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Abstract: Background: Facial nerve paralysis is a severe dysfunction after vestibular schwannoma
(VS) surgery. Methods: This monocentric study analyzed 61 patients who underwent sporadic VS
surgery in a standardized manner. The primary endpoint was the facial nerve outcome (FNO) at
3 months after VS surgery. FNO was dichotomized into “good” (House–Brackmann (HB) score ≤ 2)
and “poor” (HB > 2). Results: Poor FNO was observed in 11 patients (18.0%) at 3 months after
VS surgery. Radiomic tumor shape features were analyzed, and the AUC of elongation in the
prediction of a poor HB at 3 months was 0.70 (95% CI: 0.56–0.85, p = 0.03) and the optimum threshold
value (≤/>0.35) yielded a sensitivity and specificity of 64.0% and 75.4%, respectively. Multivariable
logistic regression analyses considering the extent of resection (</≥93.4%), preoperative tumor
volume (</≥2.6 cm3), age (</≥55), sex (female/male), and elongation (≤/>0.35) revealed that more
elongated VSs (≤0.35; OR: 5.8; 95%CI: 1.2–28.2; p = 0.03) and those with an increased EoR (≥93.4%;
OR: 6.5; 95%CI: 1.0–42.5; p = 0.05) are independently associated with poorer FNO at 3 months after
surgery. Conclusions: Highly elongated VS shape seems to be a risk factor for worsened facial nerve
outcome at 3 months after surgery for Koos grade 3 and 4 tumors.

Keywords: vestibular schwannoma; facial nerve; tumor elongation; progression; shape

1. Introduction

Vestibular schwannoma (VS) is, with 75% of all tumors, the most common one in
the cerebellopontine angle [1]. As a benign tumor, the impairment takes place in the loss
of functional hearing and with increasing size in the compression of adjacent structures
like the brainstem and facial nerve. Gross total resection (GTR) is suggested as the most
effective strategy to achieve long-term tumor control [2]. However, studies have also
suggested that a subtotal resection (STR) leads to comparable progression-free survival [3,4].
Because of the benign nature of the VS, preoperative mortality should be as low as possible.
Currently, not mortality but low morbidity should be the claim of medical care. Accordingly,
different therapy regimes like watch and wait, radiotherapy, radiosurgery, and surgical
resection are applied in practice [5,6]. However, especially, larger tumors that compress
the brainstem need surgical debulking. Due to the larger tumor size, there is even less
space for manipulation, which impedes low morbidity. Therefore, studies suggest subtotal
resection (STR) or near-total resection (NTR) against gross total resection (GTR) to provide
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a better outcome, especially in relation to the facial nerve outcome [7–9]. On the other
hand, after STR, VS seems to have higher regrow rates [10]. VS shows a large variety in
the evolution of growth in volume and shape. It has been shown that shape and texture
features may have an impact on predicting VS enlargement after stereotactic radiosurgery
(SRS) [11]. While preventing a tumor progression by a radical resection, the preservation
of the facial nerve function has a significant impact on the quality of life of the patients.
Eye irritations and tear dysfunctions due to peripheral facial nerve palsy lead to necessary
follow-up treatments to attain a disability-free life. Therefore, the major priority of the
decision-making process of the treatment regime must be the protection of the facial nerve
function. As the inflammatory rate is described as an indicator of tumor growth [12], it
seems also that the degree of inflammation measured by the MIB-1 index predicts worse
long-term facial nerve outcomes in VS surgery [7,13,14]. However, the importance of tumor
volume and its individual shape measured in tumor elongation for facial nerve outcome
is unknown.

Against this backdrop, the present investigation analyzes the role of tumor shape
in sporadic VS patients who underwent surgery in the semi-sitting position via the ret-
rosigmoid approach. The present study is the first one concerning the impact of tumor
elongation on facial nerve outcome after surgery for Koos grades 3 and 4.

