Intraoperative Hearing Monitoring Using ABR and TT-ECochG and Hearing Preservation during Vestibular Schwannoma Resection
<p>Preoperative and postoperative tonal audiometry as well as preoperative and postoperative tonal audiometry calculated using the following formula: (0.5 kHz + 1.0 kHz + 2.0 kHz + 3.0 kHz)/4)(PTA-4). dB HL: decibel hearing level; Hz: Hertz; PTA-4: tonal audiometry calculated during option (0.5 kHz + 1.0 kHz + 2.0 kHz + 3.0 kHz)/4).</p> "> Figure 2
<p>Correlation between American Academy of Otolaryngology–Head and Neck Surgery Hearing Classification (difference between post- and preoperative hearing category) and intraoperative changes of parameters describing transtympanic electrocochleography parameters (action potential latency and amplitude) during three stages of the surgery. AAO—HNS: American Academy of Otolaryngology–Head and Neck Surgery; ms: milliseconds; AP_Lat: action potential latency; AP_Amp: action potential amplitude; Post–intra: difference between results after and during surgery; Post–pre: difference between results after and before surgery.</p> "> Figure 3
<p>Correlation between auditory brainstem response interlatencies I–V and action potential latency changes during vestibular schwannoma resection calculated in various forms: Intra—Pre; Post—Intra and Pos—Pre. ABR I–V: auditory brainstem response interlatencies I–V; AP_Latency: action potential latency; ms: milliseconds; Intra–pre: difference between results during and before surgery; Post–intra: difference between results after and during surgery; Post–pre: difference between results after and before surgery.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Patients’ Presentation
2.2. Audiological Test Methodology
2.3. Methodology of Intraoperative Hearing Monitoring
2.4. Statistical Analyses
3. Results
3.1. Vestibular Schwannoma Dimensions in MRI
3.2. Analysis of Audiological Tests before and after Vestibular Schwannoma Removal
3.3. Characteristics of Electrophysiological Tests
3.3.1. Auditory Brainstem Responses—ABR
3.3.2. Transtympanic Electrocochleography
3.4. Assessment of the Relationship between Audiological Tests and Electrophysiological Tests Used for Intraoperative Hearing Monitoring
3.5. Assessment of the Relationship between ABR and TT-ECochG during Intraoperative Hearing Monitoring
3.6. Assessment of the Relationship between Audiological and Electrophysiological Tests Used for Intraoperative Hearing Monitoring and Vestibular Schwannoma Dimensions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brackmann, D.; Arriaga, M. Differential diagnosis of neoplasmas of the posterior fossa. In Cummings Otolaryngology—Head and Neck Surgery, Ear and Cranial Base; Mosby: St. Louis, MO, USA, 1993; Volume 4, pp. 3271–3291. [Google Scholar]
- AL-Shudifat, A.R.; Kahlon, B.; Höglund, P.; Soliman, A.Y.; Lindskog, K.; Peter Siesjo, P. Age, gender and tumour size predict work capacity after surgical treatment of vestibular schwannomas. J. Neurol. Neurosurg. Psychiatry 2014, 85, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Eldridge, R.; Parry, D. Vestibular schwannoma (acoustic neuroma). Consensus development conference. Neurosurgery 1992, 30, 962–964. [Google Scholar] [PubMed]
