Metagenomic Insights into Microbial Signatures in Thrombi from Acute Ischemic Stroke Patients Undergoing Endovascular Treatment
<p>Relative abundance of the 10 most prevalent bacterial taxa in thrombotic blood clots.</p> "> Figure 2
<p>Alpha diversity indices for each sample. (<b>A</b>) Shannon diversity index; (<b>B</b>) Simpson diversity index; (<b>C</b>) Rarefaction curves showing taxonomic richness across all samples.</p> "> Figure 3
<p>Principal Coordinates Analysis (PCoA) plot based on Bray–Curtis dissimilarity distances.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Specimen Collection
2.2. Metagenomic DNA Extraction, Illumina Sequencing, and Bioinformatic Analysis
2.3. Biostatistical Analysis
2.4. Validation of Presence of Species-Specific Genes
2.5. In Vitro Bacterial Culture
2.6. Species Identification Using MALDI
2.7. Fluorescence In Situ Hybridization (FISH) Analysis
3. Results
3.1. Patient Characteristics
3.2. Microbial Composition of Thrombi
3.3. Taxonomic Composition and Species Diversity
3.4. Alpha Diversity
3.5. Beta Diversity
3.6. Species Confirmation
3.7. In Vitro Culturing of Bacteria
3.8. Fluorescence In Situ Hybridization (FISH)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosenfeld, M.E. Inflammation and atherosclerosis: Direct versus indirect mechanisms. Curr. Opin. Pharmacol. 2013, 13, 154–160. [Google Scholar] [CrossRef]
- Yamashiro, K.; Tanaka, R.; Urabe, T.; Ueno, Y.; Yamashiro, Y.; Nomoto, K.; Takahashi, T.; Tsuji, H.; Asahara, T.; Hattori, N. Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PLoS ONE 2017, 12, e0171521. [Google Scholar] [CrossRef]
- Xiang, L.; Lou, Y.; Liu, L.; Liu, Y.; Zhang, W.; Deng, J.; Guan, Y.; She, M.; You, X.; Liu, M.; et al. Gut Microbiotic Features Aiding the Diagnosis of Acute Ischemic Stroke. Front. Cell. Infect. Microbiol. 2020, 10, 587284. [Google Scholar] [CrossRef]
- Xu, K.Y.; Gao, X.X.; Xia, G.H.; Chen, M.X.; Zeng, N.Y.; Wang, S.; You, C.; Tian, X.L.; Di, H.L.; Tang, W.L.; et al. Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn. Gut 2021, 70, 1486–1494. [Google Scholar] [CrossRef] [PubMed]
- Xia, G.H.; You, C.; Gao, X.X.; Zeng, X.L.; Zhu, J.J.; Xu, K.Y.; Tan, C.H.; Xu, R.T.; Wu, Q.H.; Zhou, H.W.; et al. Stroke Dysbiosis Index (SDI) in Gut Microbiome Are Associated with Brain Injury and Prognosis of Stroke. Front. Neurol. 2019, 10, 397. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Liao, S.X.; He, Y.; Wang, S.; Xia, G.H.; Liu, F.T.; Zhu, J.J.; You, C.; Chen, Q.; Zhou, L.; et al. Dysbiosis of Gut Microbiota with Reduced Trimethylamine-N-Oxide Level in Patients with Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack. J. Am. Heart Assoc. 2015, 4, e002699. [Google Scholar] [CrossRef]
