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Abstract: Background: It has been reported in many previous studies that the lack of auditory input
due to hearing loss (HL) can induce changes in the brain. However, most of these studies have
focused on individuals with pre-lingual HL and have predominantly compared the characteristics of
those with normal hearing (NH) to cochlear implant (CI) users in children. This study examined the
visual and auditory evoked potential characteristics in NH listeners, individuals with bilateral HL,
and CI users, including those with single-sided deafness. Methods: A total of sixteen participants
(seven NH listeners, four individuals with bilateral sensorineural HL, and five CI users) completed
speech testing in quiet and noise and evoked potential testing. For speech testing, the Korean version
of the Hearing in Noise Test was used to assess individuals’ speech understanding ability in quiet
and in noise (noise from the front, +90 degrees, and −90 degrees). For evoked potential testing, visual
and auditory (1000 Hz, /ba/, and /da/) evoked potentials were measured. Results: The results
showed that CI users understood speech better than those with HL in all conditions except for the
noise from +90 and −90 degrees. In the CI group, a decrease in P1 amplitudes was noted across all
channels after implantation. The NH group exhibited the highest amplitudes, followed by the HL
group, with the CI group (post-CI) showing the lowest amplitudes. In terms of auditory evoked
potentials, the smallest amplitude was observed in the pre-CI condition regardless of the type of
stimulus. Conclusions: To the best of our knowledge, this is the first study that examined visual
and auditory evoked potentials based on various hearing profiles. The characteristics of evoked
potentials varied across participant groups, and further studies with CI users are necessary, as there
are significant challenges in collecting and analyzing evoked potentials due to artifact issues on the
CI side.

Keywords: hearing loss; evoked potentials; cochlear implants

1. Introduction

Hearing loss (HL) refers to the impairment of auditory function, and numerous studies
have reported its negative impacts on quality of life [1–3]. When HL occurs, individuals
begin to experience difficulty perceiving and understanding speech, ultimately leading to
communication breakdown. These breakdowns in communication can manifest in educa-
tional and occupational settings, affecting individuals’ performance. In addition, recent
studies have reported a potential link between HL and dementia, leading to an increased
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focus on studying HL [4]. Therefore, early and appropriate interventions for HL are im-
portant. HL management or aural rehabilitation typically begins with hearing aids, which
amplify sounds to improve audibility [5]. Healthcare professionals first program hearing
aids based on individuals’ auditory characteristics [6]. Then, the individuals go through
adjustment periods, during which they communicate in various situations, such as quiet
and noisy places. Based on these experiences, the hearing aids are fine-tuned or adjusted
during follow-up visits. If individuals do not receive much benefit from hearing aids, a
cochlear implant (CI) could be considered. Similar to hearing aids, the primary goal of CIs
is to enhance audibility by providing electrical stimulation, ultimately improving quality
of life. CIs have been known to be effective for individuals for whom rehabilitation with
conventional hearing aids was not effective [7–9]. Over time, more people have received
benefit from CIs, as technological advancements in CIs have been made and CI candidacy
has been expanded [10,11]. For example, there have been significant advancements in
CI technology, transitioning from single-channel to multi-channel devices with varying
numbers of electrodes. Additionally, features, such as beamforming and noise reduction,
have been developed to enhance auditory perception in everyday environments. In 2008, a
hybrid model combing a CI and a hearing aid was introduced. The design of CIs has also
diversified, with behind-the-ear and off-the-ear models, reflecting ongoing improvements
in both functionality and user convenience. However, it is important to note that CI use
does not always lead to improvements in speech understanding [12–19], and individual
variability in CI outcomes remains one of the most challenging issues in CI research. One
of the well-researched benefits of CIs is in the area of speech recognition. Factors that can
affect speech recognition include the duration of HL, the onset of HL, the position of the CI
electrode array, the duration of auditory deprivation, and so on [16,18,20–22]. Generally, it
is known that individuals who wear hearing devices early or have a shorter duration of HL
tend to have better outcomes [23]. However, there are cases where individuals with similar
demographic information and medical histories exhibit poor outcomes, and the underlying
mechanisms for this are not well understood [12].

