Association between Transient-Continuous Hypotension during Mechanical Thrombectomy for Acute Ischemic Stroke and Final Infarct Volume in Patients with Proximal Anterior Circulation Large Vessel Occlusion
<p>Flow chart of the inclusion of study population. EVT, endovascular treatment; LVO, large vessel occlusion; ICA, internal carotid artery; MCA, middle cerebral artery.</p> "> Figure 2
<p>Association between hemodynamic parameters and the final infarct volume. Scatter plots based on linear regression models adjusted for predefined confounding factors. The last scatter plot shows analysis of the MCA M1 occlusion subgroup. FIV, final infarct volume; SBP, systolic arterial blood pressure; MAP, mean arterial blood pressure.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Selection and Treatment Parameters
2.3. Blood Pressure Data
2.4. Outcome Measurements
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turc, G.; Bhogal, P.; Fischer, U.; Khatri, P.; Lobotesis, K.; Mazighi, M.; Schellinger, P.D.; Toni, D.; de Vries, J.; White, P.; et al. European stroke organisation (ESO)—European Society for Minimally Invasive Neurological Therapy (ESMINT) guidelines on mechanical Thrombectomy in acute ischemic stroke. J. Neurointerv. Surg. 2019, 11, 535–538. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Menon, B.K.; Van Zwam, W.H.; Dippel, D.W.J.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.L.M.; Van Der Lugt, A.; De Miquel, M.A.; et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewska-Lampart, I.; Wiącek, M.; Bartosik-Psujek, H. Risk factors for infarct growth and haemorrhagic or oedematous complications after endovascular treatment—A literature review. Neurol. Neurochir. Pol. 2022, 56, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, K.; Goyal, N.; Katsanos, A.H.; Filippatou, A.; Mistry, E.A.; Khatri, P.; Anadani, M.; Spiotta, A.M.; Sandset, E.C.; Sarraj, A.; et al. Association of Blood Pressure With Outcomes in Acute Stroke Thrombectomy. Hypertension 2020, 75, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, M.; Schönenberger, S.; Hendèn, P.L.; Valentin, J.B.; Espelund, U.S.; Sørensen, L.H.; Juul, N.; Uhlmann, L.; Johnsen, S.P.; Rentzos, A.; et al. Blood Pressure Thresholds and Neurologic Outcomes After Endovascular Therapy for Acute Ischemic Stroke: An Analysis of Individual Patient Data From 3 Randomized Clinical Trials. JAMA Neurol. 2020, 77, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Guo, H.; Yuan, L.; Cai, Q.; Zhang, M.; Zhang, Y.; Zhu, W.; Li, Z.; Yang, Q.; Zhou, Z.; et al. Blood pressure variability and outcomes after mechanical thrombectomy based on the recanalization and collateral status. Ther. Adv. Neurol. Disord. 2021, 14, 1756286421997383. [Google Scholar] [CrossRef] [PubMed]
- Petersen, N.H.; Ortega-Gutierrez, S.; Wang, A.; Lopez, G.V.; Strander, S.; Kodali, S.; Silverman, A.; Zheng-Lin, B.; Dandapat, S.; Sansing, L.H.; et al. Decreases in Blood Pressure During Thrombectomy Are Associated With Larger Infarct Volumes and Worse Functional Outcome. Stroke 2019, 50, 1797–1804. [Google Scholar] [CrossRef] [PubMed]
- Raychev, R.; Liebeskind, D.S.; Yoo, A.J.; Rasmussen, M.; Arnaudov, D.; Brown, S.; Saver, J.; Simonsen, C.Z. Physiologic predictors of collateral circulation and infarct growth during anesthesia: Detailed analyses of the GOLIATH trial. J. Cereb. Blood Flow Metab. 2020, 40, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Wiącek, M.; Szymański, M.; Walewska, K.; Bartosik-Psujek, H. Blood Pressure Changes During Mechanical Thrombectomy for Acute Ischemic Stroke Are Associated With Serious Early Treatment Complications: Symptomatic Intracerebral Hemorrhage and Malignant Brain Edema. Front. Neurol. 2022, 13, 884519. [Google Scholar] [CrossRef] [PubMed]
