Massa Medicata Fermentata, a Functional Food for Improving the Metabolic Profile via Prominent Anti-Oxidative and Anti-Inflammatory Effects
<p>Phenolic contents and antioxidant activity of the MMF extract. (<b>A</b>) Total phenolic, tannin, and flavonoid contents of MMF extract. (<b>B</b>,<b>C</b>) Free-radical scavenging activity of MMF extract measured using a DPPH assay and ABTS assay. (<b>D</b>) The inhibitory effect of MMF extract was tested by NBT reduction system. (<b>E</b>) Lipid peroxidation inhibitory effect of MMF. (<b>F</b>) Showing a comparative electrophoretic pattern of pBR322 DNA nicking inhibition activity of MMF. Lane 1, pBR322 supercoil plasmid DNA; Lane 2, hydroxyl radical-mediated DNA nick form; Lane 3, pre-treatment of MMF (5 mg/mL, final concentration); Lane 4, pre-treatment of catalase (1 unit). (<b>G</b>) Effect of MMF on the Cu<sup>2+</sup> mediated LDL oxidation by relative electrophoretic mobility (REM). Lane 1, native LDL; Lane 2, ox-LDL; Lane 3, pre-treatment of MMF (0.1 mg/mL); Lane 4, pre-treatment of MMF (0.5 mg/mL); Lane 5, pre-treatment of ascorbic acid (0.1 mg/mL). Dose-dependent effect of MMF against Cu<sup>2+</sup>-mediated LDL oxidation by REM.</p> "> Figure 2
<p>Effects of MMF on cell viability. The cells were treated with various concentrations of MMF extract in the absence (<b>A</b>) or presence (<b>B</b>) of LPS (1 μg/mL) for 24 h. The results are presented as the mean ± SDs of the percentages determined by three independent experiments versus non-treated controls. NC: non-treated negative control.</p> "> Figure 3
<p>Effects of MMF on HO-1 expression and the nuclear translocation of Nrf2. (<b>A</b>) Raw 264.7 cells were incubated with various concentrations of MMF for 6 h and HO-1 expression was examined by western blot analysis. The Nrf2 expression levels in cytoplasm and nuclear were assessed by western blot analysis. (<b>B</b>) Nuclear Nrf2 translocation was visualized under an immunofluorescence microscope. The band intensities were measured by densitometry and normalized to the intensities of the total forms and β-actin. The results are presented as the means ± SDs of three independent experiments. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 versus non-treated negative control. NC: non-treated negative control.</p> "> Figure 4
<p>MMF inhibited the up-regulation of iNOS and COX2 and the phosphorylation of MAPKs in LPS-treated RAW264.7 macrophages. RAW264.7 macrophages were co-treated with MMF and LPS (1 μg/mL) for 12–24 h. (<b>A</b>) NO concentrations were estimated using a Griess reaction. (<b>B</b>) Gene expression levels of NOS2 and COX2 obtained by Real-time PCR (<b>C</b>) Western blot analysis revealed the effects on the relative iNOS and COX2 protein levels. (<b>D</b>) Relative MAPK expression determined by western blot analysis. The band intensities were measured by densitometric analysis and normalized versus the intensities of the total forms and β-actin. The results are presented as the means ± SDs of three independent experiments. # <span class="html-italic">p</span> < 0.05, ## <span class="html-italic">p</span> < 0.01 versus LPS-treated controls, and * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 versus LPS-treated RAW264.7 cells. NC: non-treated negative control.</p> "> Figure 5
