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Abstract: Background/Objectives: High-grade gliomas are the most common primary malignant
brain tumors in adults. These neoplasms remain predominantly incurable due to the genetic diversity
within each tumor, leading to varied responses to specific drug therapies. With the advent of new
targeted and immune therapies, which have demonstrated promising outcomes in clinical trials,
there is a growing need for image-based techniques to enable early prediction of treatment response.
This study aimed to evaluate the potential of radiomics and artificial intelligence implementation
in predicting progression-free survival (PFS) in patients with highest-grade glioma (CNS WHO 4)
undergoing a standard treatment plan. Methods: In this retrospective study, prediction models
were developed in a cohort of 51 patients with pathologically confirmed highest-grade glioma (CNS
WHO 4) from the authors’ institution and the repository of the Cancer Imaging Archive (TCIA). Only
patients with confirmed recurrence after complete tumor resection with adjuvant radiotherapy and
chemotherapy with temozolomide were included. For each patient, 109 radiomic features of the
tumor were obtained from a preoperative magnetic resonance imaging (MRI) examination. Four
clinical features were added manually—sex, weight, age at the time of diagnosis, and the lobe of the
brain where the tumor was located. The data label was the time to recurrence, which was determined
based on follow-up MRI scans. Artificial intelligence algorithms were built to predict PFS in the
training set (n = 75%) and then validate it in the test set (n = 25%). The performance of each model
in both the training and test datasets was assessed using mean absolute percentage error (MAPE).
Results: In the test set, the random forest model showed the highest predictive performance with
1-MAPE = 92.27% and a C-index of 0.9544. The decision tree, gradient booster, and artificial neural
network models showed slightly lower effectiveness with 1-MAPE of 88.31%, 80.21%, and 91.29%,
respectively. Conclusions: Four of the six models built gave satisfactory results. These results show
that artificial intelligence models combined with radiomic features could be useful for predicting the
progression-free survival of high-grade glioma patients. This could be beneficial for risk stratification
of patients, enhancing the potential for personalized treatment plans and improving overall survival.
Further investigation is necessary with an expanded sample size and external multicenter validation.

Keywords: radiomics; glioma; artificial intelligence; recurrence

1. Introduction

Glioma is a brain tumor associated with a high mortality rate [1]. According to the
World Health Organization’s (WHO) classification of central nervous system (CNS) tumors,
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grade 4 tumors are the most common primary malignant brain tumors in adults [2]. These
neoplasms remain predominantly incurable due to, among others, the genetic diversity
within each tumor, leading to varied responses to specific drug therapies [3]. Currently,
the most widely used therapy around the world for primary high-grade gliomas is the so-
called new Stupp protocol, which consists of maximal surgical resection of the tumor with
adjuvant radiotherapy (RT) and chemotherapy (CHTH) with temozolomide (TMZ) [4–6].
The implementation of this therapy is associated with an extension of the mean overall
survival to 14.6 months [7]. However, with the emergence of new targeted and immune
therapies, which have demonstrated promising results in clinical trials, there is a growing
need for image-based methods to predict treatment response.

The answer to this growing demand may lie in the application of artificial intelligence,
which is increasingly being used in medicine, especially in radiology. One of the subfields
of radiology today is radiomics, which is characterized by the extraction of new data in
quantitative form from radiological images. Analysis of such acquired data by artificial
intelligence models leads to the discovery of new clinically important information in radio-
logical images. In daily clinical practice, visual analysis of images is based on qualitative
descriptors (such as signal intensity, density, heterogeneity, and level of contrast enhance-
ment) or simple quantitative characteristics (for example, dimension, volume, and number
of lesions). The sensitivity of such measurements is not high and strongly dependent on
the experience of the evaluating radiologist. By automatically extracting the same features
from imaging data, computational methods eliminate these disadvantages. These new
digital features, which are not intuitively recognizable by humans, are called radiomic
features and can be divided into three main groups:

1. Morphological features, which particularly describe the size and shape of the previ-
ously segmented region of interest.