2. Materials and Methods
2.1. Study Design and Patient Characteristics

Between January 2012 and December 2022, 120 patients with sporadic VS underwent
surgery at the authors’ institution. A total of 61 patients were included in the retro-
spective analysis. The inclusion criteria were a primary tumor, Koos grade 3 or 4, and
available imaging data for radiomic analysis. The patients with neurofibromatosis type 2-
associated schwannoma or those who underwent prior radiotherapy were excluded due to
the different neuropathology and proliferative potential [15,16]. An interdisciplinary neuro-
oncological board consisting of senior experts in the fields of neurosurgery, radiotherapy,
neuroradiology, and neuro-oncology was included in the treatment decision-making pro-
cess. After postoperative CT imaging, the first regular follow-up MR took place 3 months
after surgery, and further imaging was on an annual basis. After 3 years of progression-free
survival, the control period was extended to 2 years. The facial nerve outcome 3 months
post-VS surgery was categorized into “good” (House–Brackmann (HB) score ≤ 2) and
“poor” >2 HB [7].

2.2. Data Recording

These general preoperative patient characteristics were recorded: age, sex, Koos
grade, facial nerve functioning, neurological deficits, and postoperative follow-up data
and entered into a computerized dataset (SPSS, Version 29 for Windows, IBM Corp.,
Armonk, NY, USA). The extent of resection was objectively measured using the volumetric
measurement of tumor portions in T1-Gadoliunium-enhanced MR-weighted images and
calculated using the following formula: (preoperative tumor volume − postoperative
tumor volume)/preoperative tumor volume).

GTR refers to the complete removal of the tumor, while NTR, STR, and partial resec-
tions PR are defined as removing more than 90–100%, 80–90%, and 80% or less of the initial
preoperative tumor volume, respectively [17]. Through these MR images, the pre- and
postoperative tumor volumes, surface area, extent of resection (%), and radiomic tumor
shape features (elongation, flatness, sphericity) were calculated by using volumetric analy-
sis in a 3D slicer software (version 5.4.0, Surgical Planning Laboratory, Harvard University,
Cambridge, MA, USA). The tumor was independently identified by two individuals with a
neurosurgery background. Three-dimensional models were constructed using the tumor
outlines to determine the VS volume and VS surface area with the “Fast Marching” method
in a 3D slicer software (version 5.4.0.; https://www.slicer.org (accessed on 24 November
2023)) [18]. The tumor shape was quantified using elongation (see Figure 1). The elongation

https://www.slicer.org
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is calculated from the square root of the ratio of the second largest principal moment to the

second smallest: Elongation =
√

λminor
λmajor [19].
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2.3. Surgical Procedure and Follow-Up Regime

All the patients underwent tumor treatment in the semi-sitting position via the retrosig-
moid approach. During the surgical resection, the patients were under general anesthesia.
The access planning, resection limits, and tumor identification were guided by neuronavi-
gation (Brainlab Curve, BrainLAB AG, Feldkirchen, Germany). First, a linear skin incision
behind the ear was made to expose the connection between the transverse sinus and the
sigmoid sinus by craniotomy. Throughout the procedure of slowly prepping between the
cerebellar hemisphere and petrous bone to reach the internal acoustic meatus and resect
the tumor, an intraoperative electromyogram (EMG) was used. The monitoring of the
facial nerve was secured by the EMG recordings of the orbicularis oculi and oris muscles as
well as electric stimulation. At the CPA, tumor debulking is performed with an ultrasonic
surgical aspirator. Prior to this, the tumor surface is mapped with an electrophysiological
probe to identify any rare dorsal positioning of the facial nerve, which is found in 0.6%
of the cases [20]. Typically, the facial nerve runs ventrally along the VS. Once the VS
tumor mass is sufficiently reduced, the cleavage plane between the tumor and surround-
ing arachnoid is dissected using bimanual techniques. The arachnoid and perineurium
layers are gently separated from the VS as it is gradually mobilized and further reduced
in size. Critical structures, such as the lower cranial and cochlear nerves, are carefully
identified and preserved. The facial nerve is usually located medially at the brainstem exit
zone, identified through direct electrostimulation, although its path can vary in giant VSs,
necessitating a cautious, step-by-step dissection. Special care is taken in the juxta-meatal
location to prevent crossing the point of facial nerve adhesion. In the cases of strong tumor
adherence, a small remnant may be left to protect the integrity of the facial nerve. Bipolar
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coagulation is used sparingly, particularly near cranial nerves, and bleeding is controlled
with targeted measures. The first clinical and follow-up appointment with MR images took
place 3 months after surgery. Because of no visual neuroradiological progression of tumor
growth or worsening of neurological deficits, follow-ups remain annually.