<p>MMF inhibited NFκB translocation by reducing the phosphorylation of IκB in RAW264.7 macrophages. RAW264.7 macrophages were co-treated with MMF and LPS (1 μg/mL) for 12 h. (<b>A</b>) Relative phosphorylation of the IκB and NFκB protein levels as determined by western blot analysis. (<b>B</b>) visualized by immunofluorescence microscopy. The results are presented as the means ± SDs of three independent experiments. # <span class="html-italic">p</span> < 0.05 versus LPS-treated controls, and * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 versus LPS-treated RAW264.7 cells.</p> "> Figure 6
<p>MMF significantly reduced LPS-induced pro-inflammatory cytokine levels in RAW264.7 macrophages. RAW264.7 macrophages were simultaneously treated with MMF and LPS (1 μg/mL) for 24 h. (<b>A</b>) Relative expression of TNFα, IL-1β, and IL-6, as determined by ELISA. (<b>B</b>) Relative expression of TNFα, IL-1β, and IL-6, as determined by qPCR. The results are presented as the means ± SDs of three independent experiments. # <span class="html-italic">p</span> < 0.05; ## <span class="html-italic">p</span> < 0.01 versus LPS-treated controls, and * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01 versus LPS-treated RAW264.7 cells.</p> "> Figure 7
<p>Protective effects of MMF on LPS-induced NO generation in zebrafish larvae. The zebrafish larvae were pre-treated with MMF (500 μg/mL) for 1 h and then exposed to LPS (10 μg/mL) for 24 h. The levels of NO generation were observed under a fluorescence microscope after staining with DAF-FM DA.</p> "> Figure 8
<p>Assessment of the BMI and plasma total cholesterol in adult zebrafish fed MMF. (<b>A</b>) Change in BMI (g/cm<sup>2</sup>) during the experimental period for three weeks. (<b>B</b>) TC levels in HCD-induced obese zebrafish at three weeks fed 10% and 20% MMF + HCD. NCD: normal cholesterol diet; HCD: high-cholesterol diet. * <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.001, ### <span class="html-italic">p</span> < 0.001.</p> "> Figure 9
<p>HPLC fingerprinting analysis of MMF extract. (<b>A</b>) HPLC chromatogram analysis of Quercetin, a standard compound of MMF. (<b>B</b>) HPLC analysis of hydrothermal extract of MMF used in this study.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of MMF Extract
2.3. Total Phenolic Content of MMF
2.4. DPPH, ABTS Free Radical Scavenging Assay
2.5. Superoxide-Free—Radical Scavenging Assay
2.6. Ferric Thiocyanate (FTC) Assay
2.7. DNA Nicking Assay
2.8. Relative Electrophoretic Mobility (REM) Assay
2.9. Cell Culture and Treatment
2.10. Cell Viability Assay
2.11. Nitrite Assay
2.12. Preparation of Nuclear and Cytoplasm Fractions
2.13. Western Blot Analysis
2.14. Quantitative Real-Time Polymerase Chain Reaction
2.15. Enzyme-Linked Immunosorbent Assay (ELISA)
2.16. Immunofluorescence Microscopy
2.17. Zebrafish Maintenance
2.18. HPLC Analyses
2.19. Statistical Analyses
3. Results
3.1. Total Phenolic Content and Radical Scavenging Activity
3.2. Effects of MMF on the Viability of Murine Macrophage RAW264.7 Cells
3.3. MMF Increased the Nuclear Translocation of Nrf2 in Macrophages
3.4. MMF Inhibited iNOS and COX-2 Expressions and the Phosphorylation of MAPKs in LPS-Stimulated Macrophages
3.5. MMF Inhibited the Nuclear Translocation of NFκB in LPS-Stimulated Macrophages
