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Abstract: Reactive oxygen species (ROS) are double-edged swords in biological systems—they are
essential for normal cellular functions but can cause damage when accumulated due to oxidative
stress. Manganese superoxide dismutase (MnSOD), located in the mitochondrial matrix, is a key
enzyme that neutralizes superoxide radicals (O2

•−), maintaining cellular redox balance and integrity.
This review examines the development and therapeutic potential of MnSOD mimetics—synthetic
compounds designed to replicate MnSOD’s antioxidant activity. We focus on five main types:
Mn porphyrins, Mn salens, MitoQ10, nitroxides, and mangafodipir. These mimetics have shown
promise in treating a range of oxidative stress-related conditions, including cardiovascular diseases,
neurodegenerative disorders, cancer, and metabolic syndromes. By emulating natural antioxidant
defenses, MnSOD mimetics offer innovative strategies to combat diseases linked to mitochondrial
dysfunction and ROS accumulation. Future research should aim to optimize these compounds
for better stability, bioavailability, and safety, paving the way for their translation into effective
clinical therapies.

Keywords: manganese superoxide dismutase (MnSOD); MnSOD mimetics; oxidative stress; reactive
oxygen species (ROS); Mn porphyrins; Mn salens; MitoQ10; nitroxides; mangafodipir; mitochondria-
targeted antioxidants

1. Introduction

Controlled redox reactions occur regularly within various biological processes, such
as cellular respiration, signal transduction, gene expression, and maintenance of cellular
homeostasis [1]. Redox balance, the equilibrium between oxidation and reduction reactions
in the cell, is vital for the continued health of an organism. Its disruption leads to oxidative
stress and the overaccumulation of reactive oxygen species (ROS). Overaccumulated ROS
can react with lipids, proteins, and nucleic acids, damaging them in the process and
compromising cellular integrity [2].

Superoxide dismutase (SOD) isoforms play a critical role in protecting cells from
oxidative stress by neutralizing O2

•− [1]. Manganese SOD (MnSOD), exclusively located
within the mitochondrial matrix and the only SOD in the mitochondria, is a critical enzyme
for maintaining mitochondrial function by reducing ROS levels, preventing mitochondrial
damage, and managing oxidative stress in this organelle, which is estimated to produce
90% of cellular ROS [3–5]. It plays the most significant role in tissues with high metabolic
demand, where its expression is the highest [6].
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The deletion or alteration of MnSOD impacts obesity, metabolic health, and oxidative
stress. Studies indicate that in high-fat diets, adipocyte-specific MnSOD gene knockout
mice exhibit reduced adiposity and improved glucose tolerance, highlighting MnSOD’s
therapeutic potential in metabolic regulation [7]. Genetic polymorphisms in MnSOD, such
as Ala16Val, substitution at position 16 of the MnSOD protein, and changing an alanine
(Ala) to a valine (Val), are associated with obesity, where the Val variant disrupts mitochon-
drial targeting and links MnSOD dysfunction with increased obesity risk [8]. Similarly,
MnSOD deficiency in enterocytes promotes obesity via arachidonic acid-driven inflamma-
tion, supporting the enzyme’s role in combating obesity [9]. In obese pregnant women,
reduced MnSOD and mitochondrial enzyme activity emphasize the oxidative stress impli-
cations of obesity beyond gestational diabetes [10]. MnSOD also plays a protective role in
kidney health, mitigating oxidative damage in chronic kidney disease and acute kidney
injury, where its deficiency accelerates renal inflammation and damage, underscoring its
importance in renal pathophysiology [11,12]. In diabetes, MnSOD limits ROS and im-
proves islet function, reducing complications such as nephropathy and retinopathy [13],
with the Ala16Val polymorphism further modulating diabetic nephropathy risk across
populations and linking genetic variations to differential disease susceptibility [14]. In
cardiovascular health, MnSOD is essential for managing oxidative stress and reducing risks
associated with hypertension and atherosclerosis, as MnSOD deficiency in cardiomyocytes
can lead to heart failure, highlighting the enzyme’s vital role in preserving mitochondrial
and cardiac function [15,16]. Additionally, MnSOD polymorphisms are linked to elevated
coronary artery disease risk, and therapeutic upregulation of MnSOD could offer protective
effects against cardiovascular conditions [15]. In cancer, decreased MnSOD expression is
linked to mechanisms such as epigenetic silencing, promoter methylation, mutations, and
loss of heterozygosity, as seen in cancers like brain, breast, colorectal, and pancreatic [17].
Post-translational modifications, including hyperacetylation, nitration, and oxidation, are
linked to reduced MnSOD activity, as evident in renal cancer, glioma, and certain B-cell
malignancies [17]. In aggressive cancer types, overexpressed MnSOD correlates with worse
outcomes, suggesting that therapeutic targeting of MnSOD pathways may improve treat-
ment effectiveness [18]. In neurological health, MnSOD protects against oxidative damage
in conditions like epilepsy, Huntington’s, and Parkinson’s, where lower MnSOD levels
correlate with exacerbated symptoms, while MnSOD mimetics show therapeutic promise in
alleviating neurodegenerative disease outcomes [19,20]. Due to the profound connections
between altered MnSOD states and severe health disorders across various organ systems,
MnSOD mimetics represent promising treatment options in conditions where MnSOD is
implicated. Similarly, due to their ability to regulate oxidative stress, MnSOD mimetics
are also promising treatment options in a wider context than supplementing MnSOD
deficiency/malfunction.

Human MnSOD forms a homotetramer consisting of four identical subunits, each
containing an active site with a manganese ion as the cofactor. The tetrameric structure
provides the enzyme stability and improves the dimer-dimer interactions, consequently
improving function [21]. A pulse-radiolysis study in 1977 by McAdam et al. observed
that at low substrate-to-enzyme ratios, superoxide decay is nearly exponential, whereas,
at high ratios, it becomes zero-order, indicating a rapid oxidation-reduction cycle and a
slower process that regenerates the active enzyme from an inactive form [22]. This allowed
them to distinguish two distinct pathways totaling four reactions (Table 1) that enable
MnSOD catalytic activity: (1) the fast outer sphere pathway, where superoxide is directly
converted to hydrogen peroxide (H2O2), and (2) the slow inner sphere pathway, which
involves the formation of a product-inhibited complex followed by the release of H2O2 [22].
In both pathways, superoxide binds directly to manganese at rate constant k1, reducing
it from 3+ to 2+ and using Gln142 as the protonation source to protonate the hydroxide
ligand to H2O [22,23] (Table 1, Full Equation (1)). In the fast pathway, at a rate constant
k2, a second superoxide bonds with the ligand water and Tyr34, converting superoxide
to H2O2 while oxidizing Mn2+ to Mn3+ and regenerating the resting state of the enzyme
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(Table 1, Full Equation (2)) [22,24]. In the slow pathway, which occurs at high superoxide
concentrations and low temperature, a second superoxide forms a reversible peroxide
adduct with Mn2+ at rate constant k3, inhibiting the enzyme; after a period of inactivity,
two protons from the water ligand and outer sphere network form H2O2 and are released,
oxidizing the manganese back to its resting Mn3+ state bound to the hydroxyl ligand, where
the protonation rate is equal to rate constant k4 (Table 1, Full Equation (4)) [25].

Table 1. MnSOD fast and slow reactions [22].

