Impact of Hypertension and Physical Exercise on Hemolysis Risk in the Left Coronary Artery: A Computational Fluid Dynamics Analysis
<p>Artery geometry variants.</p> "> Figure 2
<p>Boundary condition schematic.</p> "> Figure 3
<p>Displacement [mm] of the geometry walls from FSI simulation.</p> "> Figure 4
<p>Contour plots of static pressure [mmHg] for rest (<b>left</b>) and exercise (<b>right</b>).</p> "> Figure 5
<p>Contour plots of shear stress [Pa] for exercise without hypertension.</p> "> Figure 6
<p>Pathlines for variants 0, 4, and 7 coloured by velocity magnitude [m/s].</p> "> Figure 7
<p>Normalized pressure [-] bar charts for (<b>top left</b>) rest without hypertension, (<b>top right</b>) rest with hypertension, (<b>bottom left</b>) exercise without hypertension, and (<b>bottom right</b>) exercise with hypertension.</p> "> Figure 8
<p>Volume flow rate [mL/s] bar charts for (<b>top left</b>) rest without hypertension, (<b>top right</b>) rest with hypertension, (<b>bottom left</b>) exercise without hypertension, and (<b>bottom right</b>) exercise with hypertension.</p> "> Figure 9
<p>Hemolysis [%] bar charts for (<b>left</b>) exercise without hypertension and (<b>right</b>) exercise with hypertension.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometries
2.2. Rheology and Hemolysis
2.3. Numerical Settings
3. Results
3.1. FSI Simulation
3.2. CFD Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alpert, J.S. A Few Unpleasant Facts about Atherosclerotic Arterial Disease in the United States and the World. Am. J. Med. 2012, 125, 839–840. [Google Scholar] [CrossRef] [PubMed]
- Amini, M.; Zayeri, F.; Salehi, M. Trend Analysis of Cardiovascular Disease Mortality, Incidence, and Mortality-to-Incidence Ratio: Results from Global Burden of Disease Study 2017. BMC Public Health 2021, 21, 401. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.; Han, S.; Rane, P.P.; Fox, K.M.; Qian, Y.; Suh, H.S. Prevalence and Incidence of Atherosclerotic Cardiovascular Disease and Its Risk Factors in Korea: A Nationwide Population-Based Study. BMC Public Health 2019, 19, 1112. [Google Scholar] [CrossRef] [PubMed]
- Hypertension. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 6 September 2024).
- Zhou, B.; Carrillo-Larco, R.M.; Danaei, G.; Riley, L.M.; Paciorek, C.J.; Stevens, G.A.; Gregg, E.W.; Bennett, J.E.; Solomon, B.; Singleton, R.K.; et al. Worldwide Trends in Hypertension Prevalence and Progress in Treatment and Control from 1990 to 2019: A Pooled Analysis of 1201 Population-Representative Studies with 104 Million Participants. Lancet 2021, 398, 957–980. [Google Scholar] [CrossRef] [PubMed]
- Henning, R.J. Obesity and Obesity-Induced Inflammatory Disease Contribute to Atherosclerosis: A Review of the Pathophysiology and Treatment of Obesity. Am. J. Cardiovasc. Dis. 2021, 11, 504. [Google Scholar] [PubMed]
- Spector, R. New Insight into the Dietary Cause of Atherosclerosis: Implications for Pharmacology. J. Pharmacol. Exp. Ther. 2016, 358, 103–108. [Google Scholar] [CrossRef]
- Michel, J.B.; Martin-Ventura, J.L. Red Blood Cells and Hemoglobin in Human Atherosclerosis and Related Arterial Diseases. Int. J. Mol. Sci. 2020, 21, 6756. [Google Scholar] [CrossRef]
- Jędrzejczak, K.; Orciuch, W.; Wojtas, K.; Kozłowski, M.; Piasecki, P.; Narloch, J.; Wierzbicki, M.; Makowski, Ł. Prediction of Hemodynamic-Related Hemolysis in Carotid Stenosis and Aiding in Treatment Planning and Risk Stratification Using Computational Fluid Dynamics. Biomedicines 2024, 12, 37. [Google Scholar] [CrossRef]
- Zhou, B.; Perel, P.; Mensah, G.A.; Ezzati, M. Global Epidemiology, Health Burden and Effective Interventions for Elevated Blood Pressure and Hypertension. Nat. Rev. Cardiol. 2021, 18, 785–802. [Google Scholar] [CrossRef]
- Mancia, G.; Kreutz, R.; Brunstr, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Lorenza Muiesan, M.; Tsioufis, K.; Agabiti-Rosei, E.; Abd Elhady Algharably, E.; et al. ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J. Hypertens. 2023, 41, 1874–2071. [Google Scholar]