- Arthurs, B.J.; Fairbanks, R.K.; Demakas, J.J.; Lamoreaux, W.T.; Giddings, N.A.; Mackay, A.R.; Cooke, B.S.; Elaimy, A.L.; Lee, C.M. A review of treatment modalities for vestibular schwannoma. Neurosurg. Rev. 2011, 34, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Thakker, A.; Gupta, K.K. Vestibular Schwannoma: What We Know and Where We Are Heading. Head Neck Pathol. 2020, 14, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- Goldbrunner, R.; Weller, M.; Regis, J.; Lund-Johansen, M.; Stavrinou, P.; Reuss, D.; Evans, G.; Lefranc, F.; Sallabanda, K.; Falini, A.; et al. EANO guideline on the diagnosis and treatment of vestibular schwannoma. Neuro-Oncology 2020, 22, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Colletti, V.; Fiorino, F.G.; Mocella, S.; Policante, Z. ECochG, CNAP and ABR monitoring during vestibular Schwannoma surgery. Audiology 1998, 37, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Schlake, H.P.; Milewski, C.; Goldbrunner, R.H.; Kindgen, A.; Riemann, R.; Helms, J.; Roosen, K. Combined intra-operative monitoring of hearing by means of auditory brainstem responses (ABR) and transtympanic electrocochleography (ECochG) during surgery of intra- and extrameatal acoustic neurinomas. Acta Neurochir. 2001, 143, 985–995. [Google Scholar] [CrossRef]
- Danner, C.; Mastrodimos, B.; Cueva, R.A. A comparison of direct eighth nerve monitoring and auditory brainstem response in hearing preservation surgery for vestibular schwannoma. Otol. Neurotol. 2004, 25, 826–832. [Google Scholar] [CrossRef]
- Morawski, K.F.; Hryciuk, A.; Morawski, R.; Niemczyk, K. Wstęp do elektrofizjologii klinicznej obwodowej części narządu słuchu. Pol. Otorhinolaryngol. Rev. 2012, 1, 51–57. [Google Scholar] [CrossRef]
- Pobożny, I.; Morawski, K.; Pierchała, K.; Bartoszewicz, R.; Niemczyk, K. Prognostic value of ABR-ECochG intraoperative morphology changes in term of hearing preservation in patients with vestibular schwannoma. Pol. Otorhinolaryngol. Rev. 2016, 5, 15–23. [Google Scholar]
- Battista, R.A.; Wiet, R.J.; Paauwe, L. Evaluation of three intraoperative auditory monitoring techniques in acoustic neuroma surgery. Am. J. Otol. 2000, 21, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Moller, A.R.; Jannetta, P.J. Compound action potentials recorded intracranially from the auditory nerve in man. Exp. Neurol. 1981, 74, 862–874. [Google Scholar] [CrossRef] [PubMed]
- Moller, A.R.; Jannetta, P.; Moller, M.B. Intracranially recorded auditory nerve response in man. New interpretations of BSER. Arch. Otolaryngol. 1982, 108, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Yamakami, I.; Yoshinori, H.; Saeki, N.; Wada, M.; Oka, N. Hearing preservation and intraoperative auditory brainstem response and cochlear nerve compound action potential monitoring in the removal of small acoustic neurinoma via the retrosigmoid approach. J. Neurol. Neurosurg. Psychiatry 2009, 80, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Youssef, A.S.; Downes, A.E. Intraoperative neurophysiological monitoring in vestibular schwannoma surgery: Advances and clinical implications. Neurosurg. Focus 2009, 27, E9. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.; Nagasawa, D.T.; Fong, B.M.; Trang, A.; Gopen, Q.; Parsa, A.T.; Yang, I. Intraoperative neuromonitoring techniques in the surgical management of acoustic neuromas. Neurosurg. Focus 2012, 33, E6. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, K.; Kohno, M. Intraoperative Neuromonitoring in Vestibular Schwannoma Surgery. No Shinkei Geka 2023, 51, 490–499. [Google Scholar] [PubMed]
- Silverstein, H.; McDaniel, A.; Norrell, H.; Haberkamp, T. Hearing preservation after acoustic neuroma surgery with intraoperative direct eighth cranial nerve monitoring: Part II. A classification of results. Otolaryngol. Head Neck Surg. 1986, 95 Pt 1, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.Q.; Sullivan, C.; Kung, R.W.; Asklof, M.; Hansen, M.R.; Gantz, B.J. How Well Does Intraoperative Audiologic Monitoring Predict Hearing Outcome During Middle Fossa Vestibular Schwannoma Resection? Otol. Neurotol. 2018, 39, 908–915. [Google Scholar] [CrossRef]
- Abou-Al-Shaar, H.; Abunimer, A.M.; Whit, T.G.; Dehdashti, A.R. Hearing preservation after removal of small vestibular schwannomas: The role of ABR neuromonitoring. Acta Neurochir. 2019, 161, 85–86. [Google Scholar] [CrossRef]
- Saliba, J.; Friedman, R.A.; Cueva, R.A. Hearing Preservation in Vestibular Schwannoma Surgery. J. Neurol. Surg. Part B Skull Base 2019, 80, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Kosty, J.A.; Stevens, S.M.; Gozal, Y.M.; DiNapoli, V.A.; Patel, S.K.; Golub, J.S.; Andaluz, N.O.; Pensak, M.; Zuccarello, M.; Samy, R.N. Middle Fossa Approach for Resection of Vestibular Schwannomas: A Decade of Experience. Middle Fossa Approach for Resection of Vestibular Schwannomas: A Decade of Experience. Oper. Neurosurg. 2019, 16, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Colletti, V.; Bricolo, A.; Fiorino, F.G.; Bruni, L. Changes in directly recorded cochlear nerve compound action potentials during acoustic tumor surgery. Skull Base Surg. 1994, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Aihara, N.; Murakami, S.; Watanabe, N.; Takahashi, M.; Inagaki, A.; Tanikawa, M.; Yamada, K. Cochlear nerve action potential monitoring with the microdissector in vestibular schwannoma surgery. Skull Base 2009, 19, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, M.; Kojima, A.; Terao, S.; Nagai, M.; Kusaka, G.; Naritaka, H. Cochlear Nerve Action Potential Monitoring for Preserving Function of an Unseen Cochlear Nerve in Vestibular Schwannoma Surgery. World Neurosurg. 2017, 106, 1057.e1–1057.e7. [Google Scholar] [CrossRef] [PubMed]