3.6. MMF Reduced Pro-Inflammatory Cytokine Levels in LPS-Treated Macrophages
3.7. MMF Decreased NO Production in LPS-Stimulated Zebrafish
3.8. MMF Improved Body Weight and Serum Lipid Levels
3.9. HPLC Analysis Indicates the Potential Presence of Quercetin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cencic, A.; Chingwaru, W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2010, 2, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Hasler, C.M. Functional foods: Benefits, concerns and challenges—A position paper from the American Council on Science and Health. J. Nutr. 2002, 132, 3772–3781. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Negrete, E.V.; Morales-González, Á.; Madrigal-Santillán, E.O.; Sánchez-Reyes, K.; Álvarez-González, I.; Madrigal-Bujaidar, E.; Valadez-Vega, C.; Chamorro-Cevallos, G.; Garcia-Melo, L.F.; Morales-González, J.A. Phytochemicals and Their Usefulness in the Maintenance of Health. Plants 2024, 13, 523. [Google Scholar] [CrossRef] [PubMed]
- Ndisang, J.F.; Vannacci, A.; Rastogi, S. Oxidative stress and inflammation in obesity, diabetes, hypertension, and related cardiometabolic complications. Oxidative Med. Cell. Longev. 2014, 2014, 506948. [Google Scholar] [CrossRef]
- Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes. Res. Clin. Pract. 2013, 7, e330–e341. [Google Scholar] [CrossRef]
- Fujii, H.; Kawada, N.; Japan Study Group of NAFLD (JSG-NAFLD). The role of insulin resistance and diabetes in nonalcoholic fatty liver disease. Int. J. Mol. Sci. 2020, 21, 3863. [Google Scholar] [CrossRef]
- Chapple, I. Reactive oxygen species and antioxidants in inflammatory diseases. J. Clin. Periodontol. 1997, 24, 287–296. [Google Scholar] [CrossRef]
- Di Rosanna, P.; Salvatore, C. Reactive oxygen species, inflammation, and lung diseases. Curr. Pharm. Des. 2012, 18, 3889–3900. [Google Scholar] [CrossRef]
- Ahmed, O.M.; Mohammed, M.T. Oxidative stress: The role of reactive oxygen species (ROS) and antioxidants in human diseases. Plant Arch 2020, 20, 4089–4095. [Google Scholar]
- Yatoo, M.; Gopalakrishnan, A.; Saxena, A.; Parray, O.R.; Tufani, N.A.; Chakraborty, S.; Tiwari, R.; Dhama, K.; Iqbal, H. Anti-inflammatory drugs and herbs with special emphasis on herbal medicines for countering inflammatory diseases and disorders-a review. Recent Pat. Inflamm. Allergy Drug Discov. 2018, 12, 39–58. [Google Scholar] [CrossRef]
- Motohashi, H.; Yamamoto, M. Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med. 2004, 10, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; O’Connor, T.; Yamamoto, M. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 2003, 8, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Loboda, A.; Damulewicz, M.; Pyza, E.; Jozkowicz, A.; Dulak, J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell. Mol. Life Sci. 2016, 73, 3221–3247. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, L.; Chen, J.; Li, Q.; Huo, L.; Wang, Y.; Wang, H.; Du, J. Pharmacological modulation of Nrf2/HO-1 signaling pathway as a therapeutic target of Parkinson’s disease. Front. Pharmacol. 2021, 12, 757161. [Google Scholar] [CrossRef]
- Lee, J.-M.; Johnson, J.A. An important role of Nrf2-ARE pathway in the cellular defense mechanism. BMB Rep. 2004, 37, 139–143. [Google Scholar] [CrossRef]