2. First-order features, which are based on a histogram of pixel/voxel intensities of the
region of interest.

3. Second-order features, which describe the texture of the region of interest. Texture-
based features are the most complex and describe the heterogeneity of the image. In
radiomics, they are also often the most important due to the more accurate description
of the image. Figure 1 shows an example of two images that, when described by
radiomic features, would not differ in morphological features and first-order features
but differ significantly in texture.

Figure 1. Assuming that each small square represents a pixel, the morphological and first-order
features of images (A,B) would be the same, but the images differ in texture.

Neuro-oncology is one of the specialties in which the advances in radiomics are
the most noticeable. Numerous studies have evaluated the use of radiomics models in
predicting the presence of mutations in gliomas or the time to recurrence of gliomas after
treatment [8]. Ailing He et al. proposed a radiomics model based on MRI images to
predict IDH mutation status in low-grade gliomas. The model performed well in validation
datasets with an AUC of 0.873 [9]. Jiangwei Lao et al. proposed a radiomics model for
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the prediction of overall survival in glioblastoma multiforme. The model performed OS
prediction with a C-index = 0.710 [10].

However, to the best of the authors’ knowledge, there is currently no adequate clinical
or image-based predictive model to predict precise PFS (calculated in days) in patients
with the highest-grade glioma treated uniformly. Therefore, this study aimed to develop
and evaluate an AI model based on radiomic features for prediction of progression-free
survival (PFS) in patients with the highest-grade glioma (CNS WHO 4) undergoing a
standard treatment plan. The developed machine learning model can help clinicians
identify patients who are most likely to benefit from the standard treatment plan and
support the implementation of personalized therapy.

2. Materials and Methods

This study carried out a self-evaluation using METRICS, the details of which are
provided in Supplementary S1 [11].

The flowchart of the study is shown in Figure 2.

Figure 2. Study flowchart. (a) Magnetic resonance (MR) imaging; the study is based on contrast-
enhanced T1—w images. (b) Identification of a region of interest (ROI) and semi-automatic image
segmentation. (c) Normalization and radiomic feature extraction from the defined ROI; 109 radiomic
features were obtained in the study. (d) Data preprocessing and analysis; five different machine
learning (ML) models were trained on the received data (AI—artificial intelligence, DL—deep
learning). (e) Results.

2.1. Study Group

This retrospective study analyzed the medical records of 210 adult patients with
pathologically confirmed primary high-grade glioma (CNS WHO 4). As the study included
patients hospitalized before 2021, the diagnosis of glioblastoma multiforme fulfilling the
World Health Organization’s criteria at that time now corresponds to both glioblastoma
CNS WHO 4 and astrocytoma CNS WHO 4 [2]. The inclusion criteria were as follows:

- A histopathologic diagnosis of glioma CNS WHO 4;
- Available preoperative MR imaging, including contrast-enhanced T1WI;
- Available follow-up MR imaging with a reported recurrence or imaging follow-up up

to two years that showed no features of tumor recurrence.

The exclusion criteria were as follows:

- Artifacts in MR images;
- Treatment program other than complete resection with adjuvant treatment consisting

of temozolomide chemotherapy and radiotherapy;
- Inconclusive result of the follow-up MR examination.

A total of 51 patients were ultimately included in the study.



J. Clin. Med. 2024, 13, 6172 4 of 11

Data were obtained from the authors’ institution and the publicly available Cancer
Genome Atlas Glioblastoma (TCGA-GBM) clinical database and the associated imaging
data from the Cancer Imaging Archive (TCIA) [12,13].

The detailed patient selection process is shown in Figure 3. The main exclusion
factor was the standard treatment plan, as some patients from the TCGA-GBM database
received bevacizumab, cisplatin, or targeted molecular therapy, among others, as adjuvant
chemotherapy instead of temozolomide.

Figure 3. Flowchart of the patient selection process.