Currently, in clinical settings, speech performance can be examined using tests at
the monosyllable, word, and sentence levels [24]. To reflect various communication envi-
ronments, there are tools available that allow for testing not only in quiet conditions but
also in noise conditions. In addition to these tests, electrophysiological testing, such as
cortical auditory evoked potentials (CAEP), is also conducted to measure CI benefits at the
central level. CAEPs refer to electrical activities from neurons in the auditory cortex [25].
They are typically recorded with electrodes placed on the scalp and have been greatly
investigated, as they could objectively assess the functionality and maturity of the central
auditory system [26]. For adults, the main components of the CAEPs are the P1–N1–P2
complex, which appear 50 to 200 ms after stimulation. P1 is the positive peak appearing
after 50 ms, N1 is the negative peak appearing after 100 ms, and P2 is the positive peak
appearing after 200 ms [27]. Research related to CAEP and HL has been conducted across
various age groups, including children and the elderly, and across different hearing devices,
such as hearing aids and CIs. Sandmann et al. (2012) recruited 22 individuals (11 with
NH and 11 CI users with post-lingual HL) and explored their visual evoked potentials
(VEPs), which are electrical signals evoked by visual stimulation. For analysis, the authors
compared amplitudes and latencies of P100 (the same as P1, a positive peak occurring
generally at 100 ms), N150, and P270. When comparing P100 VEP, CI users had a lower
P100 VEP amplitude and shorter P100 latencies than those with NH, and recruitment of
the right auditory cortex was observed in CI users [28]. For children with congenital HL,
Sharma et al. (2002) reported that those with less than 3.5 years of HL showed P1 latencies
within normal limits within 6 months of using a CI [29].

While there are studies that have explored electrophysiological characteristics in indi-
viduals with normal hearing (NH) and HL using CAEPs, most of these studies have focused
on children, with relatively few examining adults. Additionally, there is a significant lack
of research involving individuals using hearing aids or CIs, as well as those with diverse
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hearing characteristics. This study explores the P1 and N1 characteristics of individuals
with various auditory characteristics. We hypothesized that individuals with HL would
exhibit a larger amplitude than those with NH, and that CI users would show a smaller
amplitude after CI surgery.

2. Materials and Methods
2.1. Participants

The inclusion criteria for this prospective cohort study, conducted from 2020 to 2023,
included adults aged 19 years and older. The NH group included individuals with hearing
test results showing thresholds of 25 dB HL or below at frequencies from 125 to 8000 Hz.
The HL group included those with sensorineural HL above 30 dB HL based on the four-
frequency pure-tone average (500, 1000, 2000, and 4000 Hz). The CI group comprised
individuals with severe to profound HL scheduled for CI surgery. The exclusion criteria
included individuals who had difficulty watching TV from a distance of 1 m and those with
otological pathology and neurological and mental disorders. All experimental procedures
were approved by Samsung Medical Center’s Institutional Review Board. Prior to testing,
an informed consent document was obtained from the participants.

2.2. Pure-Tone Audiometry

Pure-tone audiometry was performed in a sound booth using insert earphones and an
AudioStar Pro (Grason-Stadler, Eden Prairie, MN, USA) audiometer.

2.3. Speech Testing

The Korean version of the Hearing in Noise Test (K-HINT) is a speech-in-noise test
widely used in South Korea. The K-HINT has a total of 240 sentences (20 sentences per
list × 12 lists). The target sentences were presented through a loudspeaker located in front
of the participants in a sound-treated booth using HINT pro 7.2 (Natus, Middleton, WI,
USA). The participants were asked to listen to the sentences and then repeat them back to
the tester. The testing was conducted in four conditions: quiet, noise from the front, noise
from +90◦, and noise from −90◦. The presentation level was 65 dBA. In the conditions
involving noise, the testing began at a 0 dB signal-to-noise ratio (SNR). If the participant
correctly repeated the sentence, the level of the speech was decreased by 4 dB. If the
participant incorrectly repeated the sentence, the speech level was increased by 2 dB. The
K-HINT was performed twice, and the average was calculated for all participants.

