The Health and Economic Effects of PCV15 and PCV20 During the First Year of Life in the US
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description
2.2. Model Estimation
2.3. Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Advisory Committee on Immunization Practices. Preventing pneumococcal disease among infants and young children. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. 2000, 49, 1–35. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr4909a1.htm (accessed on 20 September 2024).
- Feikin, D.R.; Kagucia, E.W.; Loo, J.D.; Link-Gelles, R.; Puhan, M.A.; Cherian, T.; Levine, O.S.; Whitney, C.G.; O’Brien, K.L.; Moore, M.R.; et al. Serotype-specific changes in invasive pneumococcal disease after pneumococcal conjugate vaccine introduction: A pooled analysis of multiple surveillance sites. PLoS Med. 2013, 10, e1001517. [Google Scholar] [CrossRef] [PubMed]
- Pilishvili, T.; Lexau, C.; Farley, M.M.; Hadler, J.; Harrison, L.H.; Bennett, N.M.; Reingold, A.; Thomas, A.; Schaffner, W.; Craig, A.S.; et al. Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J. Infect. Dis. 2010, 201, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Invasive Pneumococcal Disease and 13-Valent Pneumococcal Conjugate Vaccine (PCV13) Coverage Among Children Aged ≤59 Months. MMWR Morb. Mortal. Wkly. Rep. 2011, 60, 1477–1481. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6043a2.htm (accessed on 1 October 2024).
- Marom, T.; Tan, A.; Wilkinson, G.S.; Pierson, K.S.; Freeman, J.L.; Chonmaitree, T. Trends in otitis media-related health care use in the United States, 2001–2011. JAMA Pediatr. 2014, 168, 68–75. [Google Scholar] [CrossRef]
- Simonsen, L.; Taylor, R.J.; Young-Xu, Y.; Haber, M.; May, L.; Klugman, K.P. Impact of pneumococcal conjugate vaccination of infants on pneumonia and influenza hospitalization and mortality in all age groups in the United States. mBio 2011, 2, e00309-10. [Google Scholar] [CrossRef]
- Tong, S.; Amand, C.; Kieffer, A.; Kyaw, M.H. Trends in healthcare utilization and costs associated with acute otitis media in the United States during 2008–2014. BMC Health Serv. Res. 2018, 18, 318. [Google Scholar] [CrossRef]
- Wasserman, M.; Chapman, R.; Lapidot, R.; Sutton, K.; Dillon-Murphy, D.; Patel, S.; Chilson, E.; Snow, V.; Farkouh, R.; Pelton, S. Twenty-Year Public Health Impact of 7- and 13-Valent Pneumococcal Conjugate Vaccines in US Children. Emerg. Infect. Dis. 2021, 27, 1627–1636. [Google Scholar] [CrossRef]
- Zhou, X.; de Luise, C.; Gaffney, M.; Burt, C.W.; Scott, D.A.; Gatto, N.; Center, K.J. National impact of 13-valent pneumococcal conjugate vaccine on ambulatory care visits for otitis media in children under 5 years in the United States. Int. J. Pediatr. Otorhinolaryngol. 2019, 119, 96–102. [Google Scholar] [CrossRef]
- Kobayashi, M. Use of 15-Valent Pneumococcal Conjugate Vaccine Among U.S. Children: Updated Recommendations of the Advisory Committee on Immunization Practices—United States, 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1174–1181. [Google Scholar] [CrossRef]
- CDC. Grading of Recommendations, Assessment, Development, and Evaluation (GRADE): 20-valent pneumococcal conjugate vaccine (PCV20) for children aged <2 years. MMWR Recomm. Rep. 2024, 72, 1–3. Available online: https://www.cdc.gov/acip/grade/PCV20-child.html#:~:text=On%20June%2022%2C%202023%2C%20the%20ACIP%20recommended%20use%20of%20PCV20,certain%20underlying%20medical%20conditions%20at (accessed on 1 October 2024).