Equation # Simple Equation Full Equation Rate Constant

(1) EA + O2
•− → EB + O2 Mn3+SOD(OH)− + O2

•− → Mn2+SOD(H2O) + O2 k1

(2) EB + O2
•− + 2H+ → EA + H2O2 Mn2+SOD(H2O) + O2

•− → Mn3+SOD(OH)− + H2O2 k2

(3) EB + O2
•− → EC Mn2+SOD(H2O) + O2

•− → Mn3+SOD(H2O)(OO2−) k3

(4) EC → EA Mn3+SOD(H2O)(OO2−) → Mn3+SOD(OH)− + H2O2 k4

Historically, after Harman’s theory of aging from the mid-50s and the fact that ox-
idative stress can cause significant damage to the body became widely accepted, ways of
combating oxidative stress became a popular field of study [7]. Initially, scientists were
interested in understanding SODs in general. At the core of the SOD mechanism is the
dismutation of the O2

•− into molecular oxygen (O2) and H2O2.
Scientists wanted to develop mimetics, synthetic enzymes capable of mimicking

MnSODs catalytic mechanism. In the 1970s, this led to the creation of Fe porphyrin [13].
As SODs mechanistically rely on redox-active metal sites, the first SOD mimics explored
were metal complexes. Due to their redox activity and stability provided by the porphyrin
ligand, iron porphyrins were the first studied. Free iron has a high risk of causing toxicity
via the Fenton reaction, which leads to favoring Mn porphyrins, which are now classified
as a group within MnSOD mimetics [13].

Mn salen derivatives, cyclic polyamines, corroles, and non-metal compounds like
nitroxides and nitrones were synthesized and studied next, all capable of mimicking Mn-
SOD [13]. It was only in the early 2010s that the focus of the research on these compounds
changed from their general SOD properties to their ability to specifically mimic MnSOD [13].
Some of these compounds, like Mn cyclic polyamines and redox-active corroles, were found
unsuitable due to their lack of positive charge required for mitochondrial targeting [14,15].
At the same time, interest in MitoQ compounds, specifically MitoQ 10, arose as it had
a promising ability to accumulate in the mitochondria due to its positive charge [16–18].
However, Mn porphyrins were not given up on, as conjugating mitochondria-targeted
sequences to them had shown promise [19].

The main types of MnSOD studied today, which will be discussed, are Mn porphyrins,
Mn salens, mitoQ 10, nitroxides, and mangafodipir. It is important to note that some Mn-
SOD mimetics, like Mn porphyrins, Mn salens, and mangafodipir, are designed to replicate
MnSOD’s mechanism, aiming to emulate the catalytic activity of MnSOD by facilitating
similar redox cycles involving manganese ions. These mimetics typically incorporate man-
ganese to support rapid superoxide conversion, as seen in MnSOD’s distinct fast and slow
pathways. In contrast, compounds like MitoQ10 and Nitroxides, which lack manganese,
are categorized as MnSOD mimetics due to their targeted superoxide neutralization rather
than mechanistic mimicry. This review will focus on research on potential therapeutic
applications of MnSOD mimetics. Integrating contemporary research insights and methods,
we aim to present a cohesive and critical evaluation of these agents in a broad context.

2. MnSOD Mimetics
2.1. Mn Porphyrins

Mn porphyrins are a class of synthetic compounds designed to mimic the activity
of MnSOD. These compounds consist of a manganese ion centrally coordinated within a
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porphyrin ring, a large, stable, cyclic molecule that can bind metal ions (Figure 1). The re-
duction potential of the metal site in enzymes is carefully balanced to optimize the catalytic
dismutation of superoxide [26]. By modifying the structure of Mn porphyrins with electron-
withdrawing groups, researchers increased their electron deficiency, which enhanced
the reduction potential, leading to better mimicry of the natural enzyme’s activity [26].
However, while these modifications improved catalytic efficiency, they also introduced chal-
lenges, such as stability issues under physiological conditions and potential toxicity due to
micellar properties. To address these, efforts focused on balancing lipophilicity and charge
distribution, ultimately developing more effective and safer Mn porphyrin compounds
with therapeutic potential across various conditions [26]. Mn porphyrins localize well
within the mitochondria as they possess a pentacationic charge and five positive charges
(cationic charge plays a critical role in mitochondrial drug localization) [27]. Additionally,
it is well-documented that increased lipophilicity increases mitochondrial accumulation,
blood–brain barrier crossing, and tumor localization [28–32]. Mn porphyrins modulate
cellular redox balance by influencing reactive species levels and activating transcription
factors, effectively reducing oxidative stress and inflammation through interactions with
proteins like nuclear factor kappa-light-chain-enhancer of activated B cells [26]. Their reac-
tivity with cellular reductants such as ascorbate and glutathione highlights their potential
as therapeutic agents for managing oxidative stress-related conditions [26]. There are many
therapeutically tested Mn porphyrins with varied structures (Figure 1, Table 2).
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Table 2. Summary of Research Implications of Mn Porphyrins.

Mimetic Research Area Finding Summary

MnTBAP

Reproductive Health

In horse and pig sperm cryopreservation MnTBAP
enhanced membrane integrity, motility, and viability,
while reducing reactive oxigen species (ROS) and
apoptosis, improving embryo development in pigs [33,34].
In human sperm cryopreservation, it decreased ROS
without impacting motility at moderate
concentrations [35,36].

Cardiovascular Health

In rats with pulmonary hypertension, it improved
vascular remodeling, cardiac function, and oxidative
stress markers by modulating bone morphogenetic
protein receptor type 2 levels and autophagy [37]. In
Sirtuin2-deficient mice, MnTBAP reduced mitochondrial
ROS, vascular stiffness, and aging-related remodeling [38].

Chemotherapy Induced Injury

In mice with cisplatin-induced kidney injury and cochlear
synaptopathy, MnTBAP lowered oxidative stress, lipid
peroxidation, and apoptosis, improved kidney function,
and preserved auditory responses [39,40].

MnTM-2-PyP5+
(MnTM) Renal Health

Late administration of MnTM exacerbated diabetic
complications, particularly kidney damage, due to
pro-oxidative effects rather than the anticipated
antioxidant protection [41].

MnTE-2-PyP5+ (MnTE)

Radiation Induced Injury
In rat models of radiation proctitis, MnTE prevented acute
and chronic symptoms with greater efficacy when
administered as a pre-treatment [42].

Diabetes
In mouse models of type 1 diabetes, it modulated immune
cell metabolism, promoting metabolic quiescence and
delaying diabetes onset [43].

Cardiovascular
Disease

During myocardial ischemia/reperfusion injury,
co-administration with S-nitrosoglutathione improved
outcomes in non-diabetic mice while mitigating worsened
outcomes in diabetic mice by reducing peroxynitrite
production [44].

Radiotherapy In breast cancer, MnTE enhanced tumor growth
suppression during radiation therapy [45].

Sickle
Cell Disease

For sickle cell disease, MnTE reduced red blood cell and
leukocyte adhesion, lowered ROS levels, restored blood
flow, and improved survival in sickle cell mice [46].

MnTnHex-2-PyP5+
(MnTnHex)

Radiotherapy

In breast cancer, MnTnHex enhanced tumor suppression
when combined with radiation therapy [45]. In mouse
cancer models, MnTnHex enhanced radiosensitivity by
promoting apoptosis, increasing ROS, and suppressing
DNA repair and prosurvival signaling [47].