2.2. Identification of a Region of Interest (ROI) and Segmentation

Preoperative MRIs were analyzed using Syngo.Via VB10, Research Frontier, Siemens
Healthineers. Segmentation of the lesion was performed semi-automatically by a single
reader (a fourth-year radiology resident). The 2D region of interest (ROI) was marked on
the axial view of contrast-enhanced T1-weighted imaging (CE T1WI) on the cross-section
in which the tumor had the largest area, and the zone of visible contrast enhancement was
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identified as the tumor boundary. An example of semi-automated tumor segmentation is
shown in Figure 4.

Figure 4. Glioma CNS WHO 4 in the left parietal lobe. T1-weighted image after administration of
contrast agent; the blue color was used to mark the tumor segmented by the semi-automated method.

2.3. Normalization and Extraction of the Data

Given that the database included data from multiple sites, there were variations in
scanner models, pixel spacing, slice thickness, and contrast within the selected cohort.
Normalization was carried out to account for these differences using Syngo.Via VB10,
Research Frontier, Siemens Healthineers. All images were resampled to a common voxel
resolution of 1 mm3, and the intensities within each voxel were normalized to a [0, 1] range.

For each patient, 109 radiomic features of the tumor were obtained, and feature groups
used in the study are shown in Table 1. Four features were added manually—sex, weight,
age at the time of diagnosis, and the lobe of the brain where the tumor was located. The
data label was the time to recurrence (calculated in days), which was determined based on
follow-up MRI exams evaluated by an experienced radiologist.

Table 1. Groups of radiomic features used in the study.

Feature Group Number of Features in Each Group

First-order features based on image intensity
histogram descriptors 18

Features describing size and shape 16

Features describing the texture extracted from analysis: 75

- Gray-level co-occurrence matrices (GLCM) 24

- Run-length matrix (RLM) 16

- Size-zone matrix (SZM) 16

- Neighboring gray tone difference matrix (NGTDM) 5

- Gray-level run-length matrix (GLRLM) 14
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2.4. Data Preprocessing

Reducing the number of features was essential, as the large set of 109 radiomic features
could lead to overfitting when predicting progression-free survival (PFS). Additionally,
some features might have no variance, be highly correlated with others, or be minimally
relevant to PFS prediction. The authors employed methods like locally linear embedding
(LLE) and principal component analysis (PCA) to enhance the model’s generalizability
and obtain higher model performance. Tools for data multiplication of the learning set
were used by generating non-repeating data from existing examples while fully consid-
ering the underlying patterns and relationships. With the artificial neural network algo-
rithm, a data compression tool based on an encoder–decoder neural network architecture
was used.

The dataset was randomly split into training and validation sets in a 75:25 ratio. The
training set was utilized to build the predictive model, while the validation set was used for
an independent assessment of the model’s performance. The details of data preprocessing
are shown in Table 2.

Table 2. The details of data preprocessing.

ML Model Task Data Multiplication Dimensionality
Reduction

Decision tree (DT) Classification

×19 Dimensional reduction of up to 11Random forest (RF) Classification

Support vector machine (SVM) Classification

Gradient boosting (GBoost) Classification

Artificial neural network (ANN) Classification ×19 Dimensional reduction of up to 66

Among the clinical data, confounding factors were analyzed. None of the added
clinical data (gender, age, and weight) individually had a statistically significant effect on
PFS (p < 0.01); therefore, they were not excluded.

2.5. Development and Validation of Models

Progression-free survival (PFS) was defined as the time from therapy initiation to
identification of tumor recurrence on MRI follow-up examination. If the patient was not
found to have a tumor recurrence at the last follow-up, the PFS was censored at the time of
the last follow-up (at least 2 years).

Due to the diverse properties of artificial intelligence models, we utilized five different
machine learning models: decision tree (DT), random forest (RF), support vector machine
(SVM), gradient boosting (GBoost), and artificial neural network (ANN).

For statistical analyses, Python Version 3.12 was used. Mean absolute percentage error
(MAPE) was used to assess the performance of the models.