2.4. CAEP Recording and Preprocessing

All recordings were conducted with the ActiveTwo BioSemi system (Amsterdam, The
Netherlands). The electrodes were placed according to the 10–20 system. The electrodes
were placed at Cz, Pz, Fz, T7, T8, O1, O2, and Oz. Reference electrodes were placed on
the mastoids. Four additional electrodes were placed on the upper and lower part of the
left eye and the outer canthi of both eyes for electro-oculograms. The sampling rate was
2048 Hz, and electrode impedances were kept below 5 kΩ. The acquired EEG data were
filtered using a 1–30 Hz band-pass filter. Visual inspection was performed for movement
artifacts. Then, the data were epoched from 100 ms pre-stimulus to 500 ms post-stimulus.
For baseline correction, the epochs were deducted from the mean value of the pre-stimulus
interval. Epochs including significant physiological artifacts (amplitude exceeding ±75 µV)
at any electrodes were rejected. All EEG preprocessing steps and additional analysis
procedures were carried out using MATLAB 2021 (Mathworks Inc., Natick, MA, USA).

2.5. Visual Evoked Potentials

For the VEP, the reversed displays of checkerboard patterns, which are widely used due
to simplicity, were used. The stimuli consisted of black and white squares (10 × 10 pattern-
reversal checkerboard) and were presented on a monitor using Neuroscan STIM2 (Charlotte,
NC, USA). The stimulus interval was randomized between 900 ms and 1100 ms and the
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stimulus was repeatedly presented 500 times. The stimulus interval was 1000 ms. The
participants were seated in a comfortable chair in a darkened room and asked to look
at the center of the checkerboard image during the testing. The distance between the
participant and the monitor was 1 m. After preprocessing the EEG data, peak detection
of the elicited P100 component was performed. Trials were averaged at O1, Oz, and O2
electrodes, respectively. The most positive peak amplitude of the P100 component was
defined between 60 and 200 ms, which was determined by the time interval between the
zero crossings of the grand averaged waveform.

2.6. Auditory Evoked Potentials

AEPs in response to three stimuli (/da/, /ba/, and 1000 Hz) were recorded. Each
stimulus had a duration of 170 ms and was repeatedly presented 300 times. The stimulus
interval ranged from 900 ms to 1100 ms. The duration of the stimulus was 170 ms, and the
stimulus interval was 1000 ms. The stimuli were presented though a speaker located 1 m
from the participants with the presentation level of 65 dB, and white noise was presented
in the opposite ear using an insert earphone at 45 dB. The participants sat on a comfortable
chair and watched a movie without sound during the testing. After preprocessing the
data for each stimulus type, the trials were averaged at Fz, Cz, Pz, T7, and T8 electrodes,
respectively. The N100 component was elicited during the paradigms and the most negative
peak amplitude of the N100 component was defined between the designated time windows.
The time intervals between the zero crossings of the grand averaged N100 waveforms by
each stimulus were used to determine the time windows. Specifically, the time window for
the /ba/ stimulus was set between 90 and 190 ms, for the /da/ stimulus between 60 and
185 ms, and for the 1000 Hz tone stimulus between 60 and 185 ms after the stimulus onset.

3. Results
3.1. Participant Characteristics

A total of 16 participants were enrolled in the study. Characteristics of the CI users
are described in Table 1. Among the participants, seven had NH, four had bilateral
sensorineural HL, and five were CI users. The age range of the participants was from 23
to 67 years old, with a mean age of 44.1 years (SD = 14.2). The four-frequency pure-tone
averages of the NH group were 7.1 dB in the right ear and 5.9 dB in the left ear. Individuals
in the HL group had moderately severe sensorineural HL in both ears, and their pure-tone
averages were 62.5 dB in the right ear and 59.7 dB in the left ear. In the CI group, the
pure-tone averages were 59.0 dB in the right ear and 81.5 dB in the left ear. Among the CI
group, two individuals (CI1 and CI2) had single-sided deafness in the right ear, and the
four-frequency pure-tone averages were 15 and 11.2 dB for CI1 and CI2.