- Zamora, R.; Vodovotz, Y.; Billiar, T.R. Inducible nitric oxide synthase and inflammatory diseases. Mol. Med. 2000, 6, 347–373. [Google Scholar] [CrossRef]
- Weinberg, J.; Misukonis, M.; Shami, P.; Mason, S.; Sauls, D.; Dittman, W.; Wood, E.; Smith, G.; McDonald, B.; Bachus, K. Human mononuclear phagocyte inducible nitric oxide synthase (iNOS): Analysis of iNOS mRNA, iNOS protein, biopterin, and nitric oxide production by blood monocytes and peritoneal macrophages. Blood 1995, 86, 1184–1195. [Google Scholar] [CrossRef]
- Chi, D.S.; Qui, M.; Krishnaswamy, G.; Li, C.; Stone, W. Regulation of nitric oxide production from macrophages by lipopolysaccharide and catecholamines. Nitric Oxide 2003, 8, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kim, J.; Sharma, R.P. Inhibition of p38 and ERK MAP kinases blocks endotoxin-induced nitric oxide production and differentially modulates cytokine expression. Pharmacol. Res. 2004, 49, 433–439. [Google Scholar] [CrossRef]
- Yong, H.-Y.; Koh, M.-S.; Moon, A. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin. Investig. Drugs 2009, 18, 1893–1905. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Sailo, B.L.; Banik, K.; Harsha, C.; Prasad, S.; Gupta, S.C.; Bharti, A.C.; Aggarwal, B.B. Chronic diseases, inflammation, and spices: How are they linked? J. Transl. Med. 2018, 16, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Shan, L.; Shi, Y.; Zhao, Y.; Mu, Q.; Cui, Y.; Chai, X.; Wang, Y. Exploration of the variations of amino acids in Massa Medicata Fermentata and their effects on gastrointestinal diseases. LWT 2023, 173, 114309. [Google Scholar] [CrossRef]
- Hussain, A.; Bose, S.; Wang, J.-H.; Yadav, M.K.; Mahajan, G.B.; Kim, H. Fermentation, a feasible strategy for enhancing bioactivity of herbal medicines. Food Res. Int. 2016, 81, 1–16. [Google Scholar] [CrossRef]
- Sun, Y.N.; Yang, S.Y.; Koh, Y.-S.; Kim, Y.H.; Li, W. Isolation and identification of benzochroman and acylglycerols from massa medicata fermentata and their inhibitory effects on LPS-stimulated cytokine production in bone marrow-derived dendritic cells. Molecules 2018, 23, 2400. [Google Scholar] [CrossRef]
- Fu, F.Q.; Xu, M.; Wei, Z.; Li, W. Biostudy on traditional Chinese medicine massa medicata fermentata. ACS Omega 2020, 5, 10987–10994. [Google Scholar] [CrossRef]
- Wang, Z.; Okutsu, K.; Yoshizaki, Y.; Futagami, T.; Tamaki, H.; Maruyama, T.; Toume, K.; Komatsu, K.; Hashimoto, F.; Takamine, K. Effects of microbial fermentation on enzyme activity and volatile properties of Massa Medicata Fermentata. Tradit. Kampo Med. 2022, 9, 10–17. [Google Scholar] [CrossRef]
- Lim, D.-W.; Bose, S.; Wang, J.-H.; Choi, H.S.; Kim, Y.-M.; Chin, Y.-W.; Jeon, S.-H.; Kim, J.-E.; Kim, H. Modified SJH alleviates FFAs-induced hepatic steatosis through leptin signaling pathways. Sci. Rep. 2017, 7, 45425. [Google Scholar] [CrossRef]
- Ansari, A.; Bose, S.; Patra, J.K.; Shin, N.R.; Lim, D.-W.; Kim, K.-W.; Wang, J.-H.; Kim, Y.-M.; Chin, Y.-W.; Kim, H. A controlled fermented samjunghwan herbal formula ameliorates non-alcoholic hepatosteatosis in HepG2 Cells and OLETF rats. Front. Pharmacol. 2018, 9, 596. [Google Scholar] [CrossRef]