- Pobożny, I.; Lachowska, M.; Bartoszewicz, R.; Niemczyk, K. Detailed insight into transtympanic electrocochleography (TT-ECochG) and direct cochlear nerve action potential (CNAP) for intraoperative hearing monitoring in patients with vestibular schwannoma—Methodology of measurements and interpretation of results. Pol. J. Otolaryngol. 2020, 74, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Morawski, K.F.; Niemczyk, K.; Bohorquez, J.; Marchel, A.; Delgado, R.E.; Ozdamar, O.; Telischi, F.F. Intraoperative monitoring of hearing during cerebellopontine angle tumor surgery using transtympanic electrocochleography. Otol. Neurotol. 2007, 28, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Roberson, J.; Senne, A.; Brackmann, D.; Hitselberger, W.E.; Saunders, J. Direct cochlear nerve action potentials as an aid to hearing preservation in middle fossa acoustic neuroma resection. Am. J. Otol. 1996, 17, 653–657. [Google Scholar]
- Cueva, R.A.; Morris, G.F.; Prioleau, G.R. Direct cochlear nerve monitoring: First report on a new atraumatic, self-retaining electrode. Am. J. Otol. 1998, 19, 202–207. [Google Scholar]
- Hochet, B.; Daoudi, H.; Lefevre, E.; Nguyen, Y.; Bernat, I.; Sterkers, O.; Lahlou, G.; Kalamarides, M. Monitoring Cochlear Nerve Action Potential for Hearing Preservation in Medium/Large Vestibular Schwannoma Surgery: Tips and Pitfalls. J. Clin. Med. 2023, 12, 6906. [Google Scholar] [CrossRef]
- Morawski, K.; Niemczyk, K.; Sokolowski, J.; Hryciuk, A.; Bartoszewicz, R. Intraoperative monitoring of hearing improvement during ossiculoplasty by laser-doppler vibrometry, auditory brainstem responses, and electrocochleography. Otolaryngol. Head Neck Surg. 2014, 150, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Niemczyk, K.; Morawski, K.; Delgado, R.; Bruzgielewicz, A.; Lachowska, M. Objective assessment of hearing during second stage of tympanoplasty—Surgical technique and measurement methodology presented in ten patients. Clin. Otolaryngol. 2018, 43, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Morawski, K.; Namyslowski, G.; Lisowska, G.; Bazowski, P.; Kwiek, S.; Telischi, F.F. Intraoperative monitoring of cochlear function using distortion product otoacoustic emissions (DPOAEs) in patients with cerebellopontine angle tumors. Otol. Neurotol. 2004, 25, 818–825. [Google Scholar] [CrossRef] [PubMed]
- Morawski, K.; Telischi, F.F.; Niemczyk, K. A model of real time monitoring of the cochlear function during an induced local ischemia. Hear. Res. 2006, 212, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Committee on Hearing and Equilibrium. Committee on Hearing and Equilibrium guidelines for the evaluation of hearing preservation in acoustic neuroma (vestibular schwannoma). Otolaryngol. Head Neck Surg. 1995, 113, 179–180. [Google Scholar] [CrossRef] [PubMed]
- Koos, W.T.; Day, J.D.; Matula, C.; Levy, D.I. Neurotopographic considerations in the microsurgical treatment of small acoustic neurinomas. J. Neurosurg. 1998, 88, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Matthies, C.; Samii, M. Management of vestibular schwannomas (acoustic neuromas): The value of neurophysiology for evaluation and prediction of auditory function in 420 cases. Neurosurgery 1997, 40, 919–929. [Google Scholar] [CrossRef]
- Silk, P.S.; Lane, J.I.; Driscoll, C.L. Surgical approaches to vestibular schwannomas: What the radiologist needs to know. Radiographics 2009, 29, 1955–1970. [Google Scholar] [CrossRef] [PubMed]
