; Ikejima, K.; Yamagata, H.; Tomonori, A.; Kon, K.; Arai, K.; Takeda, K.; Watanabe, S. CD1d-restricted natural killer T cells contribute to hepatic inflammation and fibrogenesis in mice. J. Hepatol. 2011, 54, 1195–1204. [Google Scholar] [CrossRef] [PubMed]
- Syn, W.K.; Agboola, K.M.; Swiderska, M.; Michelotti, G.A.; Liaskou, E.; Pang, H.; Xie, G.; Philips, G.; Chan, I.S.; Karaca, G.F.; et al. NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut 2012, 61, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V. NKT-cell subsets: Promoters and protectors in inflammatory liver disease. J. Hepatol. 2013, 59, 618–620. [Google Scholar] [CrossRef] [PubMed]
- Swain, M.G. Hepatic NKT cells: Friend or foe? Clin. Sci. 2008, 114, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Eberl, G.; Lees, R.; Smiley, S.T.; Taniguchi, M.; Grusby, M.J.; MacDonald, H.R. Tissue-specific segregation of CD1d-dependent and CD1d-independent NK T cells. J. Immunol. 1999, 162, 6410–6419. [Google Scholar] [PubMed]
- Klugewitz, K.; Adams, D.H.; Emoto, M.; Eulenburg, K.; Hamann, A. The composition of intrahepatic lymphocytes: Shaped by selective recruitment? Trends Immunol. 2004, 25, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Van Kaer, L. NKT cells: T lymphocytes with innate effector functions. Curr. Opin. Immunol. 2007, 19, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Bendelac, A.; Savage, P.B.; Teyton, L. The biology of NKT cells. Ann. Rev. Immunol. 2007, 25, 297–336. [Google Scholar] [CrossRef] [PubMed]
- Kronenberg, M.; Gapin, L. The unconventional lifestyle of NKT cells. Nat. Rev. Immunol. 2002, 2, 557–568. [Google Scholar] [PubMed]
- Shimamura, K.; Kawamura, H.; Nagura, T.; Kato, T.; Naito, T.; Kameyama, H.; Hatakeyama, K.; Abo, T. Association of NKT cells and granulocytes with liver injury after reperfusion of the portal vein. Cell. Immunol. 2005, 234, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Lappas, C.M.; Day, Y.J.; Marshall, M.A.; Engelhard, V.H.; Linden, J. Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J. Exp. Med. 2006, 203, 2639–2648. [Google Scholar] [CrossRef] [PubMed]
- Day, Y.J.; Marshall, M.A.; Huang, L.; McDuffie, M.J.; Okusa, M.D.; Linden, J. Protection from ischemic liver injury by activation of A2A adenosine receptors during reperfusion: Inhibition of chemokine induction. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 286, G285–G293. [Google Scholar] [CrossRef] [PubMed]
- Kuboki, S.; Sakai, N.; Tschop, J.; Edwards, M.J.; Lentsch, A.B.; Caldwell, C.C. Distinct contributions of CD4+ T cell subsets in hepatic ischemia/reperfusion injury. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 296, G1054–G1059. [Google Scholar] [CrossRef] [PubMed]
- Carini, R.; Albano, E. Recent insights on the mechanisms of liver preconditioning. Gastroenterology 2003, 125, 1480–1491. [Google Scholar] [CrossRef] [PubMed]
- Koti, R.S.; Seifalian, A.M.; Davidson, B.R. Protection of the liver by ischemic preconditioning: A review of mechanisms and clinical applications. Dig. Surg. 2003, 20, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Pasupathy, S.; Homer-Vanniasinkam, S. Surgical implications of ischemic preconditioning. Arch. Surg. 2005, 140, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Selzner, N.; Rudiger, H.; Graf, R.; Clavien, P.A. Protective strategies against ischemic injury of the liver. Gastroenterology 2003, 125, 917–936. [Google Scholar] [CrossRef]
- Cao, Z.; Yuan, Y.; Jeyabalan, G.; Du, Q.; Tsung, A.; Geller, D.A.; Billiar, T.R. Preactivation of NKT cells with alpha-GalCer protects against hepatic ischemia-reperfusion injury in mouse by a mechanism involving IL-13 and adenosine A2A receptor. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 297, G249–G258. [Google Scholar] [CrossRef] [PubMed]
- Emoto, M.; Kaufmann, S.H. Liver NKT cells: An account of heterogeneity. Trends Immunol. 2003, 24, 364–369. [Google Scholar] [CrossRef]
- Godfrey, D.I.; MacDonald, H.R.; Kronenberg, M.; Smyth, M.J.; Van Kaer, L. NKT cells: What’s in a name? Nat. Rev. Immunol. 2004, 4, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Jahng, A.; Maricic, I.; Aguilera, C.; Cardell, S.; Halder, R.C.; Kumar, V. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J. Exp. Med. 2004, 199, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, K.; Marrero, I.; Kumar, V. NKT cell subsets as key participants in liver physiology and pathology. Cell. Mol. Immunol. 2016, 13, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Terabe, M.; Swann, J.; Ambrosino, E.; Sinha, P.; Takaku, S.; Hayakawa, Y.; Godfrey, D.I.; Ostrand-Rosenberg, S.; Smyth, M.J.; Berzofsky, J.A. A nonclassical non-Valpha14Jalpha18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J. Exp. Med. 2005, 202, 1627–1633. [Google Scholar] [CrossRef] [PubMed]