- Lim, D.-W.; Wang, J.-H. Gut microbiome: The interplay of an “invisible organ” with herbal medicine and its derived compounds in chronic metabolic disorders. Int. J. Environ. Res. Public Health 2022, 19, 13076. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, S.; Zhang, X.; Meng, N.; Chai, X.; Wang, Y. Fermentation characteristics and the dynamic trend of chemical components during fermentation of Massa Medicata Fermentata. Arab. J. Chem. 2022, 15, 103472. [Google Scholar] [CrossRef]
- Chen, G.; Li, Z.; Liu, S.; Tang, T.; Chen, Q.; Yan, Z.; Peng, J.; Yang, Z.; Zhang, G.; Liu, Y. Fermented Chinese herbal medicine promoted growth performance, intestinal health, and regulated bacterial microbiota of weaned piglets. Animals 2023, 13, 476. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J.; Yan, J.; Qi, X.; Wang, Y.; Zheng, Z.; Liang, J.; Ling, J.; Chen, Y.; Tang, X. Application of fermented Chinese herbal medicines in food and medicine field: From an antioxidant perspective. Trends Food Sci. Technol. 2024, 148, 104410. [Google Scholar] [CrossRef]
- Nikolaeva, T.; Lapshin, P.; Zagoskina, N. Method for determining the total content of phenolic compounds in plant extracts with Folin–Denis reagent and Folin–Ciocalteu reagent: Modification and comparison. Russ. J. Bioorganic Chem. 2022, 48, 1519–1525. [Google Scholar] [CrossRef]
- Negi, A.; Dobhal, K.; Ghildiyal, P. Antioxidant potential and effect of extraction solvent on total phenol content, flavonoids content and tannin content of Ficus palmata Forssk. Int. J. Pharm. Sci. Rev. Res. 2018, 49, 19–24. [Google Scholar]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 2021, 150, 111932. [Google Scholar] [CrossRef]
- Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reis, A.S.; Santos, T.C.d.; Coube, C.S.; Leitão, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res. 2001, 15, 127–130. [Google Scholar] [CrossRef]
- Parejo, I.; Viladomat, F.; Bastida, J.; Rosas-Romero, A.; Saavedra, G.; Murcia, M.A.; Jiménez, A.M.; Codina, C. Investigation of Bolivian plant extracts for their radical scavenging activity and antioxidant activity. Life Sci. 2003, 73, 1667–1681. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-C.; Kim, H.-R.; Kim, J.; Jang, Y.-S. Antioxidant property of an ethanol extract of the stem of Opuntia ficus-indica var. saboten. J. Agric. Food Chem. 2002, 50, 6490–6496. [Google Scholar] [CrossRef]
- Kim, J.-S. Evaluation of in vitro antioxidant activity of the water extract obtained from dried pine needle (Pinus densiflora). Prev. Nutr. Food Sci. 2018, 23, 134. [Google Scholar] [CrossRef]
- Lim, D.-W.; Kim, H.; Park, J.-Y.; Kim, J.-E.; Moon, J.-Y.; Park, S.-D.; Park, W.-H. Amomum cardamomum L. ethyl acetate fraction protects against carbon tetrachloride-induced liver injury via an antioxidant mechanism in rats. BMC Complement. Altern. Med. 2016, 16, 155. [Google Scholar] [CrossRef]
- Yoon, M.-A.; Jeong, T.-S.; Park, D.-S.; Xu, M.-Z.; Oh, H.-W.; Song, K.-B.; Lee, W.S.; Park, H.-Y. Antioxidant effects of quinoline alkaloids and 2, 4-di-tert-butylphenol isolated from Scolopendra subspinipes. Biol. Pharm. Bull. 2006, 29, 735–739. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.R.; Lim, D.W.; Karunarathne, W.A.H.M.; Kim, G.Y.; Kim, H.; Kim, J.E.; Park, W.H. A non-polar fraction of Saponaria officinalis L. acted as a TLR4/MD2 complex antagonist and inhibited TLR4/MyD88 signaling in vitro and in vivo. FASEB J. 2022, 36, e22387. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, J.; Huang, X.; Huang, L.; Li, S.; Wang, Z. Magnesium sulfate inhibits the secretion of high mobility group box 1 from lipopolysaccharide-activated RAW264. 7 macrophages in vitro. J. Surg. Res. 2013, 179, e189–e195. [Google Scholar] [CrossRef]