Chemotherapy

For non-small cell lung cancer and clear-cell renal
carcinoma, MnTnHex showed concentration-dependent
cytotoxicity, reducing cell viability, promoting apoptosis,
and enhancing effects when combined with
cisplatin [48,49].

Radiation Induced Injury

For pulmonary radioprotection, it significantly reduced
radiation-induced lung damage, oxidative stress, and
inflammation in rats and mice [50,51]. In nonhuman
primates, it delayed pneumonitis onset, reduced
respiratory distress, and mitigated fibrosis-related lung
weight increases [52].
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Table 2. Cont.

Mimetic Research Area Finding Summary

MnBuOE-2-PyP5+
(MnBuOE)

Sickle
Cell Disease

MnBuOE exhibited protective and therapeutic effects
across multiple conditions. In sickle cell disease, it
reversed red blood cell and leukocyte adhesion, reduced
ROS, restored blood flow, and improved survival in
mice [46].

Radiation Induced Injury
In models of cranial irradiation, MnBuOE preserved
hippocampal neurogenesis and enhanced neuron survival,
indicating potential as a brain radioprotector [53].

Chemotherapy

In cancer, it increased oxidative stress selectively in tumor
cells, enhancing apoptosis in glioblastoma, ovarian, and
lung cancer cells, especially when combined with
treatments like tumor necrosis factor-related
apoptosis-inducing ligand, carboplatin, and
cisplatin [54–56].

Radiotherapy
MnBuOE also showed enhanced tumor suppression in
combination with radiotherapy, promoting apoptosis
through redox modulation and H2O2 production [57].

Cardiovascular Disease

In cardiovascular applications, MnBuOE improved
recovery post-cardiac arrest by reducing neuronal and
kidney injury, and it lowered blood pressure in
hypertensive models by reducing sympathetic nerve
activity, scavenging ROS, and inducing
vasodilation [58,59]

HSJ-0017 Radiotherapy/
Chemotherapy

HSJ-0017 significantly inhibited superoxide generation
and scavenged H2O2 [60]. HSJ-0017 enhanced antitumor
effects in sarcoma 180 tumor-bearing mice but not in
hepatocarcinoma 22 tumor xenografts [60]. It also reduced
the toxicities associated with radiotherapy and
chemotherapy while exhibiting anti-inflammatory and
hepatoprotective effects [60].

MnTBAP is a manganese porphyrin-based compound where the central manganese
ion is surrounded by a tetrakis (4-benzoic acid) porphyrin ring, which enhances its stability
and redox activity. Due to this structure, MnTBAP was initially investigated as a potential
SOD mimetic. However, its identity has become a matter of debate as subsequent studies
revealed that MnTBAP does not effectively function as a SOD mimetic in aqueous sys-
tems due to its unfavorable reduction potential for superoxide dismutation [61]. MnTBAP
primarily acts as a broad-spectrum antioxidant. It scavenges ROS like H2O2 and perox-
ynitrite, showing a significantly higher preference for these mechanisms than superoxide
dismutation [62]. Despite this, by design, MnTBAP is one of the earliest MnSOD mimetics
developed, and it has continuously been used in research on various diseases, warranting
its inclusion in this review. Due to its age and broad antioxidant effects, MnTBAP has been
investigated in hundreds of papers, making it necessary to be more selective in review.

Within the past four years, MnTBAP has demonstrated beneficial effects in reproduc-
tive biology. It has shown significant potential as a protective agent in sperm cryopreser-
vation across various studies [33–36]. This antioxidant mimetic effectively lowers ROS
levels, enhances sperm viability, and maintains motility, which is crucial for successful
sperm preservation [33,35]. In the vitrification process, MnTBAP was particularly beneficial
when added during the warming and post-warming incubation steps, where it preserved
membrane integrity and decreased ROS production without compromising sperm func-
tionality [35]. In cryopreservation of human sperm, MnTBAP further proved its efficacy by
reducing sperm DNA fragmentation, apoptosis, and structural protein damage, such as A-
kinase anchoring protein 4, which is essential for sperm motility [36]. The use of MnTBAP
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significantly improved motility and minimized proteomic alterations, resulting in enhanced
sperm survival after thawing [36]. Most recently, in porcine semen cryopreservation, MnT-
BAP demonstrated a pronounced effect on motility, acrosome integrity, and mitochondrial
membrane potential, leading to higher embryo development rates in vitro [34]. Together,
these studies indicate that MnTBAP offers substantial benefits in preserving sperm quality
across different cryopreservation methods, making it a promising candidate for further
development in reproductive medicine.

Recent studies involving MnTBAP revealed potential in mitigating vascular disor-
ders [37,38]. By increasing bone morphogenetic protein receptor type 2 levels and inhibiting
autophagy in pulmonary endothelial and smooth muscle cells, MnTBAP significantly re-
duced right ventricular (RV) afterload and reversed pulmonary vascular remodeling in
a rat model of pulmonary arterial hypertension [37]. In a separate study, this mimetic
demonstrated efficacy in reducing vascular oxidative stress and preventing vascular remod-
eling in models of SIRT2 deficiency, suppressing oxidative damage to proteins, lipids, and
DNA [38]. This reduction in oxidative stress also prevented arterial stiffening by inhibiting
matrix metalloproteinases, key drivers of collagen deposition and arterial stiffness [38].

Lastly, three recent studies have provided insights into MnTBAP’s ability to mitigate
the toxic side effects of cisplatin chemotherapy [28,39,40]. In a cisplatin-induced acute kid-
ney injury model, MnTBAP acted as a mitochondrial ROS scavenger, effectively reducing
mitochondrial ROS levels and restoring mitochondrial homeostasis [39]. This reduction
in oxidative stress was critical in alleviating ferroptosis, a form of cell death triggered by
lipid peroxidation, which plays a key role in renal tubular injury [39]. Furthermore, MnT-
BAP helped preserve mitochondrial structure and function by maintaining the oxidative
phosphorylation system, thereby preventing further kidney damage [28]. In another study,
MnTBAP was combined with NSC228155 (NSC228155 enhances epidermal growth factor
receptor activation and inhibits cyclic AMP response element-binding protein (creb) and
creb-binding protein interaction, impacting cell proliferation and transcription), where it
further demonstrated its protective effects by reducing tubular injury, serum creatinine,
and blood urea nitrogen levels in models of cisplatin-induced renal damage [39]. The over-
lapping mechanisms of both compounds highlight MnTBAP’s role in mitigating oxidative
and endoplasmic reticulum (ER) stress, which are major contributors to cisplatin-induced
nephrotoxicity [38]. Beyond kidney protection, MnTBAP has also been shown to prevent
cisplatin-induced hearing loss by reducing nitrative stress in cochlear synapses [40]. MnT-
BAP preserved synaptic integrity and auditory function by scavenging peroxynitrite, a
reactive nitrogen species, and preventing the nitration of synaptic proteins, which are
crucial for proper signal transmission in the auditory pathway [40].

MnTM-2-PyP (MnTM) is a manganese porphyrin characterized by a tetrakis(N-
methylpyridinium-2-yl) porphyrin ring, which imparts significant redox properties and
effectively mimics the activity of the natural SOD enzyme. This structure enhances MnTM’s
ability to catalyze the dismutation of superoxide anions. However, it exhibits lower cel-
lular uptake than its later-developed, more lipophilic counterparts. Due to this, the last
disease-specific research that focused on MnTM was conducted in 2013, when its impact
on diabetic complications was evaluated. Delayed administration of MnTM, eight days
post-diabetes onset, exacerbated kidney damage rather than providing protection, indicat-
ing that timing is critical for its therapeutic efficacy. This study highlighted the importance
of early intervention with manganese porphyrin compounds to avoid worsening oxida-
tive damage under conditions of advanced oxidative stress [41]. Since then, research has
shifted toward more advanced MnSOD mimetics that offer greater cellular uptake and
therapeutic potential.