- CDC. Pneumococcal Vaccine Recommendations. 2024. Available online: https://www.cdc.gov/pneumococcal/hcp/vaccine-recommendations/index.html (accessed on 25 September 2024).
- Rozenbaum, M.H.; Huang, L.; Perdrizet, J.; Cane, A.; Arguedas, A.; Hayford, K.; Tort, M.J.; Chapman, R.; Dillon-Murphy, D.; Snow, V.; et al. Cost-effectiveness of 20-valent pneumococcal conjugate vaccine in US infants. Vaccine 2024, 42, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Rozenbaum, M.H.; Huang, L.; Cane, A.; Arguedas, A.; Chapman, R.; Dillon-Murphy, D.; Tort, M.J.; Snow, V.; Chilson, E.; Farkouh, R. Cost-effectiveness and impact on infections and associated antimicrobial resistance of 20-valent pneumococcal conjugate vaccine in US children previously immunized with PCV13. J. Med. Econ. 2024, 27, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Ta, A.; Kühne, F.; Laurenz, M.; von Eiff, C.; Warren, S.; Perdrizet, J. Cost-effectiveness of PCV20 to Prevent Pneumococcal Disease in the Pediatric Population: A German Societal Perspective Analysis. Infect. Dis. Ther. 2024, 13, 1333–1358. [Google Scholar] [CrossRef]
- Rey-Ares, L.; Ta, A.; Freigofaite, D.; Warren, S.; Mac Mullen, M.; Carballo, C.; Huang, L. Cost-effectiveness analysis of the pediatric 20-valent pneumococcal conjugate vaccine compared with lower-valent alternatives in Argentina. Vaccine 2024, 42, 126043. [Google Scholar] [CrossRef]
- Shinjoh, M.; Togo, K.; Hayamizu, T.; Yonemoto, N.; Morii, J.; Perdrizet, J.; Kamei, K. Cost-effectiveness analysis of 20-valent pneumococcal conjugate vaccine for routine pediatric vaccination programs in Japan. Expert Rev. Vaccines 2024, 23, 485–497. [Google Scholar] [CrossRef]
- Kang, D.-W.; Choe, Y.J.; Lee, J.-Y.; Suk, I.-A.; Kim, Y.-S.; Kim, H.-Y.; Byun, B.-K.; Park, S.-K. Cost-effectiveness analysis of the 20-valent pneumococcal conjugate vaccine for the pediatric population in South Korea. Vaccine 2024, 42, 126000. [Google Scholar] [CrossRef]
- Lytle, D.; Beltrán, A.G.G.; Perdrizet, J.; Yahia, N.A.; Cane, A.; Yarnoff, B.; Chapman, R. Cost-effectiveness analysis of PCV20 to prevent pneumococcal disease in the Canadian pediatric population. Hum. Vaccines Immunother. 2023, 19, 2257426. [Google Scholar] [CrossRef]
- Warren, S.; Barmpouni, M.; Kossyvaki, V.; Gourzoulidis, G.; Perdrizet, J. Estimating the Clinical and Economic Impact of Switching from the 13-Valent Pneumococcal Conjugate Vaccine (PCV13) to Higher-Valent Options in Greek Infants. Vaccines 2023, 11, 1369. [Google Scholar] [CrossRef]
- Huang, L.; McDade, C.L.; Perdrizet, J.E.; Wilson, M.R.; Warren, S.A.; Nzenze, S.; Sewdas, R. Cost-Effectiveness Analysis of the South African Infant National Immunization Program for the Prevention of Pneumococcal Disease. Infect. Dis. Ther. 2023, 12, 933–950. [Google Scholar] [CrossRef]
- Vo, N.X.; Pham, H.L.; Bui, U.M.; Ho, H.T.; Bui, T.T. Cost-Effectiveness Analysis of Pneumococcal Vaccines in the Pediatric Population: A Systematic Review. Healthcare 2024, 12, 1950. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Active Bacterial Core Surveillance Report, Emerging Infections Program Network, Streptococcus pneumoniae, 2019. 2019. Available online: www.cdc.gov/abcs/downloads/SPN_Surveillance_Report_2019.pdf (accessed on 17 November 2022).