- Vajpeyee, A.; Chauhan, P.S.; Pandey, S.; Tiwari, S.; Yadav, L.B.; Shroti, A.K.; Vajpeyee, M. Metagenomics Analysis of Thrombus Samples Retrieved from Mechanical Thrombectomy. Neurointervention 2021, 16, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Khashim, Z.; Fitzgerald, S.; Kadirvel, R.; Dai, D.; Doyle, K.M.; Brinjikji, W.; Kallmes, D.F. Clots retrieved by mechanical thrombectomy from acute ischemic stroke patients show no evidence of bacteria. Interv. Neuroradiol. 2019, 25, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Patrakka, O.; Pienimäki, J.P.; Tuomisto, S.; Ollikainen, J.; Lehtimäki, T.; Karhunen, P.J.; Martiskainen, M. Oral Bacterial Signatures in Cerebral Thrombi of Patients with Acute Ischemic Stroke Treated with Thrombectomy. J. Am. Heart Assoc. 2019, 8, e012330. [Google Scholar] [CrossRef]
- Sardu, C.; Consiglia Trotta, M.; Santella, B.; D’Onofrio, N.; Barbieri, M.; Rizzo, M.R.; Sasso, F.C.; Scisciola, L.; Turriziani, F.; Torella, M.; et al. Microbiota thrombus colonization may influence athero-thrombosis in hyperglycemic patients with ST segment elevation myocardialinfarction (STEMI). Marianella study. Diabetes Res. Clin. Pract. 2021, 173, 108670. [Google Scholar] [CrossRef]
- Hansen, G.M.; Belstrøm, D.; Nilsson, M.; Helqvist, S.; Nielsen, C.H.; Holmstrup, P.; Tolker-Nielsen, T.; Givskov, M.; Hansen, P.R. Pseudomonas aeruginosa Microcolonies in Coronary Thrombi from Patients with ST-Segment Elevation Myocardial Infarction. PLoS ONE 2016, 11, e0168771. [Google Scholar] [CrossRef] [PubMed]
- Ohki, T.; Itabashi, Y.; Kohno, T.; Yoshizawa, A.; Nishikubo, S.; Watanabe, S.; Yamane, G.; Ishihara, K. Detection of periodontal bacteria in thrombi of patients with acute myocardial infarction by polymerase chain reaction. Am. Heart J. 2012, 163, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Pessi, T.; Karhunen, V.; Karjalainen, P.P.; Ylitalo, A.; Airaksinen, J.K.; Niemi, M.; Pietila, M.; Lounatmaa, K.; Haapaniemi, T.; Lehtimäki, T.; et al. Bacterial signatures in thrombus aspirates of patients with myocardial infarction. Circulation 2013, 127, 1219–1228. [Google Scholar] [CrossRef]
- Wahlgren, N.; Moreira, T.; Michel, P.; Steiner, T.; Jansen, O.; Cognard, C.; Mattle, H.P.; van Zwam, W.; Holmin, S.; Tatlisumak, T.; et al. Mechanical thrombectomy in acute ischemic stroke: Consensus statement by ESO-Karolinska Stroke Update 2014/2015, supported by ESO, ESMINT, ESNR and EAN. Int. J. Stroke 2016, 11, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Turk, A.S.; Frei, D.; Fiorella, D.; Mocco, J.; Baxter, B.; Siddiqui, A.; Spiotta, A.; Mokin, M.; Dewan, M.; Quarfordt, S.; et al. ADAPT FAST study: A direct aspiration first pass technique for acute stroke thrombectomy. J. Neurointerv. Surg. 2014, 6, 260–264. [Google Scholar] [CrossRef]
- Berkhemer, O.A.; Fransen, P.S.; Beumer, D.; van den Berg, L.A.; Lingsma, H.F.; Yoo, A.J.; Schonewille, W.J.; Vos, J.A.; Nederkoorn, P.J.; Wermer, M.J.; et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 2015, 372, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Demchuk, A.M.; Menon, B.K.; Eesa, M.; Rempel, J.L.; Thornton, J.; Roy, D.; Jovin, T.G.; Willinsky, R.A.; Sapkota, B.L.; et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 2015, 372, 1019–1030. [Google Scholar] [CrossRef]
- Jovin, T.G.; Chamorro, A.; Cobo, E.; de Miquel, M.A.; Molina, C.A.; Rovira, A.; San Román, L.; Serena, J.; Abilleira, S.; Ribó, M.; et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N. Engl. J. Med. 2015, 372, 2296–2306. [Google Scholar] [CrossRef]