Table 1. Participant characteristics.

Group Sex Age Four-Frequency Pure-Tone
Average (Right/Left in dB) Etiology of HL Duration of

HL (mos) CI Side Device

NH1 F 32

7.1/5.9 N/A N/A N/A N/A

NH2 F 23
NH3 F 30
NH4 F 23
NH5 M 44
NH6 F 43
NH7 M 26

HL1 M 54

62.5/59.7

Sudden 192

N/A N/A
HL2 M 62 Unknown 24
HL3 F 63 Unknown 144
HL4 F 61 Sudden 288
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Table 1. Cont.

Group Sex Age Four-Frequency Pure-Tone
Average (Right/Left in dB) Etiology of HL Duration of

HL (mos) CI Side Device

CI1 M 42

59.0/81.5

Chronic otitis media 48 L KANSO 2
CI2 F 51 Sudden 24 L RONDO 2
CI3 F 56 Sudden 96 R KANSO 2
CI4 F 36 Unknown 240 L KANSO 2
CI5 F 48 Unknown 240 L KANSO 2

N/A: Not available.

3.2. Speech Performance

The average K-HINT scores in quiet were 9.2, 61.4, and 31.7 dBA for the NH, HL, and
CI groups. When the noise was presented from the front, the average scores were −4.4,
3.4, and 0.3 dB SNR for the NH, HL, and CI groups. In the noise from +90◦ condition, the
average scores were −14.5, −0.3, and 2.6 dB SNR for the NH, HL, and CI groups. Lastly,
in the noise from −90◦ condition, the average scores were −12.4, −1.4, and −0.2 dB SNR
for the NH, HL, and CI groups. In all test conditions, the NH groups showed the best
performance. Comparing the HL and CI groups, the CI users performed better than those
with HL in all conditions except for the noise from +90◦ and −90◦ conditions.

3.3. Visual Evoked Potentials

Figure 1 illustrates the grand average waveforms for VEP. Only the P1 amplitudes
were assessed. Table 2 describes the average P1 amplitudes for all three groups. For O1,
the P1 amplitudes for the NH and HL groups were 5.7 and 5.3 µV. For the CI group, the P1
amplitude before implantation was 5.6 µV, and after implantation it was 4.3 µV. For Oz, the
amplitudes were 7.6 and 6.1 µV for the NH and HL groups. The amplitudes were 8.2 and
5.5 µV in the pre- and post-CI conditions for the CI users. Lastly, for O2, the P1 amplitudes
were observed to be 7.4 and 5.7 µV for the NH and HL groups. The P1 amplitudes were
7.8 and 5.3 µV before and after implantation for the CI users. For the CI group, overall
reductions in the P1 amplitudes were observed for all channels after implantation. The
NH group showed the largest amplitudes, followed by the HL group and the CI group
(post-CI).
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Table 2. Average P1 amplitudes for Oz, O1, and O2 for the groups.

Group
Average Amplitudes (µV)

Oz O1 O2

NH 5.7 7.6 7.4
HL 5.3 6.1 5.7

Pre-CI 5.6 8.2 7.8
Post-CI 4.3 5.5 5.3

3.4. Auditory Evoked Potentials

Table 3 describes the average N1 peak amplitudes for all three groups in each stimulus
condition. Figure 2 illustrates the grand average waveforms for AEP. When comparing the
average N1 peak amplitude between the NH and HL groups, the N1 peak amplitudes at
1000 Hz were found to be smaller in the HL group. For /ba/, the N1 peak amplitude in
the HL group was larger at all electrodes except T8. For /da/, the N1 peak amplitude was
larger in the NH group at the Fz, T7, and T8 electrodes. The smallest N1 peak amplitude
was observed in the pre-CI condition for all stimuli except for /da/ at the T8 electrode.

Table 3. Average N1 amplitudes for 1000 Hz, /ba/, and /da/ for the groups.