MnTE-2-PyP5+ (MnTE) is a highly efficient manganese porphyrin with a tetrakis(N-
ethylpyridinium-2-yl) porphyrin structure, giving it potent antioxidant properties and
strong SOD mimetic activity. While research on MnTE has slowed in favor of newer alterna-
tives, it could still serve as a valuable benchmark for evaluating novel therapeutics. Despite
its reduced prominence, several findings have emerged within the past decade. MnTE has
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shown significant potential in reversing and preventing acute vaso-occlusive crises in a
sickle cell disease model [46]. This manganese porphyrin reduces the adhesion of sickle red
blood cells and leukocytes, decreases oxidative stress by inhibiting NADPH oxidases, and
improves blood flow and survival rates in sickle mice [46]. The treatment was well-tolerated
and substantially reduced oxidative stress markers and leukocytosis [46]. Nitric oxide
donor S-nitrosoglutathione (GSNO) is known for its cardioprotective properties in healthy
animals. A study found that while GSNO significantly reduced infarct size and improved
heart function in non-diabetic mice, it exacerbated myocardial ischemia/reperfusion (MI/R)
injury in diabetic mice, leading to increased infarct size and worsened cardiac function [44].
Co-administration with MnTE mitigated these harmful effects, reducing peroxynitrite
production and limiting MI/R injury [44]. Additionally, MnTE was shown to modulate
immune cell metabolism in type 1 diabetes by altering metabolic pathways in diabetogenic
splenocytes, reducing immune cell activation and proliferation, and potentially offering a
therapeutic strategy for autoimmune diseases [43].

In radiation-induced proctitis, MnTE effectively mitigated both acute and chronic
symptoms when administered before irradiation, suggesting its utility in reducing gas-
trointestinal toxicity during radiotherapy. However, post-treatment proved less effective,
highlighting the importance of timing in its application [42]. Additionally, MnTE has been
shown to significantly enhance tumor suppression when combined with radiation therapy
and ascorbate. This redox-active compound cycles with ascorbate to generate H2O2, which
induces protein S-glutathionylation, mimicking the activity of glutathione peroxidase. This
process shifts the cellular redox balance by increasing the glutathione disulfide/glutathione
ratio, ultimately leading to greater tumor growth inhibition [45].

MnTnHex-2-PyP5+ (MnTnHex) is a lipophilic manganese porphyrin with hexyl side
chains integrated into its porphyrin ring, enhancing its membrane permeability and tis-
sue accumulation. This structural modification allows MnTnHex to penetrate cells more
effectively and localize within organelles such as mitochondria, where oxidative damage is
often most pronounced. In mice, MnTnHex demonstrated high efficacy as a radioprotective
agent in reducing radiation-induced lung damage, including oxidative stress and fibrosis,
at significantly lower doses compared to its hydrophilic counterpart, MnTE. However,
caution is warranted due to its surfactant-like properties, which could lead to toxicity at
higher doses [50]. This was also demonstrated in primates, where MnTnHex reduced
lung injury by lowering respiratory rates, delaying the onset of lung lesions, and reducing
pathological increases in lung weight in irradiated non-human primates [52]. Moreover,
MnTnHex was shown to reverse PTEN promoter (promoter for phosphatase and tensin
homolog gene) hypomethylation in radiation-induced lung injury, indicating its potential
to mitigate epigenetic changes associated with oxidative stress [51]. Recently, MnTnHex
has been mostly studied in cancer therapy [47–49]. It enhanced radiation-induced cell death
in murine mammary carcinoma and melanoma cells by increasing oxidative stress within
tumors while protecting normal tissues, thereby broadening the therapeutic window in
radiotherapy [47]. In non-small cell lung cancer cell lines, MnTnHex exhibited significant
cytotoxicity at sub-micromolar concentrations, disrupting cell viability and cycle distri-
bution [48]. When used in combination with cisplatin, MnTnHex enhanced the efficacy
of the chemotherapeutic’s efficacy, reducing cell migration and increasing cell death [48].
MnTnHex was also found to significantly reduce the viability and chemotactic migration
of 786-O human renal cancer cells, most likely due to the redox activity of MnTnHex,
leading to the production of H2O2, which cancer cells, particularly renal cancer cells, are
less capable of detoxifying [49].

MnTnBuOE-2-PyP5+ (MnBuOE) is a manganese porphyrin designed with butoxy
ethyl side chains, significantly improving its lipophilicity and bioavailability. This struc-
tural enhancement allows MnBuOE to efficiently cross cell membranes and accumulate in
tissues, making it highly effective in targeting oxidative stress within both intracellular and
extracellular environments. MnBuOE emerged as a versatile therapeutic agent across vari-
ous conditions [53–59]. It provided significant protection against radiation-induced normal
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tissue injury, including the preservation of hippocampal neurogenesis and reduction in
cognitive deficits following cranial irradiation. This neuroprotective effect is particularly
relevant in preserving cognitive function during central nervous system-targeted cancer
treatments [53]. Additionally, MnBuOE enhanced the effectiveness of cancer therapies in
glioblastoma, ovarian cancer, and non-small cell lung cancer by increasing oxidative stress
selectively within cancer cells, thereby sensitizing them to chemotherapeutic agents while
protecting normal tissues [54–57]. MnBuOE also showed promise in improving outcomes
following cardiac arrest by enhancing survival rates and reducing organ damage [58].
MnBuOE also demonstrated effectiveness in managing hypertension. In hypertensive
animal models, MnBuOE significantly lowered elevated blood pressure through sympa-
thoinhibition and vasodilation, partially mediated by nitric oxide [59]. These effects were
dose-dependent, with higher doses prolonging the hypotensive response.

HSJ-0017 is a manganese porphyrin compound that has been engineered to provide
dual antioxidant protection by mimicking the activities of both SOD and catalase. This
unique combination gives HSJ-0017 broader utility in reducing oxidative damage. There
hasn’t been much research utilizing this compound yet. HSJ-0017 demonstrated significant
antioxidant activity in vitro, inhibiting the generation of superoxide anions and scavenging
(H2O2) in a dose-dependent manner [60]. in vivo, it had notable antitumor effects in
sarcoma 180 tumor-bearing mice but was less effective against hepatocarcinoma 22 tumor
xenografts [60]. HSJ-0017 also enhanced the effects of chemotherapy and radiotherapy
while mitigating their toxic side effects [60]. Additionally, the compound showed significant
anti-inflammatory and hepatoprotective effects, reducing oxidative damage in models of
carbon tetrachloride-induced hepatic injury [60].