- Prasad, N.; Stoecker, C.; Xing, W.; Cho, B.H.; Leidner, A.J.; Kobayashi, M. Public health impact and cost-effectiveness of 15-valent pneumococcal conjugate vaccine use among the pediatric population of the United States. Vaccine 2023, 41, 2914–2921. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Vaccination Coverage Among Young Children (0–35 Months). 2020. Available online: https://www.cdc.gov/vaccines/imz-managers/coverage/childvaxview/interactive-reports/index.html (accessed on 16 December 2022).
- Health Care Inflation in the United States (1948–2024). 2024. Available online: https://www.usinflationcalculator.com/inflation/health-care-inflation-in-the-united-states/ (accessed on 1 October 2024).
- United States Census Bureau. National Demographic Analysis Tables: 2020. 2020. Available online: https://www.census.gov/data/tables/2020/demo/popest/2020-demographic-analysis-tables.html (accessed on 25 September 2024).
- CDC. Mortality in the United States, 2022. 2024. Available online: https://www.cdc.gov/nchs/data/databriefs/db492.pdf (accessed on 1 October 2024).
- Tong, S.; Amand, C.; Kieffer, A.; Kyaw, M.H. Trends in healthcare utilization and costs associated with pneumonia in the United States during 2008–2014. BMC Health Serv. Res. 2018, 18, 715. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.R.; Link-Gelles, R.; Schaffner, W.; Lynfield, R.; Holtzman, C.; Harrison, L.H.; Zansky, S.M.; Rosen, J.B.; Reingold, A.; Scherzinger, K.; et al. Effectiveness of 13-valent pneumococcal conjugate vaccine for prevention of invasive pneumococcal disease in children in the USA: A matched case-control study. Lancet Respir. Med. 2016, 4, 399–406. [Google Scholar] [CrossRef]
- Hansen, J.; Black, S.; Shinefield, H.; Cherian, T.; Benson, J.; Fireman, B.; Lewis, E.; Ray, P.; Lee, J. Effectiveness of heptavalent pneumococcal conjugate vaccine in children younger than 5 years of age for prevention of pneumonia: Updated analysis using World Health Organization standardized interpretation of chest radiographs. Pediatr. Infect. Dis. J. 2006, 25, 779–781. [Google Scholar] [CrossRef]
- Black, S.B.; Shinefield, H.R.; Ling, S.; Hansen, J.; Fireman, B.; Spring, D.; Noyes, J.; Lewis, E.; Ray, P.; Lee, J.; et al. Effectiveness of heptavalent pneumococcal conjugate vaccine in children younger than five years of age for prevention of pneumonia. Pediatr. Infect. Dis. J. 2002, 21, 810–815. [Google Scholar] [CrossRef]
- Black, S.; Shinefield, H.; Fireman, B.; Lewis, E.; Ray, P.; Hansen, J.R.; Elvin, L.; Ensor, K.M.; Hackell, J.; Siber, G.; et al. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. Pediatr. Infect. Dis. J. 2000, 19, 187–195. [Google Scholar] [CrossRef]
- Weycker, D.; Farkouh, R.A.; Strutton, D.R.; Edelsberg, J.; Shea, K.M.; Pelton, S.I. Rates and costs of invasive pneumococcal disease and pneumonia in persons with underlying medical conditions. BMC Health Serv. Res. 2016, 16, 182. [Google Scholar] [CrossRef]
- Melegaro, A.; Edmunds, W.J. Cost-effectiveness analysis of pneumococcal conjugate vaccination in England and Wales. Vaccine 2004, 22, 4203–4214. [Google Scholar] [CrossRef]
- CDC. ABCs Bact Facts Interactive Data Dashboard. 2024. Available online: https://www.cdc.gov/abcs/bact-facts/data-dashboard.html (accessed on 1 October 2024).