3. Results
3.1. Patient Characteristics

A total of 51 patients were included in the study, including 17 women and 34 men.
The mean age of the patients included in the study was 56 years, and the median was
59 years. The mean time to recurrence was 352 days, and the median was 215 days. The
Kaplan–Meier curve of PFS for patients in the study group is shown in Figure 5.
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Figure 5. Kaplan–Meier curve of PFS for patients in the study group.

3.2. Model Interpretation

There are several methods to evaluate the performance of a regression model. A
common traditional approach is to measure how accurately the predictions match the
actual outcomes [14]. This can be carried out using methods like mean absolute error
(MAE), mean squared error (MSE), root mean squared error (RMSE), R-squared (R2), and
mean absolute percentage error (MAPE). Another method is the C-index (concordance
index). The performance of each model in both the training and test datasets is shown in
Tables 3 and 4.

The values of 1-MAPE for each model are shown in Figure 6.

Figure 6. Performance of the five models for predicting the PFS presented using 1-MAPE.

In the training set, the 1-MAPE of the DT, RF, SVM, GBoost, and ANN models were
97.06%, 92.79%, 31.01%, 88.09%, and 93.32%, respectively. Accordingly, in the testing set, the
1-MAPE of these five models were 88.31%, 92.27%, 27.18%, 80.21%, and 91.29%, respectively.

The estimation performance of the DT, RF, GBoost and ANN models reached values
above 80% on the test set, which means that these models predict the PFS (calculated in
days) with more than 80% accuracy. Among them, the random forest model showed the
highest efficiency, predicting PFS on the test set with 92.27% accuracy (C-index: 0.95). The
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Kaplan–Meier curve of predicted PFS for the test set by the random forest model is shown
in Figure 7 together with the Kaplan–Meier curve of PFS for patients in the study group.

Table 3. Results of each model in the training set presented using mean absolute error, mean squared
error, root mean squared error, R2 score, mean absolute percentage error, and 1-mean absolute
percentage error.

Decision Tree
(DT)

Random Forest
(RF)

Support Vector
Machine (SVM)

Gradient Boosting
(GBoost)

Artificial Neural
Network (ANN)

Mean absolute error 7.4973 19.1089 180.0376 21.8983 33.9342

Mean squared error 254.1967 3250.7404 92,385.7830 900.2685 8942.9704

Root mean squared error 15.9435 57.0153 303.9503 30.0045 94.5673

R2 score 0.9969 0.9606 −0.1200 0.9891 0.8799

Mean absolute
percentage error 2.9382 7.2073 68.9886 11.9109 6.6754

1-mean absolute
percentage error 97.0618 92.7927 31.0114 88.0891 93.3246

Table 4. Results of each model in the test set presented using mean absolute error, mean squared
error, root mean squared error, R2 score, mean absolute percentage error, 1-mean absolute percentage
error, C-index.

Decision Tree
(DT)

Random Forest
(RF)

Support Vector
Machine (SVM)

Gradient Boosting
(GBoost)

Artificial Neural
Network (ANN)

Mean absolute error 24.8663 25.4891 178.8463 37.3006 45.8352

Mean squared error 4931.2071 4005.8066 79,090.9032 3712.5782 11,766.1994

Root mean squared error 70.2226 63.2914 281.2310 60.9309 108.4721

R2 score 0.9282 0.9417 −0.1514 0.9460 0.8706

Mean absolute
percentage error 11.6877 7.7275 72.8181 19.7899 8.7136

1-mean absolute
percentage error 88.3123 92.2725 27.1819 80.2101 91.2964

C-index 0.9413 0.9544 0.5743 0.9254 0.9284

Figure 7. Kaplan–Meier curve of predicted PFS for the test set by the random forest model marked in
blue and Kaplan–Meier curve of PFS for patients in the study group marked in orange.
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As data multiplication and reduction of dimensionality were used, it was not possible
to obtain exact information on which radiomic features made the greatest contribution to
the results.