- Saver, J.L.; Goyal, M.; Bonafe, A.; Diener, H.C.; Levy, E.I.; Pereira, V.M.; Albers, G.W.; Cognard, C.; Cohen, D.J.; Hacke, W.; et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N. Engl. J. Med. 2015, 372, 2285–2295. [Google Scholar] [CrossRef]
- Liao, Y.; Zeng, X.; Xie, X.; Liang, D.; Qiao, H.; Wang, W.; Guan, M.; Huang, S.; Jing, Z.; Leng, X.; et al. Bacterial Signatures of Cerebral Thrombi in Large Vessel Occlusion Stroke. mBio 2022, 13, e01085-22. [Google Scholar] [CrossRef]
- Walker, M.; Uranga, C.; Levy, S.H.; Kelly, C.; Edlund, A. Thrombus-associated microbiota in acute ischemic stroke patients. Surg. Neurol. Int. 2022, 13, 247. [Google Scholar] [CrossRef]
- Choi, H.; Dey, A.K.; Priyamvara, A.; Aksentijevich, M.; Bandyopadhyay, D.; Dey, D.; Dani, S.; Guha, A.; Nambiar, P.; Nasir, K.; et al. Role of Periodontal Infection, Inflammation and Immunity in Atherosclerosis. Curr. Probl. Cardiol. 2021, 46, 100638. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; van der Poll, T.; Schultz, M. Infection and inflammation as risk factors for thrombosis and atherosclerosis. Semin. Thromb. Hemost. 2012, 38, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Ridker, P.M.; Hansson, G.K. Inflammation in Atherosclerosis: From Pathophysiology to Practice. J. Am. Coll. Cardiol. 2009, 54, 2129–2138. [Google Scholar] [CrossRef]
- Gorabi, A.M.; Kiaie, N.; Khosrojerdi, A.; Jamialahmadi, T.; Al-Rasadi, K.; Johnston, T.P.; Sahebkar, A. Implications for the role of lipopolysaccharide in the development of atherosclerosis. Trends Cardiovasc. Med. 2022, 32, 525–533. [Google Scholar] [CrossRef]
- Lu, Z.; Li, Y.; Brinson, C.W.; Lopes-Virella, M.F.; Huang, Y. Cooperative stimulation of atherogenesis by lipopolysaccharide and palmitic acid-rich high fat diet in low-density lipoprotein receptor-deficient mice. Atherosclerosis 2017, 265, 231–241. [Google Scholar] [CrossRef]
- Dauphinee, S.M.; Karsan, A. Lipopolysaccharide signaling in endothelial cells. Lab. Investig. 2006, 86, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C. The role of inflammatory cytokines in endothelial dysfunction. Basic Res. Cardiol. 2008, 103, 398–406. [Google Scholar] [CrossRef]
- Tsioufis, P.; Theofilis, P.; Tsioufis, K.; Tousoulis, D. The Impact of Cytokines in Coronary Atherosclerotic Plaque: Current Therapeutic Approaches. Int. J. Mol. Sci. 2022, 23, 15937. [Google Scholar] [CrossRef] [PubMed]
- Ziganshina, E.E.; Sharifullina, D.M.; Lozhkin, A.P.; Khayrullin, R.N.; Ignatyev, I.M.; Ziganshin, A.M. Bacterial Communities Associated with Atherosclerotic Plaques from Russian Individuals with Atherosclerosis. PLoS ONE 2016, 11, e0164836. [Google Scholar] [CrossRef] [PubMed]
- Armingohar, Z.; Jørgensen, J.J.; Kristoffersen, A.K.; Abesha-Belay, E.; Olsen, I. Bacteria and bacterial DNA in atherosclerotic plaque and aneurysmal wall biopsies from patients with and without periodontitis. J. Oral Microbiol. 2014, 6, 23408. [Google Scholar] [CrossRef]
- Ott, S.J.; El Mokhtari, N.E.; Musfeldt, M.; Hellmig, S.; Freitag, S.; Rehman, A.; Kühbacher, T.; Nikolaus, S.; Namsolleck, P.; Blaut, M.; et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 2006, 113, 929–937. [Google Scholar] [CrossRef]