- Jagani, M.; Brinjikji, W.; Rabinstein, A.A.; Pasternak, J.J.; Kallmes, D.F. Hemodynamics during anesthesia for intra-arterial therapy of acute ischemic stroke. J. Neurointerv. Surg. 2016, 8, 883–888. [Google Scholar] [CrossRef]
- Berkhemer, O.A.; Berg, L.A.v.D.; Fransen, P.S.; Beumer, D.; Yoo, A.J.; Lingsma, H.F.; Schonewille, W.J.; Berg, R.v.D.; Wermer, M.J.; Boiten, J.; et al. The effect of anesthetic management during intra-arterial therapy for acute stroke in MR CLEAN. Neurology 2016, 87, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.C.V.; van Zwam, W.H.; Goyal, M.; Menon, B.K.; Dippel, D.W.J.; Demchuk, A.M.; Bracard, S.; White, P.; Dávalos, A.; Majoie, C.B.L.M.; et al. Effect of general anaesthesia on functional outcome in patients with anterior circulation ischaemic stroke having endovascular thrombectomy versus standard care: A meta-analysis of individual patient data. Lancet Neurol. 2018, 17, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.J.; Menon, B.K.; Baghirzada, L.B.; Campos-Herrera, C.R.; Goyal, M.; Hill, M.D.; Archer, D.P.; Program, T.C.S. Anesthetic management and outcome in patients during endovascular therapy for acute stroke. Anesthesiology 2012, 116, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Błażejewska-Hyżorek, B.; Czernuszenko, A.; Członkowska, A.; Ferens, A.; Gąsecki, D.; Kaczorowski, R.; Karaszewski, B.; Karliński, M.; Kaźmierski, R.; Kłysz, B.; et al. Wytyczne postepowania w udarze mózgu. Pol. Prz. Neurol. 2019, 15, 30–92. [Google Scholar] [CrossRef]
- Boers, A.M.; Marquering, H.A.; Jochem, J.J.; Besselink, N.; Berkhemer, O.; van der Lugt, A.; Beenen, L.; Majoie, C. Automated cerebral infarct volume measurement in follow-up noncontrast CT scans of patients with acute ischemic stroke. AJNR Am. J. Neuroradiol. 2013, 34, 1522–1527. [Google Scholar] [CrossRef] [PubMed]
- Hacke, W.; Kaste, M.; Fieschi, C.; von Kummer, R.; Davalos, A.; Meier, D.; Larrue, V.; Bluhmki, E.; Davis, S.; Donnan, G.; et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). second European-Australasian acute stroke study investigators. Lancet 1998, 352, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, R.G.; Liebeskind, D.S.; Sung, G.; Duckwiler, G.; Smith, W.S. Predictors of good clinical outcomes, mortality, and successful revascularization in patients with acute ischemic stroke undergoing thrombectomy: Pooled analysis of the mechanical Embolus removal in cerebral ischemia (MERCI) and Multi MERCI trials. Stroke 2009, 40, 3777–3783. [Google Scholar] [CrossRef] [PubMed]
- De Georgia, M.; Bowen, T.; Duncan, K.R.; Chebl, A.B. Blood pressure management in ischemic stroke patients undergoing mechanical thrombectomy. Neurol. Res. Pract. 2023, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Wufuer, A.; Mijiti, P.; Abudusalamu, R.; Dengfeng, H.; Jian, C.; Jianhua, M.; Xiaoning, Z. Blood pressure and collateral circulation in acute ischemic stroke. Herz 2019, 44, 455–459. [Google Scholar] [CrossRef]
- Sim, J.E.; Chung, J.W.; Seo, W.K.; Bang, O.Y.; Kim, G.-M. Association of Systolic Blood Pressure and Cerebral Collateral Flow in Acute Ischemic Stroke by Stroke Subtype. Front. Neurol. 2022, 13, 863483. [Google Scholar] [CrossRef]
- Löwhagen Hendén, P.; Rentzos, A.; Karlsson, J.E.; Rosengren, L.; Sundeman, H.; Reinsfelt, B.; Ricksten, S.-E. Hypotension during Endovascular Treatment of Ischemic Stroke Is a Risk Factor for Poor Neurological Outcome. Stroke 2015, 46, 2678–2680. [Google Scholar] [CrossRef] [PubMed]