Mn porphyrins have emerged as versatile therapeutic agents due to their ability to
mimic the enzyme MnSOD. These compounds have been extensively modified to en-
hance their electron deficiency, thereby improving their catalytic efficiency for superoxide
dismutation. However, these modifications have introduced challenges such as stability
issues and potential toxicity. Efforts to address these limitations, particularly by balanc-
ing lipophilicity and charge distribution, have led to the development of more effective
and safer Mn porphyrins with therapeutic applications across various conditions. Mn
porphyrins are especially well-suited for mitochondrial targeting due to their cationic
charge and lipophilicity, which enhance mitochondrial and tissue accumulation. Their
ability to modulate cellular redox balance by scavenging ROS and interacting with cellular
reductants highlights their potential in managing oxidative stress and inflammation. MnT-
BAP, one of the earliest MnSOD mimetics, primarily acts as a broad-spectrum antioxidant,
showing promise in sperm cryopreservation and mitigating oxidative damage in vascular
and kidney models. MnTM has seen limited recent use due to its lower cellular uptake,
with studies emphasizing the need for early intervention to prevent exacerbated oxidative
stress. MnTE remains an important benchmark in redox research, demonstrating efficacy in
enhancing radiation therapy and mitigating autoimmune conditions by selectively target-
ing oxidative stress. MnTnHex enhances tissue penetration and shows significant promise
in cancer and radioprotection, increasing oxidative stress within tumors while protecting
healthy tissue. MnBuOE has shown versatility in protecting against radiation-induced
cognitive deficits, improving outcomes in cancer therapies, and reducing hypertension via
sympathoinhibition. Lastly, HSJ-0017, a novel Mn porphyrin with dual SOD and catalase
mimetic activities, has demonstrated antioxidant, anti-inflammatory, and hepatoprotective
effects, though further research is needed. Collectively, Mn porphyrins continue to evolve
as potent therapeutic agents across various oxidative stress-related conditions.

2.2. Mn Salens

Mn Salens are a group of synthetic compounds that have gained significant attention
due to their potential as SOD mimics, particularly for their ability to manage oxidative stress
in various biological systems. Structurally, Mn salens are characterized by the presence of a
manganese ion coordinated with a salen ligand, which is formed from the condensation of



Antioxidants 2024, 13, 1444 10 of 23

salicylaldehyde and ethylenediamine. This configuration allows Mn salens to catalyze the
dismutation of O2

•− into less harmful species like H2O2 and O2, thereby mimicking the
natural activity of SOD enzymes. The main Chemotherapeutically tested Mn salens are
EUK-134, EUK-207 and EUK-8.

EUK-134 is a synthetic catalytic antioxidant mimicking SOD and catalase that has
been studied in many diseases. It was found effective in reducing hyperoxic stress-induced
activation of the transforming growth factor-beta 1 (TGF-β1)/Smad2 signaling pathway in
myocardial tissue following ischemia and reperfusion injury [63]. The treatment blunted the
increase in Smad2 phosphorylation, which is associated with fibroblast trans-differentiation
into myofibroblasts, suggesting a protective role in managing post-ischemic myocar-
dial remodeling by modulating oxidative stress and its downstream effects on TGF-β1
signaling [63].

EUK-134 demonstrated significant potential as a therapeutic agent in breast cancer
treatment by reducing superoxide and H2O2 levels within breast cancer cells, leading to
decreased proliferation and viability of the cell lines MCF-7 (human metastatic breast can-
cer) and MDA-MB-231 (human triple-negative breast cancer) [64]. The compound induced
cell cycle arrest in the G2-M phase and triggered apoptosis, while also markedly inhibiting
cancer cell migration and adhesion [64]. These findings suggest EUK-134’s promising role
in targeting oxidative stress and inhibiting critical aspects of cancer progression [64].

In the context of skeletal muscle subjected to short-term mechanical unloading, EUK-
134 significantly protected against muscle fiber atrophy and prevented the fiber-type
shift from slow-twitch (Type I) to fast-twitch (Type II). The compound also inhibited the
translocation of neuronal nitric oxide synthase from the sarcolemma to the cytosol, which
is linked to muscle atrophy, and mitigated oxidative stress by normalizing levels of Nox2,
a subunit of NADPH oxidase associated with oxidative damage [65,66]. This highlights
EUK-134’s potential as a protective agent against muscle morphology deterioration during
disuse [65,66].

EUK-134 was shown to inhibit platelet aggregation induced by thromboxane A2
analogs, particularly when combined with epinephrine [67]. This suggests that EUK-134 is
effective in reducing ROS generation, which is crucial for platelet activation, indicating its
potential role in managing platelet-related conditions [67].

A study on ER stress and mitochondrial dysfunction found that EUK-134 could
mitigate several detrimental effects caused by ER stress, including the loss of mitochondrial
membrane potential and respiratory dysfunction in human skeletal muscle cells [68]. This
suggests that EUK-134 has the potential to protect against muscle weakness and dysfunction
related to chronic ER stress by targeting ROS generation, making it a promising therapeutic
option for conditions like myositis [68].

When tested in non-alcoholic steatohepatitis (NASH), EUK-134 was found to effec-
tively reduce serum levels of liver damage markers and improve pathological features in
rats fed a methionine/choline-deficient diet [69,70]. The compound’s ability to prevent
lipid peroxidation and protein carbonyl formation suggests its potential as a therapeutic
agent for NASH by mitigating oxidative stress and liver damage [69,70].

EUK-134 effectively prevented diaphragm muscle weakness in a rat model of monocrot
aline-induced pulmonary hypertension by protecting against the PH-induced decrease
in specific diaphragm force and preventing oxidative stress-induced modifications of
myofibrillar proteins [71]. This suggests EUK-134’s potential as a therapeutic strategy to
counteract muscle weakness in conditions associated with oxidative stress [71].

EUK-207 has been studied less but has still shown promising effects. A study high-
lighted the efficacy of EUK-207 in reducing radiation-induced lung damage, specifically in
delaying and decreasing the severity of pneumonitis in adolescent rats [72,73]. EUK-207
lowered oxidative damage and inflammation markers, providing substantial protection
against radiation-induced lung injury even when treatment was initiated weeks after ex-
posure [72,73]. This positions EUK-207 as a potential radioprotective agent, particularly
when immediate treatment is not feasible [72,73].
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EUK-207 significantly mitigated radiation dermatitis and promoted wound healing
in irradiated rat skin [74]. Administered systemically after irradiation, EUK-207 reduced
the severity of skin injury and accelerated wound healing by normalizing gene expression
related to oxidative stress and reducing oxidative damage to proteins and DNA [74]. These
findings support its potential as a therapeutic agent for treating radiation-induced skin
injuries [74].

EUK-207 also mitigated radiation-induced cognitive impairments in mice, particu-
larly in reducing hippocampus-dependent spatial memory deficits caused by high-dose
radiation [75]. The compound’s ability to prevent oxidative damage without negatively
impacting cognitive performance in sham-irradiated mice suggests its promise of protecting
against radiation-induced cognitive injury [75].

Similarly, EUK-8 more therapeutic applications of EUK-8 should be studied; how-
ever, so far, EUK-8 has been shown to significantly inhibit adipogenic differentiation in
human adipose-derived stem cells by reducing ROS levels, thereby suppressing lipid accu-
mulation [76]. This suggests EUK-8’s potential as a therapeutic agent for controlling fat
formation and managing obesity-related conditions [76].

In a study, both EUK-8 and EUK-134 were found to significantly inhibit the aggregation
of human islet amyloid polypeptide into amyloid fibrils, with EUK-134 showing slightly
higher activity due to its additional ethoxy group [64,77]. This indicates their potential to
protect pancreatic beta cells from amyloid-induced cytotoxicity in type 2 diabetes [64,77].