Stimulus Group
Average Amplitudes (µV)

Fz T7 Cz T8 Pz

1000 Hz
NH −5.9 −2.6 −5.1 −3.2 −3.1
HL −2.5 −1.4 −2.3 −0.7 −1.6

Pre-CI −0.2 −0.9 0.1 −0.3 0.1

/ba/
NH −3.3 −1.9 −3.0 −2.1 −2.0
HL −4.3 −2.3 −4.3 −1.5 −2.8

Pre-CI −1.0 −0.7 −0.9 −0.4 −0.6

/da/
NH −3.3 −1.6 −3.3 −2.3 −2.2
HL −3.2 −1.4 −3.4 −1.3 −2.3

Pre-CI −1.1 −1.0 −1.1 −1.7 −1.2

J. Clin. Med. 2024, 13, x FOR PEER REVIEW 6 of 10 
 

 

 
Figure 1. Grand average waveforms for VEP. 

Table 2. Average P1 amplitudes for Oz, O1, and O2 for the groups. 

Group 
Average Amplitudes (µV) 

Oz O1 O2 
NH 5.7 7.6 7.4 
HL 5.3 6.1 5.7 

Pre-CI 5.6 8.2 7.8 
Post-CI 4.3 5.5 5.3 

3.4. Auditory Evoked Potentials 
Table 3 describes the average N1 peak amplitudes for all three groups in each stimu-

lus condition. Figure 2 illustrates the grand average waveforms for AEP. When comparing 
the average N1 peak amplitude between the NH and HL groups, the N1 peak amplitudes 
at 1000 Hz were found to be smaller in the HL group. For /ba/, the N1 peak amplitude in 
the HL group was larger at all electrodes except T8. For /da/, the N1 peak amplitude was 
larger in the NH group at the Fz, T7, and T8 electrodes. The smallest N1 peak amplitude 
was observed in the pre-CI condition for all stimuli except for /da/ at the T8 electrode. 

 
Figure 2. Grand average waveforms for AEP. 

  

Figure 2. Grand average waveforms for AEP.

4. Discussion

This study investigated speech understanding ability as well as P1 and N1 character-
istics in individuals with NH and HL, and CI users. The results revealed that, in terms
of speech recognition, the NH listeners were able to understand speech better than the
HL and CI users. Comparing between the HL and CI groups, the CI group’s speech per-
formance was better than the HL group except for in two conditions (+90◦ and −90◦).
Regarding the P1 and N1 responses, P1 (VEP) and N1 (AEP) amplitudes were compared
for all groups. Compared to the NH group, the HL and CI groups showed smaller P1
amplitudes in response to VEP. A comparison of the pre- and post-CI conditions showed
that implantation led to smaller P1 amplitudes. For AEP, the smallest N1 amplitude was
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generally observed in the pre-CI condition. When comparing the average N1 peak ampli-
tude between the NH and HL groups, the HL group showed smaller N1 peak amplitudes
at 1000 Hz. For the /ba/ stimulus, the N1 peak amplitude was greater in the HL group
at all electrodes except T8. Conversely, for the /da/ stimulus, the NH group had larger
N1 peak amplitudes at the Fz, T7, and T8 electrodes. Findings of the study are in line with
previous studies, to some extent, showing that HL led to poor speech performance and
smaller P1 and N1 amplitudes [28,30–34]. Campbell and Sharma (2014) examined the VEP
response in nine individuals with NH and eight individuals with mild to moderate HL,
and found that the P1, N1, and P2 amplitudes were larger in the HL group [33]. Harkrider
et al. (2006) investigated N1–P2 cortical evoked responses in 11 young adults and 10 older
adults with NH, and 10 older adults with mild-to-moderate HL. They found that young
adults with NH showed the smallest N1 amplitudes, while among the older adults with
NH and HL, the older adults with HL exhibited larger N1 amplitudes [34]. This study is
meaningful, as it investigated the P1 and N1 characteristics in individuals with various
hearing characteristics, including those with NH, HL, CI users, and specifically those with
single-sided deafness using a CI. However, many aspects need to be improved to explain
the electrophysiological characteristics in such diverse groups. Firstly, similar to other
studies, the small sample size in this study made it difficult to generalize the findings, so
further research with a larger sample size is necessary. Regarding various hearing profiles,
it would be meaningful to explore the changes in electrophysiological characteristics based
on not only single-sided deafness but also various etiologies, durations of HL, types of
hearing devices, and so on. While this study used only eight electrodes, employing more
electrodes could allow for a more detailed examination of brain-region-specific character-
istics. It is also important to investigate brain characteristics at different time points in
terms of brain plasticity. Stropahl et al. (2017) noted that cortical change patterns may vary
depending on the degree of HL, and how these patterns change following sensory restora-
tion via CI is not well understood [18]. The authors emphasized the need for prospective
longitudinal studies with various time points to understand the factors driving cortical
changes and the nature of these patterns. Therefore, including pre-CI as well as post-CI
conditions at intervals such as three, six, and nine months, and so on, would be beneficial.
Lastly, while electrophysiological components include not only P1 and N1 but also P2,
P300, and others, this study was limited by artifacts, allowing comparison only of the P1
amplitude in VEP and the N1 amplitude in AEP. Artifacts in EEG conducted on CI users
have been a longstanding issue, and studies are ongoing to address this [35,36]. Intartaglia
et al. (2022) mentioned the importance of the development of reliable techniques of EEG
artifact removal since the artifacts caused by CIs could distort EEG responses. However,
even though various methods have been employed in past research, it is still difficult to
determine the best EEG artifact removal technique, as there is a lack of documentation
and agreement.