- Treurniet, K.M.; Berkhemer, O.A.; Immink, R.V.; Lingsma, H.F.; der Stam, V.M.C.W.-V.; Hollmann, M.W.; Vuyk, J.; van Zwam, W.H.; van der Lugt, A.; van Oostenbrugge, R.J.; et al. A decrease in blood pressure is associated with unfavorable outcome in patients undergoing thrombectomy under general anesthesia. J. Neurointerv. Surg. 2018, 10, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Whalin, M.K.; Halenda, K.M.; Haussen, D.C.; Rebello, L.; Frankel, M.; Gershon, R.; Nogueira, R. Even Small Decreases in Blood Pressure during Conscious Sedation Affect Clinical Outcome after Stroke Thrombectomy: An Analysis of Hemodynamic Thresholds. AJNR Am. J. Neuroradiol. 2017, 38, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Regenhardt, R.W.; Das, A.S.; Stapleton, C.J.; Chandra, R.V.; Rabinov, J.D.; Patel, A.B.; Hirsch, J.A.; Leslie-Mazwi, T.M. Blood Pressure and Penumbral Sustenance in Stroke from Large Vessel Occlusion. Front. Neurol. 2017, 8, 317. [Google Scholar] [CrossRef] [PubMed]
- Pikija, S.; Trkulja, V.; Ramesmayer, C.; Mutzenbach, J.S.; Killer-Oberpfalzer, M.; Hecker, C.; Bubel, N.; Füssel, M.U.; Sellner, J. Higher Blood Pressure during Endovascular Thrombectomy in Anterior Circulation Stroke Is Associated with Better Outcomes. J. Stroke 2018, 20, 373–384. [Google Scholar] [CrossRef] [PubMed]
- La Via, L.; Vasile, F.; Perna, F.; Zawadka, M. Prediction of fluid responsiveness in critical care: Current evidence and future perspective. Trends Anaesth. Crit. Care 2024, 54, 101316. [Google Scholar] [CrossRef]
- Karamchandani, K.; Dave, S.; Hoffmann, U.; Khanna, A.K.; Saugel, B. Intraoperative arterial pressure management: Knowns and unknowns. Br. J. Anaesth. 2023, 131, 445–451. [Google Scholar] [CrossRef]
Total Patients | 214 |
---|---|
Age, years (median, IQR) | 71 (65–79) |
Female, N (%) | 101 (47.2) |
Medical history | |
Hypertension, N (%) | 175 (81.8) |
Hyperlipidemia, N (%) | 82 (38.3) |
Atrial fibrillation, N (%) | 121 (56.5) |
Diabetes mellitus, N (%) | 51 (23.8) |
Chronic heart failure, N (%) | 41 (19.2) |
Coronary artery disease, N (%) | 39 (18.2) |
Smoker, N (%) | 18 (8.4) |
Cancer, N (%) | 6 (2.8) |
Baseline characteristics | |
Baseline NIHSS (mean ± SD) | 17 ± 5 |
Onset-to-groin time, minutes (median, IQR) | 256 (210–300) |
Onset-to-reperfusion time, minutes (median, IQR) | 325 (280–376) |
Bridging thrombolysis, N (%) | 154 (72) |
Localization of occlusion, N (%) | |
ICA | 63 (29.4) |
MCA M1 | 151 (70.6) |
Tandem occlusion | 62 (29) |
Imaging treatment outcome measures | |
TICI, N (%) | |
0 | 13 (6.1) |
1 | 9 (4.2) |
2a | 10 (4.7) |
2b | 67 (31.3) |
3 | 115 (53.7) |
Intracranial hemorrhage, N (%) | |
HI1 | 25 (11.7) |
HI2 | 18 (8.4) |
PH1 | 12 (5.6) |
PH2 | 27 (12.6) |
Symptomatic intracranial hemorrhage, N (%) | 23 (10.7) |
Malignant brain edema, N (%) | 55 (25.2) |
All Subjects | MCA M1 * | |||||
---|---|---|---|---|---|---|
Hemodynamic Variable | Median (IQR) | Spearman R | p-Value | Median (IQR) | Spearman R | p-Value |
Baseline SBP, mmHg | 150 (135–170) | 0.17 | 0.014 | 150 (135–167) | 0.21 | 0.010 |
Baseline MAP, mmHg | 106 (97–118) | 0.10 | 0.138 | 107 (97–117) | 0.95 | 0.25 |
Intraprocedural momentary BP values | ||||||
SBPmin., mmHg | 100 (90–105) | −0.11 | 0.103 | 100 (90–105) | −0.10 | 0.21 |
MAPmin., mmHg | 160 (145–170) | −0.07 | 0.305 | 71 (65–78) | −0.8 | 0.32 |
SBPmax., mmHg | 160 (145–170) | 0.11 | 0.125 | 160 (145–170) | 0.11 | 0.17 |
MAPmax., mmHg | 113 (103–123) | 0.05 | 0.440 | 113 (103–121) | 0.04 | 0.66 |