- Stoecker, C. Economic assessment of PCV15 & PCV20. In Proceedings of the Advisory Committee on Immunization Practices Meeting, Atlanta, GA, USA, 2–3 November 2021. [Google Scholar]
- Centers for Disease Control and Prevention. Active Bacterial Core Surveillance (ABCs) Report, Emerging Infections Program Network, Streptococcus pneumoniae, 2018. 2018. Available online: https://stacks.cdc.gov/view/cdc/109750 (accessed on 15 March 2023).
- Centers for Disease Control and Prevention. Active Bacterial Core Surveillance (ABCs) Report, Emerging Infections Program Network, Streptococcus pneumoniae, 2017. 2017. Available online: https://stacks.cdc.gov/view/cdc/78826 (accessed on 15 March 2023).
- Whitney, C.G.; Pilishvili, T.; Farley, M.M.; Schaffner, W.; Craig, A.S.; Lynfield, R.; Nyquist, A.-C.; A Gershman, K.; Vazquez, M.; Bennett, N.M.; et al. Effectiveness of seven-valent pneumococcal conjugate vaccine against invasive pneumococcal disease: A matched case-control study. Lancet 2006, 368, 1495–1502. [Google Scholar] [CrossRef]
Input | Value [Upper and Lower Bound] | Reference |
---|---|---|
Population (# of births in 2023) | ||
Birth cohort 1 population | 3,613,647 | [13,27] |
Birth cohort 2 population | 3,552,215 | [2,13] |
Birth cohort 3 population | 3,491,827 | [13,27] |
Birth cohort 4 population | 3,432,466 | [13,27] |
Birth cohort 5 population | 3,374,114 | [13,27] |
Life expectancy (years) | 77.5 | [28] |
Vaccine uptake | 87.5 (86.1–88.7) | [25] |
Incidence (per 100 k) | ||
IPD | 13.7 (10.1–17.4) | [13,23] |
Hospitalized pneumonia | 684 (635–733) | [13,24] |
Non-hospitalized pneumonia | 2007 (1939.5–2016.0) | [13,29] |
AOM | 64,770 (58.71–293) | [7,13] |
Case fatality rate | ||
IPD | 7% (6.9–7.1) | [13,23] |
Inpatient CAP | 1.3% (1.0–1.6) | [13,24] |
PCV15 VE | ||
IPD | 67.3% (61.5–70.5) | [13,30] |
Hospitalized pneumonia | 9.4% (1.6–12.6) | [13,31] |
Non-hospitalized pneumonia | 2.2% (−0.6–4.1) | [13,32] |
AOM | 2.9% (1.9–3.9) | [13,33] |
PCV20 VE | ||
IPD | 67.3% (61.5–70.5) | [13,30] |
Hospitalized pneumonia | 13.1% (2.3–17.5) | [13,31] |
Non-hospitalized pneumonia | 3.1% (−0.8–5.7) | [13,32] |
AOM | 4.0% (2.7–5.4) | [13,33] |
Serotype coverage for <1 year | ||
PCV15 | 39.8% (31.8–47.7) | [13] |
PCV20 | 55.4% (44.3–66.5) | [13] |
Direct medical costs | ||
IPD | USD 57,925.74 (38,947.34–80,611.27) | [13,34] |
Hospitalized pneumonia | USD 21,318.34 (19,929.57–22,753.23) | [13,34] |
Non-hospitalized pneumonia | USD 717.30 (707.19–727.48) | [13,34] |
AOM | USD 443.74 (439.63–447.88) | [7,13] |
QALY decrements | ||
Meningitis | 0.0232 (0.0–0.111) | [35] |