- Ettehad, D.; Emdin, C.A.; Kiran, A.; Anderson, S.G.; Callender, T.; Emberson, J.; Chalmers, J.; Rodgers, A.; Rahimi, K. Blood Pressure Lowering for Prevention of Cardiovascular Disease and Death: A Systematic Review and Meta-Analysis. Lancet 2016, 387, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Montenegro, M.R.; Eggen, D.A. Topography of Atherosclerosis in the Coronary Arteries. Lab. Investig. 1968, 18, 586–593. [Google Scholar] [PubMed]
- Schmermund, A.; Baumgart, D.; Möhlenkamp, S.; Kriener, P.; Pump, H.; Grönemeyer, D.; Seibel, R.; Erbel, R. Natural History and Topographic Pattern of Progression of Coronary Calcification in Symptomatic Patients: An Electron-Beam CT Study. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Giannoglou, G.D.; Antoniadis, A.P.; Chatzizisis, Y.S.; Louridas, G.E. Difference in the Topography of Atherosclerosis in the Left versus Right Coronary Artery in Patients Referred for Coronary Angiography. BMC Cardiovasc. Disord. 2010, 10, 26. [Google Scholar] [CrossRef]
- Iwasaki, K.; Matsumoto, T.; Aono, H.; Furukawa, H.; Nagamachi, K.; Samukawa, M. Distribution of Coronary Atherosclerosis in Patients with Coronary Artery Disease. Heart Vessel. 2010, 25, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Choi, E.-K.; Chang, H.-J.; Kim, C.-H.; Seo, W.-W.; Park, J.J.; Chun, E.-J.; Chang, S.-A.; Kim, H.-K.; Kim, Y.-J. Subclinical Coronary Artery Disease as Detected by Coronary Computed Tomography Angiography in an Asymptomatic Population. Korean Circ. J. 2010, 40, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Golinvaux, N.; Maehara, A.; Mintz, G.S.; Lansky, A.J.; McPherson, J.; Farhat, N.; Marso, S.; De Bruyne, B.; Serruys, P.W.; Templin, B. An Intravascular Ultrasound Appraisal of Atherosclerotic Plaque Distribution in Diseased Coronary Arteries. Am. Heart J. 2012, 163, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Jędrzejczak, K.; Makowski, Ł.; Orciuch, W. Model of Blood Rheology Including Hemolysis Based on Population Balance. Commun. Nonlinear Sci. Numer. Simul. 2023, 116, 106802. [Google Scholar] [CrossRef]
- Jędrzejczak, K.; Antonowicz, A.; Makowski, Ł.; Orciuch, W.; Wojtas, K.; Kozłowski, M. Computational Fluid Dynamics Validated by Micro Particle Image Velocimetry to Estimate the Risk of Hemolysis in Arteries with Atherosclerotic Lesions. Chem. Eng. Res. Des. 2023, 196, 342–353. [Google Scholar] [CrossRef]
- Jędrzejczak, K.; Makowski, Ł.; Orciuch, W.; Wojtas, K.; Kozłowski, M. Hemolysis of Red Blood Cells in Blood Vessels Modeled via Computational Fluid Dynamics. Int. J. Numer. Method. Biomed. Eng. 2023, 39, e3699. [Google Scholar] [CrossRef]
- Owens, R.G. A New Microstructure-Based Constitutive Model for Human Blood. J. Nonnewton Fluid Mech. 2006, 140, 57–70. [Google Scholar] [CrossRef]
- Moyers-Gonzalez, M.; Owens, R.G.; Fang, J. A Non-Homogeneous Constitutive Model for Human Blood. Part 1. Model Derivation and Steady Flow. J. Fluid Mech. 2008, 617, 327–354. [Google Scholar] [CrossRef]
- Moyers-Gonzalez, M.A.; Owens, R.G. A Non-Homogeneous Constitutive Model for Human Blood: Part II. Asymptotic Solution for Large Péclet Numbers. J. Nonnewton Fluid Mech. 2008, 155, 146–160. [Google Scholar] [CrossRef]
- Moyers-Gonzalez, M.A.; Owens, R.G.; Fang, J. A Non-Homogeneous Constitutive Model for Human Blood: Part III. Oscillatory Flow. J. Nonnewton Fluid Mech. 2008, 155, 161–173. [Google Scholar] [CrossRef]
- Giersiepen, M.; Wurzinger, L.J.; Opitz, R.; Reul, H. Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses-in Vitro Comparison of 25 Aortic Valves. Int. J. Artif. Organs 1990, 13, 300–306. [Google Scholar] [CrossRef]
- Lacasse, D.; Garon, A.; Pelletier, D. Mechanical Hemolysis in Blood Flow: User-Independent Predictions with the Solution of a Partial Differential Equation. Comput. Methods Biomech. Biomed. Eng. 2007, 10, 1–12. [Google Scholar] [CrossRef]
- Garon, A.; Farinas, M.-I. Fast Three-Dimensional Numerical Hemolysis Approximation. Artif. Organs 2004, 28, 1016–1025. [Google Scholar] [CrossRef]