SBPmax. drop, mmHg | 51 (35–74) | 0.16 | 0.016 | 50 (34–70) | 0.20 | 0.012 |
MAPmax. drop, mmHg | 36 (22–50) | 0.11 | 0.115 | 35 (23–48) | 0.13 | 0.11 |
SBP max. drop, % | 35 (25–44) | 0.17 | 0.014 | 35 (25–43) | 0.20 | 0.013 |
>0% | 0.518 * | 0.518 * | ||||
>20% | 0.151 * | 0.151 * | ||||
>40% | 0.010 * | 0.010 * | ||||
MAP max. drop, % | 34 (22–42) | 0.11 | 0.094 | 34 (23–41) | 0.14 | 0.089 |
>0% | 0.158 * | 0.158 * | ||||
>20% | 0.727 * | 0.727 * | ||||
>40% | 0.005 * | 0.005 * | ||||
Intraprocedural continuous BP measures | ||||||
Time over SBP [mmHg] threshold, minutes | ||||||
<140 | 50 (30–80) | 0.15 | 0.033 | 45 (30–75) | 0.14 | 0.092 |
<120 | 25 (10–50) | 0.04 | 0.531 | 25 (10–45) | 0.06 | 0.443 |
<100 | 0 (0–10) | 0.11 | 0.125 | 0 (0–10) | 0.06 | 0.441 |
>160 | 0 (0–5) | 0.07 | 0.343 | 0 (0–5) | 0.06 | 0.466 |
Time over MAP [mmHg] threshold, minutes | ||||||
<100 | 90 (65–135) | 0.27 | <0.001 | 85 (60–125) | 0.25 | 0.002 |
<90 | 65 (40–95) | 0.22 | 0.001 | 60 (40–90) | 0.27 | <0.001 |
<80 | 20 (5–45) | 0.06 | 0.382 | 20 (5–45) | 0.07 | 0.373 |
>110 | 5 (0–5) | 0.05 | 0.467 | 5 (0–5) | 0.01 | 0.923 |
All Subjects | MCA M1 * | |||||
---|---|---|---|---|---|---|
Hemodynamic Variable | B | CI 95% | p-Value | B | CI 95% | p-Value |
Baseline SBP, [10 mmHg] | 8.32 | 0.93–15.7 | 0.027 | 1.24 | 0.42–2.07 | 0.004 |
Intraprocedural momentary BP values | ||||||
SBP max. drop, [10 mmHg] | 6.98 | 0.42–13.55 | 0.037 | 7.93 | 1.29–14.57 | 0.019 |
SBP max. drop, [%] | 41.77 | 1.93–81.61 | 0.040 | 47.09 | 6.74–87.43 | 0.022 |
>40% SBP drop | 160 (145–170) | 0.11 | 0.125 | 160 (145–170) | 0.11 | 0.17 |
>40% MAP drop | 113 (103–123) | 0.05 | 0.440 | 113 (103–121) | 0.04 | 0.066 |
Intraprocedural continuous BP measures | ||||||
Time < 140 mmHg SBP, [5 min] | 0.38 | (−0.14)–0.85 | 0.157 | 0.46 | (−0.043)–0.96 | 0.073 |
Time below MAP threshold, [5 min] | ||||||
<100 mmHg | 3.50 | 1.49–5.50 | 0.001 | 3.96 | 1.97–5.95 | <0.001 |
<90 mmHg | 2.91 | 0.74–5.10 | 0.010 | 3.90 | 1.20–5.57 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiącek, M.; Tomaszewska-Lampart, I.; Dziedzic, M.; Kaczorowska, A.; Bartosik-Psujek, H. Association between Transient-Continuous Hypotension during Mechanical Thrombectomy for Acute Ischemic Stroke and Final Infarct Volume in Patients with Proximal Anterior Circulation Large Vessel Occlusion. J. Clin. Med. 2024, 13, 3707. https://doi.org/10.3390/jcm13133707
Wiącek M, Tomaszewska-Lampart I, Dziedzic M, Kaczorowska A, Bartosik-Psujek H. Association between Transient-Continuous Hypotension during Mechanical Thrombectomy for Acute Ischemic Stroke and Final Infarct Volume in Patients with Proximal Anterior Circulation Large Vessel Occlusion. Journal of Clinical Medicine. 2024; 13(13):3707. https://doi.org/10.3390/jcm13133707
Chicago/Turabian StyleWiącek, Marcin, Izabella Tomaszewska-Lampart, Marzena Dziedzic, Anna Kaczorowska, and Halina Bartosik-Psujek. 2024. "Association between Transient-Continuous Hypotension during Mechanical Thrombectomy for Acute Ischemic Stroke and Final Infarct Volume in Patients with Proximal Anterior Circulation Large Vessel Occlusion" Journal of Clinical Medicine 13, no. 13: 3707. https://doi.org/10.3390/jcm13133707
APA StyleWiącek, M., Tomaszewska-Lampart, I., Dziedzic, M., Kaczorowska, A., & Bartosik-Psujek, H. (2024). Association between Transient-Continuous Hypotension during Mechanical Thrombectomy for Acute Ischemic Stroke and Final Infarct Volume in Patients with Proximal Anterior Circulation Large Vessel Occlusion. Journal of Clinical Medicine, 13(13), 3707. https://doi.org/10.3390/jcm13133707