In summary, research studies investigating electrophysiological characteristics in indi-
viduals with various types and degrees of HL has shown mixed findings. This variability
can be attributed to factors, such as the limited amount of research in this area, small sample
sizes, and methodological differences, including stimuli presentation levels and the signal-
to-noise ratio (SNR) [12,37–39]. Regarding the stimuli presentation level, in this study,
the presentation level of all stimuli was fixed at 65 dBA. Several studies have mentioned
that different CAEP response characteristics can be observed depending on the stimulus
intensity and SNRs [38,39]. Gurkan et al. (2023) examined CAEP responses in three groups
(NH, mild HL, and moderate HL) with a stimulus (/g/) presented at 10, 20, and 30 dB
SNRs [38]. The authors reported that those with moderate HL showed decreasing N1–P2
responses as SNRs decreased. Considering that everyday communication environments
involve various SNRs and that stimulus levels are perceived differently depending on the
type and degree of HL, it is essential to take hearing status into account when determining
the presentation level of the stimulus. Another methodological difference is the criteria
used to distinguish participant characteristics. While this study did not divide CI users
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into well-performing and poor-performing groups based on speech performance, some
studies have categorized participants in this way, leading to differing findings [31,40]. Kim
et al. (2016) investigated the VEP characteristics of 14 CI users and 12 NH listeners. When
dividing the CI group into poor performing and well performing, it was found that the
poor-performing CI group showed larger P1 amplitudes in the right temporal cortex and
smaller P1 amplitudes at electrodes near the occipital cortex [31]. Doucet et al. (2006) also
investigated VEP characteristics in 13 CI users and 16 NH listeners. Similar to Kim et al.
(2016), this study divided the CI users into poor-performing and well-performing groups.
While no differences in P1 and N1 amplitudes were observed, the study found that the P2
amplitude was significantly larger at the occipital site [40].

As for future research, Pisoni et al. (2018) mentioned that future studies related to
CI should focus more on individuals with poor outcomes rather than those with good
outcomes [12]. They noted that, aside from device checks and commonly conducted audio-
logical testing in clinical settings, there is a lack of evaluation and intervention protocols
for individuals with poor outcomes. They also suggested that additional assessments for
cognitive domains should be incorporated. Since each individual with HL has unique
characteristics, it is essential to go beyond the conventional audiological testing and in-
clude assessments of cognitive and psychosocial domains to accurately understand their
characteristics at peripheral and central levels.
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