Bacteremia | 0.0079 (0.0–0.0291449) | [35] |
Hospitalized pneumonia | 0.006 (0.0–0.05) | [35] |
Non-hospitalized pneumonia | 0.004 (0.003–0.005) | [35] |
AOM | 0.005 (0.004–0.006) | [35] |
Prevented Disease Cases | PCV15 | PCV20 | PCV20 vs. PCV15 |
---|---|---|---|
IPD | 561 | 780 | 220 |
Meningitis | 121 | 169 | 47 |
Non-meningitis | 439 | 612 | 172 |
CAP | 16,690 | 23,232 | 6542 |
CAP (inpatient) | 9874 | 13,744 | 3870 |
CAP (outpatient) | 6817 | 9489 | 2672 |
OM | 285,985 | 398,080 | 112,095 |
Total | 303,236 | 422,092 | 118,856 |
Prevented deaths | |||
IPD | 39 | 55 | 15 |
Meningitis | 8 | 12 | 3 |
Non-meningitis | 31 | 43 | 12 |
CAP | 128 | 179 | 50 |
Total | 168 | 233 | 66 |
Direct costs saved | |||
IPD | USD 32,470,382 | USD 45,197,466 | USD 12,727,084 |
CAP (inpatient) | USD 210,486,814 | USD 292,989,183 | USD 82,502,369 |
CAP (outpatient) | USD 4,889,648 | USD 6,806,193 | USD 1,916,545 |
OM | USD 126,904,740 | USD 176,646,296 | USD 49,741,556 |
Total | USD 374,751,584 | USD 521,639,139 | USD 146,887,555 |
LYG | |||
IPD deaths | 3021.4 | 4205.6 | 1184.3 |
Meningitis | 652.6 | 908.4 | 255.8 |
Non-meningitis | 2368.8 | 3297.2 | 928.5 |
CAP deaths | 9883.4 | 13,757.3 | 3873.9 |
Total | 12,904.8 | 17,962.9 | 5058.1 |
QALYs gained | |||
IPD cases | 6.3 | 8.7 | 2.5 |
Meningitis | 2.8 | 3.9 | 1.1 |
Non-meningitis | 3.5 | 4.8 | 1.4 |
OM cases | 1429.9 | 1990.4 | 560.5 |
CAP cases (inpatient) | 59.2 | 82.5 | 23.2 |
CAP cases (outpatient) | 27.3 | 38.0 | 10.7 |
IPD deaths | 2651.9 | 3691.4 | 1039.5 |
CAP deaths | 8674.9 | 12,075.1 | 3400.2 |
Total | 12,849.6 | 17,886.1 | 5036.5 |
Prevented Disease Cases | PCV15 | PCV20 | PCV20 vs. PCV15 |
---|---|---|---|
IPD | 297 | 414 | 117 |
Meningitis | 64 | 89 | 25 |
Non-meningitis | 233 | 324 | 92 |
CAP | −222 | −137 | 85 |
CAP (inpatient) | 1528 | 2196 | 668 |
CAP (outpatient) | −1750 | −2333 | −583 |
OM | 166,542 | 236,665 | 70,123 |
Total | 166,617 | 236,942 | 70,325 |
Prevented deaths | |||
IPD | 20 | 29 | 8 |
Meningitis | 4 | 6 | 2 |
Non-meningitis | 16 | 22 | 6 |
CAP | 15 | 22 | 7 |
Total | 36 | 51 | 15 |
Direct costs saved | |||
IPD | USD 11,567,811 | USD 16,114,906 | USD 4,547,096 |
CAP (inpatient) | USD 30,447,049 | USD 43,767,632 | USD 13,828,137 |
CAP (outpatient) | USD −1,237,459 | USD −1,649,945 | USD −412,486 |
OM | USD 73,216,825 | USD 104,044,962 | USD 30,828,137 |
Total | USD 113,994,226 | USD 162,277,556 | USD 48,283,330 |
LYG | |||
IPD deaths | 1578.0 | 2198.3 | 620.3 |
Meningitis | 340.9 | 474.8 | 134.0 |
Non-meningitis | 1237.2 | 1723.5 | 486.3 |
CAP deaths | 1176.4 | 1691.0 | 514.7 |