2.4. Immunohistochemistry

The material which was extracted during surgery was stained with hematoxylin/eosin.
Molecular Immunohistology Borstel-I Antibodies (MIB1; DAKO, Glastrop, Denmark) were
used on the sections to perform an immunohistochemical reaction to detect the Ki67
antigen. To determine the MIB-1 index, randomly selected high-power microscopic fields
were analyzed for stained and unstained nuclei in the tumor cells. The percentage of
Ki-67-positive nuclei defined the MIB-1 index [21].

2.5. Statistics of Institutional Data

Preoperative demographics, pre- and postoperative tumor volumes, and the extent of
resection, radiomic tumor shape features, histopathological features, and immunohisto-
chemical characteristics were compared in the patients with good facial nerve outcomes
(FNOs) and poor FNOs using Fisher’s exact test (two-sided) for categorical data and inde-
pendent t-test for continuous data. The optimum cut-off values of continuous data (elonga-
tion, age, extent of resection, and tumor volume) were determined using receiver-operating
characteristics curves (ROC). A p-value < 0.05 was defined as statistically significant.

A multivariable logistic regression analysis with age and sex adjustment was con-
ducted to evaluate the predictors of FNO at 3 months after surgery. Tumor volume and the
extent of resection were included due to the established role of these factors influencing
facial nerve functioning [2].

3. Results
3.1. Patient Characteristics

The data of the 61 patients who met the inclusion criteria were analyzed. The median
age (±SD) was 57 years (±15.39). The median KPS (interquartile range (IQR)) was 90.
Preoperative facial nerve dysfunction was recorded in three patients. Two (3.3%) of them
with a House–Brackman score of 3 and one (1.6%) patient with a House–Brackman score of
4. Preoperative hydrocephalus was present in two (3.3%) patients. Ipsilateral anacusis was
present in 13 (21%) patients before surgery.

The mean volume (±SD) and surface area (±SD) of the VSs were 9.95 cm3 ± 12.8 cm3

and 2434.46 mm2 ± 2173.79 mm2. In the study, only Koos grade 3 and Koos grade 4 patients
were included, which were 23 (37.7%) and 38 (62.3%) patients for the higher grade. The
mean (±SD) MIB-1 labeling index was 2.83 ± 1.23. Additional details are provided in
Table 1.

Table 1. Patient characteristics.

Characteristics N = 61

Median age (years, ±SD) 57 (15.39)
Female sex 32 (57.4%)

Median preoperative KPS (IQR) 90 (50–100)
Dysphagia preoperative 4 (6.6%)

Preoperative CN VII dysfunction
HB II 2 (3.3%)
HB III 0
HB IV 1 (1.6%)

Hydrocephalus preoperative 2 (3.3%)
Arterial HT 32 (52.5%)

Surface area, (mean ± SD), cm2 24.34 ± 21.74
Tumor volume, (mean ± SD), cm3 9.94 ± 12.8

Tumor size preoperative (cm) axial (mean ± SD) 3.16 ± 2.8
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Table 1. Cont.

Characteristics N = 61

Flatness 1.22 ± 0.11
Roundness 0.83 ± 0.06
Elongation 0.46 ± 0.19

MIB-1 index (mean ± SD) 3.0 ± 1.3
Koos Grade

3 23 (37.7%)
4 38 (62.3%)

Abbreviations: CN = cranial nerve; KPS = Karnofsky Performance Status; MIB = Molecular Immunology Borstel;
SD = standard deviation.