- Yu, G.R.; Kim, J.E.; Lim, D.W.; Park, W.H. The combination of Ephedrae herba and coixol from Coicis semen attenuate adiposity via glucocorticoid receptor regulation. Sci. Rep. 2023, 13, 20324. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Li, Q.-Q.; Wu, N.; Shen, Y.-G.; Liao, W.-T.; Yang, Y.; Dong, E.; Zhang, G.-M.; Liu, B.-R.; Yue, X.-Z.; et al. Chronological in vivo imaging reveals endothelial inflammation prior to neutrophils accumulation and lipid deposition in HCD-fed zebrafish. Atherosclerosis 2019, 290, 125–135. [Google Scholar] [CrossRef]
- Heindel, J.J.; Blumberg, B.; Cave, M.; Machtinger, R.; Mantovani, A.; Mendez, M.A.; Nadal, A.; Palanza, P.; Panzica, G.; Sargis, R. Metabolism disrupting chemicals and metabolic disorders. Reprod. Toxicol. 2017, 68, 3–33. [Google Scholar] [CrossRef] [PubMed]
- El-Shinnawi, U.; Soory, M. Actions of adjunctive nutritional antioxidants in periodontitis and prevalent systemic inflammatory diseases. Endocr. Metab. Immune Disord.-Drug Targets (Former. Curr. Drug Targets-Immune Endocr. Metab. Disord.) 2015, 15, 261–276. [Google Scholar] [CrossRef]
- Henninger, A.J.; Eliasson, B.; Jenndahl, L.E.; Hammarstedt, A. Adipocyte hypertrophy, inflammation and fibrosis characterize subcutaneous adipose tissue of healthy, non-obese subjects predisposed to type 2 diabetes. PLoS ONE 2014, 9, e105262. [Google Scholar] [CrossRef]
- Carrillo, J.L.M.; Campo, J.; Coronado, O.G.; Gutiérrez, P.T.V.; Cordero, J.F.C.; Juárez, J.V. Adipose tissue and inflammation. In Adipose Tissue; InTech: London, UK, 2018; Volume 93. [Google Scholar]
- Veloso, C.D.; Belew, G.D.; Ferreira, L.L.; Grilo, L.F.; Jones, J.G.; Portincasa, P.; Sardão, V.A.; Oliveira, P.J. A mitochondrial approach to cardiovascular risk and disease. Curr. Pharm. Des. 2019, 25, 3175–3194. [Google Scholar] [CrossRef]
- Raut, S.K.; Khullar, M. Oxidative stress in metabolic diseases: Current scenario and therapeutic relevance. Mol. Cell. Biochem. 2023, 478, 185–196. [Google Scholar] [CrossRef]
- Dama, A.; Shpati, K.; Daliu, P.; Dumur, S.; Gorica, E.; Santini, A. Targeting metabolic diseases: The role of nutraceuticals in modulating oxidative stress and inflammation. Nutrients 2024, 16, 507. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Zou, M.H. Roles of reactive oxygen species in physiology and pathology. In Atherosclerosis: Risks, Mechanisms, and Therapies; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 379–392. [Google Scholar]
- Costa, C.; Incio, J.; Soares, R. Angiogenesis and chronic inflammation: Cause or consequence? Angiogenesis 2007, 10, 149–166. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, J.; Zhong, L. Hydroxytyrosol inhibits pro-inflammatory cytokines, iNOS, and COX-2 expression in human monocytic cells. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2009, 379, 581–586. [Google Scholar] [CrossRef]