- Hams, E.; Locksley, R.M.; McKenzie, A.N.; Fallon, P.G. Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice. J. Immunol. 2013, 191, 5349–5353. [Google Scholar] [CrossRef] [PubMed]
- Baron, J.L.; Gardiner, L.; Nishimura, S.; Shinkai, K.; Locksley, R.; Ganem, D. Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 2002, 16, 583–594. [Google Scholar] [CrossRef]
- Fuss, I.J.; Heller, F.; Boirivant, M.; Leon, F.; Yoshida, M.; Fichtner-Feigl, S.; Yang, Z.; Exley, M.; Kitani, A.; Blumberg, R.S.; et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J. Clin. Investig. 2004, 113, 1490–1497. [Google Scholar] [CrossRef] [PubMed]
- Halder, R.C.; Aguilera, C.; Maricic, I.; Kumar, V. Type II NKT cell-mediated anergy induction in type I NKT cells prevents inflammatory liver disease. J. Clin. Investig. 2007, 117, 2302–2312. [Google Scholar] [CrossRef] [PubMed]
- Ambrosino, E.; Terabe, M.; Halder, R.C.; Peng, J.; Shun, T.; Miyake, S.; Yamaura, T.; Kumar, V.; Berzofsky, J.A. Cross-regulation between type I and type II NKT cells in regulating tumor immunity: A new immunoregulatory axis. J. Immunol. 2007, 179, 5126–5136. [Google Scholar] [CrossRef] [PubMed]
- Arrenberg, P.; Maricic, I.; Kumar, V. Sulfatide-mediated activation of type II natural killer T cells prevents hepatic ischemic reperfusion injury in mice. Gastroenterology 2011, 140, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.R.; Lake, J.R.; Smith, J.M.; Skeans, M.A.; Schladt, D.P.; Edwards, E.B.; Harper, A.M.; Wainright, J.L.; Snyder, J.J.; Israni, A.K.; et al. Liver. Am. J. Transplant. 2016, 16, 69–98. [Google Scholar] [CrossRef] [PubMed]
Reference | Murine Models of IRI | Findings |
---|---|---|
[15] | 30, 60 and 90 min partial ischemia. Reperfusion from 0–36 h. | Similar IRI in acute phase (3–6 h) btwn BALB/c and nu/nu mice. At 16–20 h enzymes/necrosis reduced in nu/nu (10-fold reduction in neutrophil accumulation). CD4+-depletion in BALB/c reduced IRI. |
[16] | 90 min partial ischemia. Reperfusion at 4 and 20 h. | IRI significantly reduced in T-cell deficiency, disruption of CD154 signaling, or CD154 blockade. |
[17] | 90 min partial ischemia. Reperfusion at 1, 4, and 8 h. | CD4+ lymphocytes were recruited to the liver within 1 h of reperfusion. CD4−/− had greater injury and less neutrophil accumulation. |
[18] | 90 min partial ischemia. Reperfusion at 30–140 min. | CD4 deficiency, CD40-CD40L and CD28-B7 disruption attenuates platelet adherence, reduces neutrophil transmigration, sinusoidal perfusion failure, and transaminase activities. |
[19] | 90 min partial ischemia. Reperfusion at 8 h. | CD4−/− and CD4 depletion protect from IRI. CD154 blockade protects from IRI. CD4 T cells function in IRI without de novo Ag-specific activation. |
[20] | 60 min partial ischemia. Reperfusion 0–24 h. | Anti-CD25 mAb protects from IRI via reducing CD4+ T cells (less expression of TNF-∝, IFN-γ, IL-2, and IL-6). |
Reference | Murine Models of IRI | Findings |
---|---|---|
[37] | 30 min portal vein clamping, reperfusion times up to 50 h. | Reduction in liver injury (sALT) by 50% in NKT−/− mice. Serum IFN-γ reduced in NKT-/- mice. |
[38] | 72 min partial ischemia, reperfusion at 2, 24, and 48 h. | NKTc produce IFN-γ at 2 h. NK/NKTc depletion reduces sALT at 24 h. Adoptive transfer of NKTc from WT or A2AR KO restores IRI in RAG-1 mice. |
[40] | 90 min partial ischemia, reperfusion at 4 and 8 h. | NKTc (not NK) contribute to hepatic IRI by an anti-CD1d-dependent activationo of TCRs. NKTc depletion attenuated IRI. |
[45] | 60 min partial ischemia, 6 h reperfusion. | Selective activation of NKTc 1 h prior to ischemia reduced IRI. Protection is via an IL-13/A2AR-dependent mechanism. |
Type II NKTc [56] | 90 min partial ischemia. Reperfusion at 6 and 24 h. | Mice lacking Type I NKTc were protected from IRI. Type II NKTc activation reduced IFN-γ secretion by Type I NKTc and prevented IRI. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimmerman, M.A.; Martin, A.; Yee, J.; Schiller, J.; Hong, J.C. Natural Killer T Cells in Liver Ischemia–Reperfusion Injury. J. Clin. Med. 2017, 6, 41. https://doi.org/10.3390/jcm6040041
Zimmerman MA, Martin A, Yee J, Schiller J, Hong JC. Natural Killer T Cells in Liver Ischemia–Reperfusion Injury. Journal of Clinical Medicine. 2017; 6(4):41. https://doi.org/10.3390/jcm6040041
Chicago/Turabian StyleZimmerman, Michael A., Alicia Martin, Jennifer Yee, Jennifer Schiller, and Johnny C. Hong. 2017. "Natural Killer T Cells in Liver Ischemia–Reperfusion Injury" Journal of Clinical Medicine 6, no. 4: 41. https://doi.org/10.3390/jcm6040041
APA StyleZimmerman, M. A., Martin, A., Yee, J., Schiller, J., & Hong, J. C. (2017). Natural Killer T Cells in Liver Ischemia–Reperfusion Injury. Journal of Clinical Medicine, 6(4), 41. https://doi.org/10.3390/jcm6040041