- Bläckberg, A.; Falk, L.; Oldberg, K.; Olaison, L.; Rasmussen, M. Infective Endocarditis Due to Corynebacterium Species: Clinical Features and Antibiotic Resistance. Open Forum Infect. Dis. 2021, 8, ofab055. [Google Scholar] [CrossRef] [PubMed]
- Gaifer, Z.; Samman, B.S.; Albluwi, N.A. Infective Endocarditis Caused by Corynebacterium striatum: Navigating Challenges and Treatment Strategies in an Emerging Threat. Cureus 2023, 15, e49526. [Google Scholar] [CrossRef] [PubMed]
- Campanile, F.; Carretto, E.; Barbarini, D.; Grigis, A.; Falcone, M.; Goglio, A.; Venditti, M.; Stefani, S. Clonal multidrug-resistant Corynebacterium striatum strains, Italy. Emerg. Infect. Dis. 2009, 15, 75–78. [Google Scholar] [CrossRef]
- Chandran, R.; Puthukkichal, D.R.; Suman, E.; Mangalore, S.K. Diphtheroids-Important Nosocomial Pathogens. J. Clin. Diagn. Res. 2016, 10, Dc28–Dc31. [Google Scholar] [CrossRef] [PubMed]
- Leal, S.M., Jr.; Jones, M.; Gilligan, P.H. Clinical Significance of Commensal Gram-Positive Rods Routinely Isolated from Patient Samples. J. Clin. Microbiol. 2016, 54, 2928–2936. [Google Scholar] [CrossRef]
- Khan, D.; Shadi, M.; Mustafa, A.; Karam, B.; Munir, A.B.; Lafferty, J.; Glaser, A.; Mobarakai, N. A Wolf in Sheep’s clothing; Case reports and literature review of Corynebacterium striatum endocarditis. IDCases 2021, 24, e01070. [Google Scholar] [CrossRef] [PubMed]
- Melo, N.; Correia, C.; Gonçalves, J.; Dias, M.; Garcia, R.M.; Palma, P.; Duro, R. Corynebacterium striatum cardiac device-related endocarditis: A case report. IDCases 2022, 27, e01371. [Google Scholar] [CrossRef] [PubMed]
- Belmares, J.; Detterline, S.; Pak, J.B.; Parada, J.P. Corynebacterium endocarditis species-specific risk factors and outcomes. BMC Infect. Dis. 2007, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Loof, T.G.; Goldmann, O.; Naudin, C.; Mörgelin, M.; Neumann, Y.; Pils, M.C.; Foster, S.J.; Medina, E.; Herwald, H. Staphylococcus aureus-induced clotting of plasma is an immune evasion mechanism for persistence within the fibrin network. Microbiology 2015, 161, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Patrakka, O.; Tuomisto, S.; Pienimäki, J.P.; Ollikainen, J.; Oksala, N.; Lampinen, V.; Ojanen, M.J.T.; Huhtala, H.; Hytönen, V.P.; Lehtimäki, T.; et al. Thrombus Aspirates from Patients with Acute Ischemic Stroke Are Infiltrated by Viridans Streptococci. J. Am. Heart Assoc. 2023, 12, e030639. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.; Kerrigan, S.W.; Watson, S.P. Platelets and the innate immune system: Mechanisms of bacterial-induced platelet activation. J. Thromb. Haemost. 2011, 9, 1097–1107. [Google Scholar] [CrossRef]
- Yeung, J.; Li, W.; Holinstat, M. Platelet Signaling and Disease: Targeted Therapy for Thrombosis and Other Related Diseases. Pharmacol. Rev. 2018, 70, 526–548. [Google Scholar] [CrossRef]
- Galgano, L.; Guidetti, G.F.; Torti, M.; Canobbio, I. The Controversial Role of LPS in Platelet Activation In Vitro. Int. J. Mol. Sci. 2022, 23, 10900. [Google Scholar] [CrossRef] [PubMed]