- Kandil, H.; Soliman, A.; Alghamdi, N.S.; Jennings, J.R.; El-Baz, A. Using Mean Arterial Pressure in Hypertension Diagnosis versus Using Either Systolic or Diastolic Blood Pressure Measurements. Biomedicines 2023, 11, 849. [Google Scholar] [CrossRef]
- Lo, E.W.; Menezes, L.J.; Torii, R. On Outflow Boundary Conditions for CT-Based Computation of FFR: Examination Using PET Images. Med. Eng. Phys. 2020, 76, 79–87. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, Y.W.; Kim, J.H.; Lee, Y.J.; Moon, J.; Jeong, P.; Jeong, J.; Kim, J.S.; Lee, J.S. Optimization of FFR Prediction Algorithm for Gray Zone by Hemodynamic Features with Synthetic Model and Biometric Data. Comput. Methods Programs Biomed. 2022, 220, 106827. [Google Scholar] [CrossRef]
- Li, Q.; Ding, Y.; Chen, Q.; Tang, Y.; Zhang, H.; He, Y.; Fu, G.; Yang, Q.; Shou, X.; Ye, Y.; et al. Diagnostic Performance of a Novel Automated CT-Derived FFR Technology in Detecting Hemodynamically Significant Coronary Artery Stenoses: A Multicenter Trial in China. Am. Heart J. 2023, 265, 180–190. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, X.; Tang, Z.; Li, T.; Jiang, X.; Ji, F.; Zhou, Y.; Ge, J.; Li, Z.; Zhao, Y.; et al. Diagnostic Accuracy of CT-FFR with a New Coarse-to-Fine Subpixel Algorithm in Detecting Lesion-Specific Ischemia: A Prospective Multicenter Study. Rev. Española Cardiol. (Engl. Ed.) 2023, 77, 129–137. [Google Scholar] [CrossRef]
- Cruz-Gonzalez, I.; Rama-Merchan, J.C.; Calvert, P.A.; Rodr Iguez-Collado, J.; Barreiro-P Erez, M.; Mart In-Moreiras, J.; Diego-Nieto, A.; Hildick-Smith, D.; Anchez, P.L.S. Percutaneous Closure of Paravalvular Leaks: A Systematic Review; Percutaneous Closure of Paravalvular Leaks: A Systematic Review. J. Interv. Cardiol. 2016, 29, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Casserly, I.P.; Garcia, J.A.; Klein, A.J.; Salcedo, E.E.; Carroll, J.D. Percutaneous Transcatheter Closure of Prosthetic Mitral Paravalvular Leaks. Are We There Yet? JACC Cardiovasc. Interv. 2009, 2, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.Y.; Xu, G.Q.; Xue, J.Y.; Cai, D.Y.; Yang, B.W.; Ba, Y.Y.; Feng, C.Y.; Li, T.X.; Gao, B.L.; Chen, Z.C. Effects of Percutaneous Endovascular Angioplasty for Severe Stenosis or Occlusion of Subclavian Artery. Sci. Rep. 2024, 14, 14290. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, J.; Ikenouchi, T.; Nitta, G.; Kato, S.; Murata, K.; Kanoh, M.; Inamura, Y.; Kato, N.; Takamiya, T.; Negi, K.; et al. Successful Percutaneous Coronary Intervention for Atherosclerotic Coronary Lesion with Anomalous Origin of the Right Coronary Artery. Case Rep. Med. 2018, 2018, 4232941. [Google Scholar] [CrossRef]
- Whitbeck, M.G.; Applegate, R.J. Second Generation Drug-Eluting Stents: A Review of the Everolimus-Eluting Platform. Clin. Med. Insights Cardiol. 2013, 7, 115–126. [Google Scholar] [CrossRef]
Rest | ||
Exercise | ||
Rest | ||
Exercise |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jędrzejczak, K.; Orciuch, W.; Wojtas, K.; Piasecki, P.; Narloch, J.; Wierzbicki, M.; Kozłowski, M.; Bissell, M.M.; Makowski, Ł. Impact of Hypertension and Physical Exercise on Hemolysis Risk in the Left Coronary Artery: A Computational Fluid Dynamics Analysis. J. Clin. Med. 2024, 13, 6163. https://doi.org/10.3390/jcm13206163
Jędrzejczak K, Orciuch W, Wojtas K, Piasecki P, Narloch J, Wierzbicki M, Kozłowski M, Bissell MM, Makowski Ł. Impact of Hypertension and Physical Exercise on Hemolysis Risk in the Left Coronary Artery: A Computational Fluid Dynamics Analysis. Journal of Clinical Medicine. 2024; 13(20):6163. https://doi.org/10.3390/jcm13206163
Chicago/Turabian StyleJędrzejczak, Krystian, Wojciech Orciuch, Krzysztof Wojtas, Piotr Piasecki, Jerzy Narloch, Marek Wierzbicki, Michał Kozłowski, Malenka M. Bissell, and Łukasz Makowski. 2024. "Impact of Hypertension and Physical Exercise on Hemolysis Risk in the Left Coronary Artery: A Computational Fluid Dynamics Analysis" Journal of Clinical Medicine 13, no. 20: 6163. https://doi.org/10.3390/jcm13206163