- Żurek, M.; Wojciechowski, T.; Niemczyk, K. Nationwide clinico-epidemiological treatment analysis of adult patients with tumors of cerebellopontine angle and internal acoustic meatus in Poland during 2011–2020. BMC Public Health 2023, 23, 1735–1745. [Google Scholar] [CrossRef]
- Larjavaara, S.; Feychting, M.; Sankila, R.; Johansen, S.; Klaeboe, L.; Schüz, J.; Auvinen, A. Incidence trends of vestibular schwannomas in Denmark, Finland, Norway and Sweden in 1987–2007. Br. J. Cancer 2011, 105, 1069–1075. [Google Scholar] [CrossRef]
- Stepanidis, K.; Stepanidis, K.; Kessel, M.; Caye-Thomasen, P.; Stangerup, S.-E. Socio-demographic distribution of vestibular schwannomas in Denmark. Acta Otolaryngol. 2014, 134, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Thai, N.L.B.; Mai, N.Y.; Vuong, N.L.; Tin, N.M.; Karam, D.; Refaey, M.A.; Shahin, K.M.; Soliman, A.L.; Al Khudari, R.; Thuan, T.M.; et al. Treatment for vestibular schwannoma: Systematic review and single arm meta-analysis. Am. J. Otolaryngol. 2022, 43, 103337. [Google Scholar] [CrossRef] [PubMed]
- Zanoletti, E.; Concheri, S.; Tealdo, G.; Cazzador, D.; Denaro, L.; d’Avella, D.; Mazzoni, A. Early surgery and definitive cure in small sporadic vestibular schwannoma. Acta Otorhinolaryngol. Ital. 2022, 42, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Yancey, K.; Barnett, S.L.; Kutz, W.; Isaacson, B.; Wardak, Z.; Micke, B.; Hunter, J.B. Hearing Preservation after Intervention in Vestibular Schwannoma. Otol. Neurotol. 2022, 43, e846–e855. [Google Scholar] [CrossRef] [PubMed]
- Welch, C.M.; Mannarelli, G.; Koehler, L.; Telian, S.T. Intraoperative Auditory Brainstem Response Results Predict Delayed Sensorineural Hearing Loss after Middle Cranial Fossa Resection of Vestibular Schwannoma. Otol. Neurotol. 2021, 42, e771–e778. [Google Scholar] [CrossRef] [PubMed]
- Gardner, G.; Robertson, J.H. Hearing preservation in unilateral acoustic neuroma surgery. Ann. Otol. Rhinol. Laryngol. 1988, 97, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Concheri, S.; Deretti, A.; Tealdo, G.; Zanoletti, E. Prognostic Factors for Hearing Preservation Surgery in Small Vestibular Schwannoma. Audiol. Res. 2023, 13, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Mankekar, G.; Holmes, S. Hearing Rehabilitation in Vestibular Schwannoma. Audiol. Res. 2023, 13, 357–366. [Google Scholar] [CrossRef]
- Vivas, E.X.; Carlson, M.L.; Neff, B.A.; Shepard, N.T.; McCracken, D.J.; Sweeney, A.D.; Olson, J.J. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on Intraoperative Cranial Nerve Monitoring in Vestibular Schwannoma Surgery. Neurosurgery 2018, 82, E44–E46. [Google Scholar] [CrossRef]
Ave | Med | Range | Q1–Q3 | SD | Test Wilcoxona | |
---|---|---|---|---|---|---|
Pre PTA-4 [dB HL] | 25.02 | 22.50 | 2.50–63.75 | 11.25–37.50 | 15.53 | |
Post PTA-4 [dB HL] | 55.05 | 43.75 | 10.00–130.00 | 22.50–70.00 | 39.48 | |
Post–Pre PTA-4 [dB] | 30.03 | 15.00 | −6.25–126.25 | 6.25–38.75 | 36.46 | Z = 7.20 *; p < 0.001 |
Pre Speech Audiometry 60 dB SPL [%] | 70.93 | 90.00 | 00.00–100.00 | 50.00–100.00 | 33.68 | |
Post Speech Audiometry 60 dB SPL [%] | 38.93 | 30.00 | 0.00–100.00 | 0.00–80.00 | 37.42 | |