Similar to EUK-134, EUK-8 effectively reduced markers of liver damage and improved
pathological features of NASH in rats, highlighting its potential as a therapeutic agent for
preventing or treating NASH by mitigating oxidative stress [69].

Mn Salens, particularly the compounds EUK-134, EUK-207, and EUK-8, exhibit sig-
nificant therapeutic potential across various conditions by mimicking SOD activity and
managing oxidative stress. EUK-134 has shown effectiveness in conditions such as ischemia–
reperfusion injury, breast cancer, muscle atrophy, and pulmonary hypertension by reducing
oxidative stress and modulating key signaling pathways. EUK-207 has demonstrated
protective effects against radiation-induced injuries, including lung damage, dermatitis,
and cognitive impairments, highlighting its role as a radioprotective agent. Meanwhile,
EUK-8 has proven beneficial in inhibiting adipogenic differentiation and amyloid aggrega-
tion, indicating its utility in managing obesity and type 2 diabetes. Overall, these findings
highlight the wide-ranging potential of Mn Salens, especially in treating conditions where
managing oxidative stress is crucial. The research findings of Mn Salens are summarized
in Table 3.

Table 3. Summary of research findings of Mn Salens.

Mimetic Research Area Findings

EUK-134

Pulmonary Disease

In mouse models, EUK-134 reduced hyperoxia-induced fibrosis
by selectively modulating transforming growth factor-beta 1
signaling [63]. In pulmonary hypertension-induced diaphragm
dysfunction, EUK-134 preserved muscle contractility and
countered oxidative damage [71].

Cancer

In human breast cancer cells, EUK-134 inhibited ROS
production, cell proliferation, and migration, while inducing
apoptosis [64]. EUK-134 also inhibited nuclear factor
kappa-light-chain-enhancer of activated B cells activation and
expression of metastatic factors in cancer models [66].

Hematological Disorders EUK-134 suppressed ROS-mediated platelet activation in
response to thromboxane analogs [67].
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Table 3. Cont.

Mimetic Research Area Findings

EUK-134

Mitochondrial Stress
In ER stress-induced mitochondrial dysfunction, EUK-134
improved mitochondrial health by reducing ROS and
enhancing respiration [68].

Liver Disease

In liver disease models, EUK-134 reduced oxidative stress and
pathological changes in non-alcoholic steatohepatitis (NASH)
and prevented progression from non-alcoholic fatty liver
disease to NASH [69,70].

Muscular Disorders
EUK-134 reduced oxidative stress and preserved muscle
integrity during mechanical unloading in rats, preventing
muscle atrophy and maintaining nNOS localization [65].

EUK-207

Neurological Disorders

EUK-207 showed neuroprotective effects in traumatic brain
injury by reducing oxidative stress, limiting neuronal death,
enhancing cognitive function, and suppressing acute and
chronic neuroinflammatory responses [72]. EUK-207 mitigated
radiation-induced cognitive deficits in mice, reducing oxidative
stress markers in the brain without affecting non-irradiated
controls [75].

Radiation Induced Injury

In radiation-induced lung damage, EUK-207 decreased lung
fibrosis, oxidative DNA damage, and inflammation markers,
with combined therapy (EUK-207 and captopril) providing
superior protection [73]. For radiation dermatitis, EUK-207
improved wound healing by reducing oxidative stress,
normalizing gene expression, and promoting angiogenesis [74].

EUK-8

Metabolic Disorders

EUK-8 suppressed ROS production and reduced adipogenic
differentiation and lipid accumulation in human
adipose-derived stem cells during adipogenesis, decreasing
both differentiated cell proportion and intracellular lipid
levels [76].

Neurological Disorders

In combination with EUK-134, EUK-8 inhibited amyloid
formation in human islet amyloid polypeptide, reducing
cytotoxicity in SK-N-MC cells by enhancing cell viability and
reducing lactate dehydrogenase release [77].

2.3. MitoQ10

A molecule requires both a positive charge and lipophilicity for effective mitochondrial
targeting. These characteristics were incorporated into the design of MitoQ10. MitoQ10’s
structure features a redox-cycling quinone, an analog of mitochondrial ubiquinone, linked
to a cationic triphenylphosphonium ion through a long lipophilic alkyl chain (Figure 2) [78].
The length of this alkyl chain directly influences the mitochondrial accumulation of MitoQ,
with the optimized MitoQ10 molecule, containing a 10-carbon alkyl chain, showing the
capacity to reduce mitochondrial oxidative stress [78]. Upon entering cells and mitochon-
dria, MitoQ10 is rapidly reduced by the mitochondrial respiratory chain to its stable quinol
form, MitoQH2, which is essential for its function as a reducing agent and antioxidant,
with its major in vivo metabolite, monosulfonated MitoQ10, regenerating MitoQH2 after
losing the sulfonate group [79]. MitoQ10’s forms a semiquinone radical (MitoQH•) which
dismutates into MitoQ10 and MitoQH2, with MitoQH2, located in the membrane’s hy-
drophobic core, minimally reacting with superoxide but facilitating its dismutation through
interactions with protonated superoxide (HO2

•) and other reactive species [80]. MitoQ10
also reacts with peroxynitrite (ONOO−) to form MitoQH•, effectively preventing lipid
peroxidation, influences cellular transcriptional activity by modulating signaling species,
blocks H2O2-induced apoptosis and cell death, and its semiquinone form may act as a
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pro-oxidant, potentially triggering an adaptive response that upregulates endogenous
antioxidant defenses, similar to Mn porphyrins [78,81–83].
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As previously published in a review by Miriyala et al. in 2012, MitoQ10 had already
been shown to function in addressing mitochondrial dysfunction through various analogs,
including derivatives with redox-active moieties like vitamin E and dihydroethidium, and
demonstrated therapeutic efficacy in animal models of oxidative stress, such as type I dia-
betes nephropathy, cardiac ischemia/reperfusion, and doxorubicin-induced cardiac toxicity,
as well as in clinical trials for Parkinson’s disease and chronic liver hepatitis in hepatitis C
virus-infected patients, although with mixed outcomes [26]. Since 2012, additional studies
have provided further evidence supporting the therapeutic potential of MitoQ10 across
various diseases by targeting mitochondrial dysfunction and oxidative stress [84–91]. In the
context of cardiovascular diseases, MitoQ10 has shown promising effects. For instance, in
patients with coronary artery disease and type 2 diabetes, mitochondrial ROS were found
to elevate AMP-activated protein kinase (AMPK) activity, which plays a role in cellular
defense against oxidative stress. However, despite this activation, endothelial function did
not significantly improve, suggesting that while AMPK activation is a protective response,
it may not be sufficient alone to reverse endothelial dysfunction in these conditions [84].
Additionally, the combination of MitoQ10 and the angiotensin receptor blocker losartan
was found to significantly reduce blood pressure, left ventricular hypertrophy, and car-
diac fibrosis in hypertensive models, highlighting MitoQ10’s potential in treating resistant
hypertension and preventing related end-organ damage [85]. Furthermore, MitoQ10’s
ability to reduce mitochondrial oxidative damage was corroborated in studies showing its
antihypertrophic effects on cardiomyocytes, indicating its broader therapeutic relevance in
cardiovascular disease management [85].