3.2. Patient Characteristics in Good and Poor Facial Nerve Outcome

Good FNO was present in 50 cases (82.0%), and poor FNO was observed in 11 cases
(18.0%) directly after surgery, respectively. After 3, 12, and 24 months, good FNOs were
observed in 50 (82%), 44 (91.7%), and 43 (91.5%) patients, respectively, while poor FNO
was found in 11 (18.0%), 4 (8.4%), and 4 (8.5%) cases in the control time phrases. The
median age (±SD) at diagnosis was 53.73 ± 15.34 years for the patients with good FNO
and 62 ± 14.33 years for those with poor FNO (p = 0.096). KPS and female sex were ho-
mogeneously distributed between the two groups. There was no significant difference in
the mean surface area between the groups. Tumor volume (mean (±SD) tumor volume:
10 ± 13.7 cm3 (good FNO) vs. 9.6 ± 8.4 cm3 (poor FNO); p = 0.91 and tumor size (tumor size
(size of tumor pre-op axial (mean ± SD)) 32.1 ±30.5 mm (good FNO) vs. 29.5 ± 8.9 mm
(poor FNO); p = 0.77) did not differ significantly between good and poor FNO. Tumor elon-
gation was significantly higher in the patients with good FNOs (0.48 ± 0.2 vs. 0.36 ± 0.13,
p = 0.047). Furthermore, near or GTR was significantly associated with poor FNO at
3 months after surgery. The patient characteristics for good and poor FNO are summarized
in Table 2.

Table 2. Comparison of patient characteristics between good and poor FNO (using Fisher’s exact test
(two-sided) and independent t-test).

Characteristics Good FNO (n = 50) Poor FNO (n = 11) p-Value

Mean age (years +/− SD) 53.73 +/− 15.342 62.0 +/− 14.327 0.096

Male sex
Female sex

22 (84.6%)
28 (80.0%)

4 (15.4%)
7 (20.0%) 0.75

Mean preoperative KPS (+/−SD) 90.0 +/− 8.08 89.1 +/− 8.31 0.74

Cystic VS 25 (50.0%) 8 (72.7%) 0.32

Surface area, (mean ± SD), cm2 24.20 +/− 22.87 24.92 +/− 17.18 0.919

Tumor volume, (mean ± SD), cm3 10.03 +/− 13.73 9.56 +/− 8.43 0.914

Tumor size (size of tumor preoperative (cm)
axial (mean ± SD)) 3.21 +/− 3.05 2.95 +/− 0.89 0.77

Elongation (+/−SD) 0.48 +/− 0.20 0.36 +/− 0.13 0.047

MIB-1 index, (mean ± SD) 3.0 +/− 1.3 2.8 +/− 1.3 0.61

Extent of resection
GTR or NTR

STR or partial resection
22 (71.0%)
28 (93.3%)

9 (29.0%)
2 (6.7%) 0.04

Abbreviations: KPS = Karnofsky Performance Status; MIB = Molecular Immunology Borstel; SD = standard deviation.
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3.3. Association between Elongation and Facial Nerve Outcome

Due to univariable significant differences in facial nerve outcomes regarding the shape
parameter elongation and extent of resection, further analysis via the ROC curve was
performed. The AUC of elongation in identifying the patients with a poor facial nerve
outcome was 0.70 (95% CI: 0.56–0.85). The optimum cut-off value was identified at ≤/>0.35
with a sensitivity and specificity of 64.0% and 75.0%, respectively. Figure 2 shows the
ROC analysis with the corresponding results. Cut-off value determination using the ROC
curve analyses of the variables age, tumor volume, and extent of resection are provided
in Supplementary Figure S1. For age (Supplementary Figure S1A), the optimal cut-off is
≥/<55 with a Youden’s index of 0.26, sensitivity of 46.0%, and specificity of 80.0%. For
preoperative tumor volume (Supplementary Figure S1B), the cut-off is ≥/<2.6 cm3 with
a Youden’s index of 0.22, sensitivity of 81.8%, and specificity of 40.0%. For the extent of
resection (Supplementary Figure S1C), the cut-off is ≥/<93.4% with a Youden’s index of
0.44, sensitivity of 81.8%, and specificity of 62.0%.
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Figure 2. ROC curve of elongation in predicting poor facial nerve outcome after VS surgery.

Therefore, a multivariable analysis of the factors potentially influencing facial nerve
outcome has been performed. The multivariable logistic regression analysis included the
extent of resection, baseline tumor volume, elongation, age, and sex. The multivariable
analysis identified two factors independently predicting poor facial nerve outcome at
3 months after VS surgery: (1) extent of resection ≥ 93.4% (OR: 6.5; 95% CI: 1.0–42.5;
p = 0.049) and (2) elongation ≤ 0.35 (OR: 5.8; 95% CI: 1.2–28.2; p = 0.028). Figure 3 shows
the forest plots summarizing the multivariable analysis.
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Figure 3. Forest plots from multivariable binary logistic regression analysis: extent of resection and
elongation are independent predictors of poor facial nerve outcome at 3 months after surgery.