Post–Pre Speech Audiometry 60 dB SPL [%] | −32.00 | −20.00 | −100.00–45.00 | −55.00–5.00 | 32.40 | Z = 6.60 *; p < 0.001 |
AAO—HNS Hearing Classification | Pre PTA-4 | Post PTA-4 | Pre Speech Audiometry 60 dB SPL | Post Speech Audiometry 60 dB SPL | Pre PTA-4 + Speech Audiometry 60 dB SPL | Post PTA-4 + Speech Audiometry 60 dB SPL |
---|---|---|---|---|---|---|
Class A | 50 (66.67%) | 24 (32.00%) | 32 (42.67%) | 24 (32.00%) | 47 (62.67%) | 24 (32.00%) |
Class B | 20 (26.67%) | 20 (26.67%) | 6 (8.00%) | 8 (10.67%) | 9 (12.00%) | 8 (10.67%) |
Class C | 5 (6.67%) | 15 (20.00%) | 12 (16.00%) | 1 (1.33%) | 2 (2.66%) | 1 (1.33%) |
Class D | 0 (0.00%) | 16 (21.33%) | 25 (33.33%) | 42 (56.00%) | 17 (22.67%) | 42 (56.00%) |
χ2 Test Pre vs. Post | χ2 = 27.54; df = 9; p < 0.001 |
N | Ave | Med | Range | Q1–Q3 | SD | Test Wilcoxona | |
---|---|---|---|---|---|---|---|
Pre ABR I/III/V [ms] | 75/60/75 | 1.92/4.85/6.98 | 1.88/4.71/6.92 | 1.55–2.63/ 3.98–6.1/ 5.88–8.38 | 1.75–2.02/ 4.44–5.25/ 6.5–7.42 | 0.23/0.52/0.58 | |
Pre ABR I–III/ III–V/I–V [ms] | 60/60/75 | 2.95/2.06/5.05 | 2.79/2.05/4.95 | 2.10–4.00/ 1.32–2.8/ 4.06–6.15 | 1.75–2.02/ 2.60–3.32/ 4.65–5.53 | 0.49/0.27/0.55 | |
Intra ABR I/III/V [ms] | 75/42/75 | 2.28/5.22/7.35 | 2.13/5.10/7.25 | 1.68–4.47/ 4.17–7.83/ 6.20–9.68 | 2.00–2.38/ 4.67–5.65/ 6.85–7.78 | 0.48/0.73/0.71 | Pre vs. Intra I: Z = 7.17 *; p < 0.001 Pre vs. Intra III: Z = 3.28 *; p < 0.01 Pre vs. Intra V: Z = 4.63 *; p < 0.001 |
Intra ABR I–III/ III–V/I–V [ms] | 42/42/75 | 3.05/2.04/5.07 | 2.94/2.03/5.00 | 1.95–5.53/ 1.55–2.86/ 3.72–7.38 | 2.70–3.37/ 1.83–2.22/ 4.70–5.37 | 0.63/0.29/0.61 | |
Post ABR I/III/V [ms] | 61/40/75 | 2.26/5.11/8.27 | 2.15/5.01/7.28 | 1.68–4.17/ 4.15–6.58/ 6.22–12.80 | 1.90–2.52/ 4.64–5.49/ 6.85–8.05 | 0.47/0.58/2.24 | Pre vs. Post I: Z = 6.45 * p < 0.001 Pre vs. Post III: Z = 2.54 *; p < 0.05 Pre vs. Post V: Z = 5.22 *; p < 0.001 |
Post ABR I–III/ III–V/I–V [ms] | 40/40/75 | 2.92/2.05/6.42 | 2.88/2.02/5.02 | 1.95–3.97/ 1.65–2.95/ 3.65–12.80 | 2.63–3.11/ 1.90–2.21/ 4.77–5.75 | 0.43/0.26/3.01 | Pre vs. Post I–V: Z = 2.37 *; p < 0.05 Intra vs. Post I–V: Z = 2.08 *; p < 0.05 |
ABR I–V Intra–pre [ms] | 75 | 0.02 | 0.06 | −2.35–1.83 | −0.31–0.37 | 0.66 | |
ABR I–V Post–intra [ms] | 75 | 1.36 | 0.06 | −3.04–8.48 | −0.15–0.42 | 3.01 | |
ABR I–V Post–pre [ms] | 75 | 1.37 | 0.13 | −2.03–8.30 | −0.25–0.91 | 3.03 | |
Pre TT-ECochG Latency [ms] | 75 | 1.92 | 1.88 | 1.55–2.63 | 1.75–2.02 | 0.23 | |
Pre TT-ECochG Amplitude [µV] | 75 | 7.93 | 4.79 | 0.71–43.67 | 2.04–10.50 | 9.16 | |
Intra TT-ECochG Latency [ms] | 75 | 2.28 | 2.13 | 1.68–4.47 | 2.00–2.38 | 0.48 | Pre vs. Intra Lat: Z = 7.13 *; p < 0.001 |
Intra TT-ECochG Amplitude [µV] | 75 | 4.94 | 3.38 | 0.14–28.71 | 1.56–7.10 | 4.87 | Pre vs. Intra Amp: Z = 3.25 *; p < 0.01 |
Post TT-ECochG Latency [ms] | 75 | 2.89 | 2.27 | 1.68–5.60 | 1.95–2.85 | 1.38 | Pre vs. Post Lat: Z = 7.39 *; p < 0.001 Intra vs. Post Lat: Z = 2.82 *; p < 0.01 |
Post TT-ECochG Amplitude [µV] | 75 | 5.00 | 2.78 | 0.00–38.94 | 1.23–5.57 | 6.57 | Pre vs. Post Amp: Z = 3.29 *; p < 0.01 |