Total | 2754.4 | 3889.3 | 1135.0 |
QALYs gained | |||
IPD cases | 0.0 | 0.0 | 0.0 |
Meningitis | 0.0 | 0.0 | 0.0 |
Non-meningitis | 0.0 | 0.0 | 0.0 |
CAP cases (inpatient) | 0.0 | 0.0 | 0.0 |
CAP cases (outpatient) | −5.2 | −7.0 | −1.7 |
OM cases | 666.2 | 946.7 | 280.5 |
IPD deaths | 1385.1 | 1929.5 | 544.5 |
CAP deaths | 1032.5 | 1484.2 | 451.7 |
Total | 3078.5 | 4353.4 | 1274.9 |
Prevented Disease Cases | PCV15 | PCV20 | PCV20 vs. PCV15 |
---|---|---|---|
IPD | 849 | 1264 | 414 |
Meningitis | 183 | 273 | 89 |
Non-meningitis | 666 | 991 | 325 |
CAP | 27,111 | 37,672 | 10,561 |
CAP (inpatient) | 14,307 | 19,871 | 5564 |
CAP (outpatient) | 12,804 | 17,801 | 4997 |
OM | 430,433 | 595,984 | 165,551 |
Total | 458,393 | 634,919 | 176,526 |
Prevented deaths | |||
IPD | 60 | 90 | 29 |
Meningitis | 13 | 19 | 6 |
Non-meningitis | 47 | 70 | 23 |
CAP | 229 | 318 | 89 |
Total | 289 | 408 | 118 |
Direct costs saved | |||
IPD | USD 68,472,421 | USD 101,866,130 | USD 33,393,709 |
CAP (inpatient) | USD 325,530,443 | USD 452,125,615 | USD 126,595,172 |
CAP (outpatient) | USD 9,314,713 | USD 12,949,723 | USD 3,635,010 |
OM | USD 192,782,182 | USD 266,929,175 | USD 74,146,993 |
Total | USD 596,099,758 | USD 833,870,642 | USD 237,770,884 |
LYG | |||
IPD deaths | 4643.8 | 6908.5 | 2264.7 |
Meningitis | 1003.1 | 1492.2 | 489.2 |
Non-meningitis | 3640.7 | 5416.3 | 1775.6 |
CAP deaths | 17,626.2 | 24,480.9 | 6854.6 |
Total | 22,270.0 | 31,389.4 | 9119.4 |
QALYs gained | |||
IPD cases | 39.8 | 59.2 | 19.4 |
Meningitis | 20.4 | 30.3 | 9.9 |
Non-meningitis | 19.4 | 28.9 | 9.5 |
CAP cases (inpatient) | 715.3 | 993.5 | 278.2 |
CAP cases (outpatient) | 64.0 | 89.0 | 25.0 |
OM cases | 2582.6 | 3575.9 | 993.3 |
IPD deaths | 4075.9 | 6063.8 | 1987.8 |
CAP deaths | 15,471.0 | 21,487.5 | 6016.5 |
Total | 22,948.7 | 32,268.9 | 9320.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilic, A.; Tort, M.J.; Cane, A.; Farkouh, R.A.; Rozenbaum, M.H. The Health and Economic Effects of PCV15 and PCV20 During the First Year of Life in the US. Vaccines 2024, 12, 1279. https://doi.org/10.3390/vaccines12111279
Ilic A, Tort MJ, Cane A, Farkouh RA, Rozenbaum MH. The Health and Economic Effects of PCV15 and PCV20 During the First Year of Life in the US. Vaccines. 2024; 12(11):1279. https://doi.org/10.3390/vaccines12111279
Chicago/Turabian StyleIlic, Aleksandar, Maria J. Tort, Alejandro Cane, Raymond A. Farkouh, and Mark H. Rozenbaum. 2024. "The Health and Economic Effects of PCV15 and PCV20 During the First Year of Life in the US" Vaccines 12, no. 11: 1279. https://doi.org/10.3390/vaccines12111279