3.4. Association between Shape and Proliferation

We analyzed whether the increased proliferation reflected by the MIB-1 labeling
index influences the elongation of the VSs. The mean MIB-1 labeling index in those with
an elongation ≤ 0.35 was 3.4 +/− 1.4, whereas in those with an elongation >0.35 was
2.8 +/− 1.2 (independent t-test: p = 0.09). Figure 4 illustrates the relevant metrics and
distribution of the data.
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4. Discussion

This study investigated the impact of tumor elongation on the facial nerve outcome
after surgery in the semi-sitting position via the retrosigmoid approach. We examined the
facial nerve outcomes of 61 patients undergoing surgery at our institution and found a
significant impact of elongation on the postsurgery facial nerve outcome. The shape of the
tumor seems to have a high impact on surgery outcomes.

The existing literature suggests that a larger tumor size significantly increases the risk
of poor facial nerve outcomes, both anatomically and functionally [2,22]. According to the
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majority of the reported studies, facial nerve function was only preserved in 27–58% of
cases after the total microsurgery resection of large VS (tumor size over 3 cm) [22–28].

Currently, most of the tumor centers prefer an STR against an NTR or GTR [8,29].
Studies show that the facial nerve outcome 1 year after surgery is higher when the tumor
remains inside the patient [11]. In the meta-analysis published by Gurgel et al. [9], 92.5% of
the patients who underwent STR had a good facial nerve outcome compared to the 47.3%
who underwent GTR.

Hence, it appears to be essential to protect the facial nerve in its course during the
surgery rather than perform a complete resection. Given the benign nature and slow cell
proliferation rate of these tumors, it is crucial to prioritize patient’s quality of life. On
the other hand, Vakilian et al. [30] found that all VS with a postsurgical volume greater
than 2.5 cm3 recurred. In these cases, further surgery or a different treatment like gamma
knife radiosurgery is needed. It seems beneficial to initiate postoperative stereotactic
radiosurgery in subtotal resected VS within 1 year after surgery [3,14,28]. A study by
Pan et al. [31] compared two groups of patients with large VS. The first one underwent
intracapsular decompression, followed by gamma knife surgery, while the second group
underwent a total resection, also followed by gamma knife surgery. They found a good
facial nerve outcome (HB1-2) in 89% in group one and only 35% in group two. A study
by Strickland et al. [32] is questioning these results. They found superior tumor control
and a higher likelihood of facial nerve recovery in NTR compared with STR. While in the
immediate postoperative period, 50% of the NTR and 52% of the STR had good facial nerve
function, in the long-term follow-up, 76.9% of the NTR and only 56% of the STR had no
or mild dysfunctions. In line with various studies [8,30,33–35], they found a 3–12-fold
higher regrowth risk and a median time of recurrence that is three times shorter following
STR compared to NTR. However, our study also showed a significant association with the
extent of resection. An extent of resection ≥ 93.4% seems to be a risk factor for poor facial
nerve outcome. A study by Zhang et al. [36] came to similar results. They found good
facial nerve outcome and long-term tumor control of 58.6% and 96.6% in GTR, 79.6% and
92.2% in NTR, and 83.3% and 76.2% in STR, respectively. NTR combines the good facial
nerve outcome similar to STR and a similar tumor-free regrowth rate to GTR. There is an
ongoing discussion between surgeons concerning GRT or STR. Currently, gamma knife
surgery has gained popularity and shows excellent results in tumor growth control and
preventing the facial and vestibular nerve [37–41]. The tumor growth control rate varies for
large VS from 54% to even 100% [22,39,42–50]. A recent study by Roethlisberger et al. [51]
analyzed 48 patients with Koos grade IV vestibular schwannomas who underwent STR
followed by a “wait-and-scan” protocol and found that 81% of the tumor residuals were
stable or regressed over 4.4 years. Tumor progression occurred in 19% of the cases, with
higher postoperative volumes linked to greater progression risk. Second-line radiation
therapy (RT) was needed in 29% of the patients, achieving a 96% overall tumor control rate,
with no cases requiring salvage surgery, highlighting the effectiveness of STR combined
with targeted RT for long-term tumor control. Further studies are needed to investigate if
an STR followed by gamma knife surgery can benefit a good facial nerve outcome while
maintaining a low regrowth rate.