AAO—HNS Classification Hearing Worsening | N | R | t(n-2) | p-Value |
---|---|---|---|---|
AAO—HNS Hearing Worsening vs. TT-ECochG_Intra–pre_AP-Lat | 75 | 0.07 | 0.64 | p > 0.05 |
AAO—HNS Hearing Worsening vs. TT-ECochG_Intra–pre_AP-Amp | 75 | −0.21 | −1.86 | 0.067 |
AAO—HNS Hearing Worsening vs. TT-ECochG_Post–intra_AP-Lat | 75 | 0.26 * | 2.28 | p < 0.05 |
AAO—HNS Hearing Worsening vs. TT-ECochG_Post–intra_AP-Amp | 75 | −0.30 * | −2.68 | p < 0.01 |
AAO—HNS Hearing Worsening vs. TT-ECochG_Post–pre_AP-Lat | 75 | 0.21 | 1.8 | 0.075 |
AAO—HNS Hearing Worsening vs. TT-ECochG_Post–pre_AP-Amp | 75 | −0.24 * | −2.15 | p < 0.05 |
ABR, TT-ECochG and Hearing Changes | N | R | t(n-2) | p-Value |
---|---|---|---|---|
Post–intra ABR I–V and PTA-4 diff | 75 | 0.39 | 3.62 | <0.001 |
Post–intra ABR I–V and Post–pre 2 kHz | 75 | 0.34 | 3.05 | <0.01 |
Post–intra ABR I–V and Post–pre 4 kHz | 75 | 0.38 | 3.56 | <0.001 |
Post–pre ABR I–V and PTA-4 diff | 75 | 0.42 | 3.99 | <0.001 |
Post–pre ABR I–V and Post–pre 2 kHz | 75 | 0.41 | 3.82 | <0.001 |
Post–pre ABR I–V and Post–pre 4 kHz | 75 | 0.44 | 4.23 | <0.001 |
Intra–pre ABR I–V and AAO—HNS 60 diff | 75 | −0.03 | −0.22 | >0.05 |
Post–intra ABR I–V and AAO—HNS 60 diff | 75 | 0.19 | 1.67 | >0.05 |
Post–pre ABR I–V and AAO—HNS 60 diff | 75 | 0.15 | 1.30 | >0.05 |
Post–intra AP_Lat and Post SA 60 dB SPL | 75 | −0.42 | −3.92 | <0.001 |
Post–intra AP_Amp and Post SA 60 dB SPL | 75 | 0.33 | 3.03 | <0.01 |
Post–pre AP_Lat and Post SA 60 dB SPL | 75 | −0.36 | −3.34 | <0.01 |
Post–pre AP_Amp and Post SA 60 dB SPL | 75 | 0.31 | 2.84 | <0.01 |
Intra–pre AP_Lat and ABR Intra–pre I–V | 75 | −0.27 | −2.38 | <0.05 |
Post–intra AP_Lat and ABR Post–intra I–V | 75 | 0.4 | 3.73 | <0.001 |
Post–pre AP_Lat and ABR Post–pre I–V | 75 | 0.3 | 2.70 | <0.01 |
Post–intra AP_Amp and ABR Post–intra I–V | 75 | −0.37 | −3.45 | <0.001 |
Post–pre AP_Amp and ABR Post–pre I–V | 75 | −0.23 | −2.06 | <0.05 |
Intra–pre AP_Amp and ABR Intra–pre I–V | 75 | 0.09 | 0.78 | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niemczyk, K.; Pobożny, I.; Bartoszewicz, R.; Morawski, K. Intraoperative Hearing Monitoring Using ABR and TT-ECochG and Hearing Preservation during Vestibular Schwannoma Resection. J. Clin. Med. 2024, 13, 4230. https://doi.org/10.3390/jcm13144230
Niemczyk K, Pobożny I, Bartoszewicz R, Morawski K. Intraoperative Hearing Monitoring Using ABR and TT-ECochG and Hearing Preservation during Vestibular Schwannoma Resection. Journal of Clinical Medicine. 2024; 13(14):4230. https://doi.org/10.3390/jcm13144230
Chicago/Turabian StyleNiemczyk, Kazimierz, Izabela Pobożny, Robert Bartoszewicz, and Krzysztof Morawski. 2024. "Intraoperative Hearing Monitoring Using ABR and TT-ECochG and Hearing Preservation during Vestibular Schwannoma Resection" Journal of Clinical Medicine 13, no. 14: 4230. https://doi.org/10.3390/jcm13144230
APA StyleNiemczyk, K., Pobożny, I., Bartoszewicz, R., & Morawski, K. (2024). Intraoperative Hearing Monitoring Using ABR and TT-ECochG and Hearing Preservation during Vestibular Schwannoma Resection. Journal of Clinical Medicine, 13(14), 4230. https://doi.org/10.3390/jcm13144230