In neurodegenerative conditions, MitoQ10 has been explored for its neuroprotective
effects. It was demonstrated to prevent both caspase-dependent and caspase-independent
neuronal death by blocking mitochondrial ROS production and preserving mitochondrial
function in models of neurotrophin deficiency [86]. This indicates that MitoQ10 may offer a
promising therapeutic approach for diseases where mitochondrial dysfunction contributes
to neuronal cell death [86]. In renal dysfunction associated with hypertension, MitoQ10
mirrored the protective effects of chronic aerobic exercise by preserving mitochondrial
function, enhancing ATP production, and reducing oxidative stress, further underlining its
potential in mitigating renal damage through mitochondrial protection [87].

MitoQ10’s application extends beyond cardiovascular and neurodegenerative diseases
into other areas, such as cancer and metabolic disorders. In cancer research, MitoQ10, along
with curcumin, was studied for its role in promoting the crosstalk between autophagy and
apoptosis, particularly through mitochondrial destabilization [88]. This finding suggests
potential therapeutic strategies that leverage MitoQ10’s capacity to modulate these cellular
processes in cancer treatment [88]. In polycystic ovary syndrome (PCOS), MitoQ10 showed
significant potential in improving insulin resistance and reducing oxidative stress, demon-
strating its ability to reverse endocrine and reproductive abnormalities, including in models
where PCOS was induced by circadian rhythm disruption [89,90]. Moreover, MitoQ10’s
impact on mitochondrial function was also beneficial in cryopreservation contexts, where
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it enhanced post-thaw sperm quality and antioxidant status, although dose optimization
was necessary to avoid adverse effects [91].

Overall, MitoQ10 has demonstrated a wide range of therapeutic applications across
various diseases by targeting mitochondrial dysfunction and oxidative stress. Its benefits in
cardiovascular, neurodegenerative, metabolic, and reproductive health, as well as in cancer
therapy, underscore its potential as a versatile mitochondria-targeted antioxidant. However,
careful consideration of dosage and treatment context remains crucial to maximize its
therapeutic efficacy while minimizing potential adverse effects.

2.4. Nitroxides

Nitroxides are a class of stable free radicals that have been explored as MnSOD mimet-
ics due to their ability to scavenge superoxide and other ROS. While they do not contain
manganese, nitroxides can mimic the activity of MnSOD by catalytically dismutating
O2

•−. Tempo (2,2,6,6-tetramethylpiperidine-N-oxyl) is a stable free radical, and while not
considered a MnSOD mimetic due to its lack of functional group capable of superoxide
scavenging, it can function as an antioxidant by scavenging free radicals. It is characterized
by a six-membered piperidine ring with four methyl groups attached to it, creating a bulky,
sterically hindered structure. The presence of a nitroxyl group (-NO•) on the piperidine
ring is what gives tempo its free radical properties. As nitroxides of interest are derived
from tempo, tempo will also be reviewed (Figure 3).
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Figure 3. Core structure of TEMPO compounds. For TEMPO compounds with longer names, T was
used as an abbreviation for TEMPO. DMA-coPFPA is a copolymer made from dimethylacrylamide
(DMA) and pentafluorophenyl acrylate (PFPA), often used to enhance targeted delivery.

Tempo has been explored in multiple studies for its ROS-scavenging abilities. It effec-
tively reversed the inhibitory effects of hypoxia/reoxygenation on acetylcholine-induced
vasodilation in cerebral arteries, highlighting its role in protecting against oxidative stress-
induced endothelial dysfunction [92]. Additionally, Tempo was found to significantly
reduce cyclooxygenase-2 expression under hypertonic stress in collecting duct cells by
mitigating mitochondrial-derived ROS, underscoring its potential in protecting renal cells
from osmotic stress-induced damage [93]. Furthermore, Tempo has shown efficacy in
reducing angiotensin II (ANG II)-induced calcium signaling in vascular smooth muscle
cells by scavenging superoxide anions, suggesting its utility in preventing ROS-mediated
vascular complications [94].

Hydroxy-TEMPO (also known as Tempol or 4-Hydroxy TEMPO) has been extensively
studied for its protective role in various oxidative stress-related conditions [94–97]. In
pulmonary vascular remodeling induced by chronic hypoxia, Hydroxy-TEMPO mitigated
pulmonary damage by reducing ROS levels and normalizing media wall thickness of
pulmonary arteries, highlighting its therapeutic potential in pulmonary vascular condi-
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tions [95]. In vascular studies, Hydroxy-TEMPO inhibited ANG II-induced increases in
intracellular calcium concentration in afferent arterioles, underscoring its role in modulat-
ing ROS-related vascular functions [94]. Additionally, it has been employed as a superoxide
detection probe in studies on endothelin receptor-mediated calcium signaling, supporting
its utility in studying oxidative stress modulation in vascular systems [96]. Furthermore,
Hydroxy-TEMPO protected microglial cells against neurotoxic effects from dichlorvos (an
organophosphate pesticide) by effectively reducing ROS and nitric oxide (NO) production,
downregulating inflammatory markers, and preventing apoptosis, thus indicating its po-
tential as a therapeutic agent for neurodegenerative disorders characterized by oxidative
stress and inflammation [97].

4-amino-Tempo (AT), a derivative of Tempo, has been investigated for its antihyper-
tensive effects in spontaneously hypertensive rats [98]. AT, along with Tempol, was shown
to significantly reduce mean arterial pressure and heart rate, with these effects closely
linked to their SOD mimetic activity [98]. This finding indicates that 4-amino-Tempo
could be a promising candidate for managing hypertensive crises due to its potent blood
pressure-lowering effects [98].

TEMPO-9-AC was employed as a fluorescent probe in vascular studies, particularly
in the context of endothelin receptor-mediated signaling [96]. It helped demonstrate the
role of superoxide in enhancing calcium signaling through the adenosine diphosphate
ribose cyclase pathway, providing insight into the molecular mechanisms underlying
ROS-mediated vascular dysfunctions [96].

Mito-TEMPO, a mitochondria-targeted SOD mimetic, has been investigated in vari-
ous models of oxidative stress [99–101]. It significantly inhibited the NOD-like receptor
family pyrin domain containing 3 inflammasome activation and reduced mitochondrial
ROS production in influenza virus-infected macrophages, suggesting its potential in miti-
gating viral-induced lung injury [99]. Mito-TEMPO also demonstrated protective effects
against sodium fluoride-induced cytotoxicity in embryonic carcinoma cells by enhancing
Sirt1 expression and promoting the deacetylation of the human MnSOD gene, thereby
reducing mitochondrial oxidative damage [100]. Additionally, Mito-TEMPO was effective
in reducing ROS levels and oxidative stress in models of hypertension and vascular dys-
function, highlighting its utility in targeting mitochondrial ROS to prevent cardiovascular
complications [101].

Poly(DMA-co-TEMPO) copolymers were developed to optimize the antioxidant and
anti-inflammatory effects of TEMPO [102]. These copolymers demonstrated superior
retention and efficacy in reducing ROS levels and inflammation in vivo compared to free
TEMPO, suggesting their potential in treating inflammatory diseases driven by oxidative
stress [102].