4. Discussion

The results of our study indicate that based on radiomic analysis, which involves
extracting texture and morphologic features from numerous medical images in combination
with artificial intelligence models, it is possible to build a group of models with a high
predictive ability of progression-free survival (PFS). By utilizing advanced computational
techniques, these AI-driven models can process vast amounts of radiomic data and identify
subtle patterns and correlations, resulting in high prediction performance.

Medical imaging data are predicted to soon represent 30% of global data storage [15]. It
is important to use them as efficiently as possible. Machine learning models used to analyze
them appear to be key. Therefore, it is important to use several algorithms to analyze the
same radiomic data, primarily to expand our knowledge of it. The results of this study
show that some of the algorithms have similar accuracy, and the accuracy of the support
vector machine (SVM) model is insufficient. However, in a study conducted by Rachel
Zhao et al., in which the authors used machine learning models based on clinical data
to predict time to recurrence, the accuracy of the SVM model was the highest among the
applied models, and the random forest (RF) model had the lowest accuracy (C-index 0.767,
0.771, and 0.57 for Cox proportional hazard (CPH), SVM, and RF models, respectively) [16].
This supports the appropriateness of using several algorithms to analyze the same data.

The implementation of an artificial intelligence (AI) algorithm able to predict recurrence-
free time (PFS) with up to 92% accuracy in patients diagnosed with WHO 4 CNS gliomas
creates new possibilities in clinical decision-making of these most aggressive brain tu-
mors. One of the main challenges in treating gliomas is their heterogeneity, their ability
to infiltrate surrounding brain structures, and, perhaps related to this, their tendency to
recur [3]. These features make glioma CNS WHO 4 extremely difficult to treat. Even with
a combination of surgical treatment, radiation therapy, and chemotherapy, most patients
experience recurrence within a relatively short time. Therefore, a key aspect of improving
treatment outcomes is the ability to predict recurrence early. Accurate diagnosis of PFS
before treatment could directly influence the choice of treatment options, enhancing the
potential for personalized treatment. In addition, it can be a way to find early so-called
long-term survivors (LTSs) and extreme long-term survivors (ELTSs). In the glioma CNS
WHO 4 patient population, LTSs represent 13% of patients and are characterized by sur-
vival of at least 2 years, while ELTSs represent <1% of patients and their survival time
is >10 years [17,18]. Identifying this group as early as possible at the beginning of the
diagnostic pathway would be extremely significant for clinicians and patients.

Our study has several limitations that should be noted. Firstly, the retrospective nature
of the study and the small sample size limit the generalizability of our findings. Despite
efforts to mitigate overfitting caused by high dimensionality through techniques such as
dimension reduction and data augmentation, the prediction model still requires further
validation with a larger dataset. Future research should focus on multicenter studies with
larger sample sizes and prospective designs to confirm the model’s broader applicability.

Secondly, the process of semi-automatic segmentation of the 2D tumor region of
interest (ROI) may impact reproducibility and is a labor-intensive task. Adopting an
automatic 3D tumor segmentation algorithm based on deep learning could significantly
improve reproducibility and streamline the analysis process, making it more feasible for
large-scale data applications.

Thirdly, our study did not incorporate multimodal MRI images, which could poten-
tially enhance the performance and accuracy of the predictive model. Including various
imaging modalities in future research could provide more comprehensive data and improve
model outcomes.
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Lastly, the biological relevance of the radiomic features used in our study is not
yet fully understood. Further research is needed to elucidate the connections between
radiomics data and tumor biology, which could enhance the interpretability and clinical
utility of the predictive models.

5. Conclusions

The results of our study show that artificial intelligence models combined with ra-
diomic features could be useful for predicting the progression-free survival of high-grade
glioma patients. This could be beneficial for risk stratification of patients, enhancing the
potential for personalized treatment plans and improving overall survival.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/jcm13206172/s1, Supplementary S1. Self-evaluation using METhod-
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