- Cho, H.; Yun, C.-W.; Park, W.-K.; Kong, J.-Y.; Kim, K.S.; Park, Y.; Lee, S.; Kim, B.-K. Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacol. Res. 2004, 49, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Ahsan, M.H.; Zhu, L.; Sambucetti, L.C.; Purchio, A.F.; West, D.B. Regulation of IκBα expression involves both NF-κB and the MAP kinase signaling pathways. J. Inflamm. 2005, 2, 10. [Google Scholar] [CrossRef]
- Jijon, H.; Allard, B.; Jobin, C. NF-κB inducing kinase activates NF-κB transcriptional activity independently of IκB kinase γ through a p38 MAPK-dependent RelA phosphorylation pathway. Cell. Signal. 2004, 16, 1023–1032. [Google Scholar] [CrossRef] [PubMed]
- Zanandrea, R.; Bonan, C.D.; Campos, M.M. Zebrafish as a model for inflammation and drug discovery. Drug Discov. Today 2020, 25, 2201–2211. [Google Scholar] [CrossRef]
- Schlegel, A. Zebrafish models for dyslipidemia and atherosclerosis research. Front. Endocrinol. 2016, 7, 159. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, Y.-B.; Zhang, X.-R.; Chen, C.; Xiang, H.; Xie, Q. Monitoring of the bacterial and fungal biodiversity and dynamics during Massa Medicata Fermentata fermentation. Appl. Microbiol. Biotechnol. 2013, 97, 9647–9655. [Google Scholar] [CrossRef]
- Shen, Y.L.; Zhang, L.Q.; Yang, Y.; Yin, B.C.; Ye, B.C.; Zhou, Y. Advances in the role and mechanism of lactic acid bacteria in treating obesity. Food Bioeng. 2022, 1, 101–115. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Huang, Q.; Sun, J.; Yao, R.; Wang, J. Effect of Massa Medicata Fermentata on the gut microbiota of dyspepsia mice based on 16S rRNA technique. Evid.-Based Complement. Altern. Med. 2020, 2020, 7643528. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, A.; Razavi, B.M.; Banach, M.; Hosseinzadeh, H. Quercetin and metabolic syndrome: A review. Phytother. Res. 2021, 35, 5352–5364. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Okutsu, K.; Futagami, T.; Yoshizaki, Y.; Tamaki, H.; Maruyama, T.; Toume, K.; Komatsu, K.; Hashimoto, F.; Takamine, K. Microbial community structure and chemical constituents in Shinkiku, a fermented crude drug used in Kampo medicine. Front. Nutr. 2020, 7, 115. [Google Scholar] [CrossRef] [PubMed]
- Huggett, A.; Schilter, B. Research needs for establishing the safety of functional foods. Nutr. Rev. 1996, 54, S143. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, K.-M.; Yu, G.-R.; Kim, D.-H.; Lim, D.-W.; Park, W.-H. Massa Medicata Fermentata, a Functional Food for Improving the Metabolic Profile via Prominent Anti-Oxidative and Anti-Inflammatory Effects. Antioxidants 2024, 13, 1271. https://doi.org/10.3390/antiox13101271
Jung K-M, Yu G-R, Kim D-H, Lim D-W, Park W-H. Massa Medicata Fermentata, a Functional Food for Improving the Metabolic Profile via Prominent Anti-Oxidative and Anti-Inflammatory Effects. Antioxidants. 2024; 13(10):1271. https://doi.org/10.3390/antiox13101271
Chicago/Turabian StyleJung, Kyung-Mi, Ga-Ram Yu, Da-Hoon Kim, Dong-Woo Lim, and Won-Hwan Park. 2024. "Massa Medicata Fermentata, a Functional Food for Improving the Metabolic Profile via Prominent Anti-Oxidative and Anti-Inflammatory Effects" Antioxidants 13, no. 10: 1271. https://doi.org/10.3390/antiox13101271
APA StyleJung, K. -M., Yu, G. -R., Kim, D. -H., Lim, D. -W., & Park, W. -H. (2024). Massa Medicata Fermentata, a Functional Food for Improving the Metabolic Profile via Prominent Anti-Oxidative and Anti-Inflammatory Effects. Antioxidants, 13(10), 1271. https://doi.org/10.3390/antiox13101271