In summary, nitroxides, derived from the stable free radical TEMPO, have proven
to be versatile agents in mitigating oxidative stress across a variety of biological con-
texts. From protecting pulmonary and vascular structures against ROS-induced damage
to demonstrating antihypertensive effects and safeguarding against neurotoxic insults,
TEMPO’s derivatives have consistently shown potential as MnSOD mimetics. Their appli-
cation spans from basic research, such as the study of membrane protein interactions, to
potential therapeutic roles in conditions involving oxidative stress, inflammation, and mi-
tochondrial dysfunction. The broad spectrum of efficacy observed with hydroxy-TEMPO,
4-amino-Tempo, and Mito-TEMPO underscores their value in developing novel strategies
for managing diseases where oxidative damage plays a central role. As research progresses,
the unique properties of these compounds continue to offer promising avenues for thera-
peutic development, particularly in addressing the complex interplay of ROS in various
pathological processes.

2.5. Mangafodipir

Although mangafodipir was removed from the Drug Product List by the FDA in 2003,
and withdrawn from the European market in 2012, it and its derivative calmangafodipir
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have garnered significant attention due to their potential to mitigate oxidative stress
and enhance the therapeutic index of various treatments, particularly in the context of
chemotherapy and oxidative stress-related conditions. Mangafodipir is currently exlusively
used in research.

Mangafodipir is a complex compound where manganese is chelated with the lig-
and fodipir, forming a stable chelate that mimics SOD activity (Figure 4). This SOD
mimetic activity allows mangafodipir to catalyze the dismutation of O2

•− into O2 and
H2O2, thereby reducing oxidative stress [103]. It has demonstrated protective effects against
acetaminophen-induced liver injury, chemotherapy-induced peripheral neuropathy (CIPN),
and ischemia–reperfusion injury, among other conditions [104–110]. Notably, Mangafodipir
has shown efficacy in protecting against oxidative damage in various preclinical models,
including reducing ROS in hepatocytes and preserving mitochondrial function in the liver
during ischemia–reperfusion injury [107]. Additionally, it has been reported to enhance the
therapeutic effects of chemotherapy by reducing hematologic toxicity while simultaneously
increasing the cytotoxicity against cancer cells, thereby improving the overall therapeutic
index of chemotherapeutic regimens [105,110].
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nues for therapeutic development, particularly in addressing the complex interplay of 
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Calmangafodipir is a derivative of mangafodipir, designed to improve the stability
and safety profile by reducing manganese toxicity. Calmangafodipir achieves this by re-
placing a significant portion of the manganese with calcium, thereby doubling the renal
excretion of Mn2+ and minimizing its retention in critical organs such as the brain and
pancreas [103,111]. This modification not only enhances the stability of the compound
but also increases its therapeutic efficacy [112]. Calmangafodipir has been explored exten-
sively for its potential to prevent CIPN, particularly in patients treated with oxaliplatin,
a chemotherapy drug known for its neurotoxic effects. Preclinical studies have shown
that calmangafodipir effectively reduces oxidative stress, protects neurons from damage,
and preserves nerve function, thereby preventing CIPN [112]. However, the results from
the prevention of oxaliplatin-induced peripheral neuropathy phase III trials, which aimed
to evaluate its efficacy in preventing CIPN in colorectal cancer patients, were unexpect-
edly negative [113]. The trials reported increased CIPN incidence in patients treated with
calmangafodipir, which was attributed to unfavorable redox interactions between man-
ganese in calmangafodipir and platinum in oxaliplatin [113]. These interactions likely
exacerbated oxidative stress, leading to increased nerve damage, ultimately resulting in the
discontinuation of the trials [113–117].

Despite these challenges, both mangafodipir and calmangafodipir continue to be of
interest in various therapeutic contexts. Calmangafodipir has shown potential as an adjunct
therapy in treating acetaminophen overdose, particularly by reducing oxidative stress
and mitigating mitochondrial damage, though its efficacy in clinical outcomes remains
inconclusive. Furthermore, Mangafodipir has been proposed as a supplementary treatment
in conditions like COVID-19 to reduce endothelial inflammation and thrombosis; however,
more research is needed to fully establish its clinical benefits [116].
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3. Conclusions

The exploration of MnSOD mimetics has significantly advanced our understanding
and potential management of oxidative stress-related conditions. Controlled redox reac-
tions are integral to vital biological processes, and the disruption of redox balance leads
to the overaccumulation of ROS, causing extensive cellular damage. MnSOD, located in
the mitochondrial matrix, is pivotal in neutralizing O2

•−, especially in tissues with high
metabolic demand.

Historically, the development of MnSOD mimetics has transitioned from general SOD
mimics to compounds specifically emulating MnSOD’s catalytic mechanisms. Among
these, Mn porphyrins have been extensively studied due to their ability to localize within
mitochondria and modulate cellular redox balance. Variants such as MnTBAP, MnTE,
MnTnHex, and MnTnBuOE have shown promise in therapeutic applications ranging from
reproductive biology to cancer therapy and radioprotection.

Mn salens, including EUK-134, EUK-207, and EUK-8, have demonstrated significant
potential as SOD and catalase mimetics. Their efficacy in reducing oxidative stress has
implications for treating conditions such as ischemia–reperfusion injury, muscle atrophy,
pulmonary hypertension, and radiation-induced injuries. These compounds have shown
the ability to modulate key signaling pathways and protect against oxidative damage in
various tissues.

MitoQ10, a mitochondria-targeted antioxidant, has shown versatility in addressing
mitochondrial dysfunction across cardiovascular, neurodegenerative, metabolic, and re-
productive disorders. Its ability to reduce mitochondrial oxidative damage underscores its
potential as a therapeutic agent in diseases where mitochondrial ROS play a central role.
By modulating cellular signaling and protecting mitochondrial function, MitoQ10 offers a
promising approach to mitigating oxidative stress-related cellular damage.

Nitroxides, such as TEMPO and its derivatives, offer a different approach by catalyti-
cally dismutating O2

•− without containing manganese. Their broad efficacy in mitigating
oxidative stress-related damage in pulmonary, vascular, neurodegenerative, and inflam-
matory conditions highlights their value in therapeutic development. Mito-TEMPO, in
particular, has shown effectiveness in targeting mitochondrial ROS, offering protective
effects in models of hypertension and vascular dysfunction.

Mangafodipir and its derivative calmangafodipir have also contributed to the field
by enhancing the therapeutic index of treatments, particularly in CIPN and oxidative
stress-related conditions. Despite challenges faced in clinical trials, they continue to be
of interest due to their SOD mimetic activity and potential to mitigate treatment-related
side effects.

These MnSOD mimetics represent a promising frontier in treating oxidative stress-
related diseases, offering therapeutic potential by mimicking the body’s natural antioxidant
defenses. While all these compounds effectively dismute O2

•−, optimizing their stability
and bioavailability, as well as minimizing potential toxicity through R-group modifications
can further enhance their efficacy. Although some MnSOD mimetics benefit both healthy
and diseased tissues in certain conditions, such as adjuvant chemotherapy and radiother-
apy, advancing tissue-selective and mitochondrial targeting could broaden their therapeutic
impact. Future research should explore MnSOD mimetics not only as treatments for dis-
eases linked to oxidative stress but also as preventive adjuvants where disease progression
or standard therapies are expected to elevate ROS levels and cause mitochondrial damage.
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61. Rebouças, J.S.; Spasojević, I.; Batinić-Haberle, I. Pure manganese(III) 5,10,15,20-tetrakis(4-benzoic acid)porphyrin (MnTBAP) is
not a superoxide dismutase mimic in aqueous systems: A case of structure–activity relationship as a watchdog mechanism in
experimental therapeutics and biology. JBIC J. Biol. Inorg. Chem. 2008, 13, 289–302. [CrossRef] [PubMed]
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