In contrast to the previously mentioned studies [14,52,53], we did not find a significant
correlation between the tumor size and facial nerve outcome. Nevertheless, we identified
that the tumor shape reflected by the parameter elongation is of importance. We observed
that a more elongated tumor shape led to a poorer facial nerve outcome (p = 0.047) at
3 months after VS surgery. From the perspective of the anatomical conditions, it might
be plausible that an elongated tumor with an increased intra-meatal tumor portion has a
higher risk of damaging the facial nerve in its course. The facial nerve exits the brainstem
in the area of the cerebellopontine angle. From there, it pulls through the internal auditory
canal together with the vestibulocochlear nerve. Therefore, the longer the vestibular
schwannoma is, the longer there is a close course between the two nerves, and the higher
the risk of damaging the facial nerve during surgery. From a pathophysiological point of
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view, we suggest that a more elongated tumor shape might be the result of heterogeneity in
proliferative potential in various areas of VSs, with some hotspots exhibiting significantly
increased growth rates. We found a tendency (p = 0.09) for increased MIB-1 labeling
indices among those with more elongated VSs and assume that proliferative heterogeneity
significantly impacts tumor shape and facial nerve outcome. However, the degree of tumor-
associated macrophage infiltrates overlapping with tumor cells in the present VS series
remains unknown and might also impact these endpoints [7]. The anatomic circumstances
need to be considered when planning the operational access. Currently, there are mainly
two ways of positioning the patient that are discussed. A study by Roessler et al. [54]
investigated the postoperative facial nerve function in lateral positioning vs. semi-sitting
positioning in medial-sized to large VS. They found a significantly lower rate of facial
palsies and hearing loss in the semi-sitting positioning while no higher risk of surgical
complication rate like venous air embolism. In 63%, no facial palsy was detected in the
semi-sitting positioning group compared to only 40% in the lateral positioning group. The
study of Schackert et al. [55] came to similar conclusions. Here, facial nerve function was
retained in 81.2% via the semi-sitting positioning vs. 74.5% during lateral positioning. Due
to the small or even negative venous pressure in a sitting position, the cerebellum sinks
down and widens the room for the surgeon, who now has easier access to the cerebellum
pontine angle. Nevertheless, the distance the surgeon needs to separate the tumor from
the nerves correlates with the elongation of the tumor. Despite the better access to the
tumor or the size of the whole tumor, the risk of damaging the facial nerve increases with
the elongation of the tumor which needs to be dissected from the nerve. This contact
time seems to be a huge risk for facial nerve damage. A well-trained surgeon and good
intraoperative electromyogram monitoring and intraoperative facial nerve monitoring
(IOFM) can promote the operating result [14]. The retrospective study design and the
different surgical skills of the surgeons are the major confounding factors of our analysis.
Further studies are needed to investigate if the training of the surgeon affects the facial
nerve outcome.

The major limitation of this study is its retrospective and monocentric design. The
surgical dissection of the facial nerve in giant VS can be challenging and it might be possible
that this factor also influences the statistical results despite a homogeneous institutional
surgical approach. Moreover, this study has a small number of patients and does not
include EMG data during the surgery, which might reveal a better insight into the amount
of facial nerve irritation during surgery. However, we created a homogenous collective of
patients applying highly selective inclusion criteria. All the patients underwent surgery
using the semi-sitting position via a retrosigmoid approach and had only sporadic VS,
which limited the external influences on the treatment.

5. Conclusions

The present study shows that in Koos grade 3 and 4 tumors, elongated VS shape seems
to be a risk factor for worsened facial nerve outcome at 3 months after surgery. In the
case of an elongated tumor shape in VS, an NTR might be safer to secure the facial nerve
function against a GTR.
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