- Essex, D.W.; Wu, Y. Multiple protein disulfide isomerases support thrombosis. Curr. Opin. Hematol. 2018, 25, 395–402. [Google Scholar] [CrossRef]
- Benham, A.M. The protein disulfide isomerase family: Key players in health and disease. Antioxid. Redox Signal. 2012, 16, 781–789. [Google Scholar] [CrossRef]
- Andrews, R.K.; Arthur, J.F.; Gardiner, E.E. Neutrophil extracellular traps (NETs) and the role of platelets in infection. Thromb. Haemost. 2014, 112, 659–665. [Google Scholar] [CrossRef] [PubMed]
Characteristic | N = 20 |
---|---|
Male Gender | 10 (50%) |
Race | |
Black or African American | 1 (5.0%) |
Other | 1 (5.0%) |
White | 18 (90%) |
Ethnicity | |
Central American | 1 (5.0%) |
Hispanic or Latino | 1 (5.0%) |
Not Hispanic or Latino | 18 (90%) |
Age; Median (Q1, Q3) | 70 (61, 77) |
tPA Usage | 8 (40%) |
Comorbidities | |
HTN | 15 (75%) |
DM | 2 (10%) |
HLP | 11 (55%) |
CAD | 6 (30%) |
AF | 10 (50%) |
CHF | 5 (25%) |
COPD | 5 (25%) |
Previous Stroke | 3 (15%) |
Current Smoker | 15 (75%) |
No. Passes | |
1 | 11 (55%) |
2 | 5 (25%) |
3 | 2 (10%) |
6 | 1 (5.0%) |
Multiple (More Than 5) | 1 (5.0%) |
Recanalization (TICI) | |
2B | 5 (25%) |
3 | 15 (75%) |
Vessel Occluded | |
BA | 1 (5.0%) |
ICA | 2 (10%) |
ICA and M1 | 2 (10%) |
M1 | 8 (40%) |
M1 and M2 | 3 (15%) |
M2 | 4 (20%) |
Side | |
Left | 7 (37%) |
Right | 12 (63%) |
Unknown | 1 |
History of Antibiotic Treatment | 1 (5.0%) |
Characteristic | N = 20 |
---|---|
History of high-risk infectious diseases | |
HCV | 0 (0%) |
HIV | 1 (0%) |
Gingivitis | 2 (0%) |
Gut dysbiosis | 3 (0%) |
History antibiotics during admission | |
Cefepime and vancomycin and cefazolin | 1 (5.0%) |
Levofloxacin | 1 (5.0%) |
Nitrofurantoin, cefdinir, piperacillin, and tazobactam | 1 (5.0%) |
Cefazolin | 1 (5.0%) |
Immunedeficiency | |
Breast cancer | 2 (10%) |
Gulucocorticoid use due to lymphocytic colitis | 1 (5.0%) |
Malignant nodule of lung | 1 (5.0%) |
Confirmed bacterial endocarditis | 0 (0%) |
Positive blood culture | |
Candida | 1 (5.0%) |
Staphylococcus epidermis | 1 (5.0%) |
Biomarkers of inflammation | |
Leukocytosis | 8 (40%) |
Increased CRP | 1 (5.0%) |
increased lactate | 1 (5.0%) |
leukocytosis, increased lactate and CRP | 1 (5.0%) |
Stroke etiology | |
Thromboembolism | 16 (80%) |
Athrosclerosis | 3 (15%) |
Athrosclerosis and distal emboli | 1 (5.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thirupathi, K.; Ghozy, S.; Reda, A.; Ranatunga, W.K.; Ruben, M.A.; Armin, Z.; Mereuta, O.M.; Prabhjot, S.; Dai, D.; Brinjikji, W.; et al. Metagenomic Insights into Microbial Signatures in Thrombi from Acute Ischemic Stroke Patients Undergoing Endovascular Treatment. Brain Sci. 2025, 15, 157. https://doi.org/10.3390/brainsci15020157
Thirupathi K, Ghozy S, Reda A, Ranatunga WK, Ruben MA, Armin Z, Mereuta OM, Prabhjot S, Dai D, Brinjikji W, et al. Metagenomic Insights into Microbial Signatures in Thrombi from Acute Ischemic Stroke Patients Undergoing Endovascular Treatment. Brain Sciences. 2025; 15(2):157. https://doi.org/10.3390/brainsci15020157
Chicago/Turabian StyleThirupathi, Kasthuri, Sherief Ghozy, Abdullah Reda, Wasantha K. Ranatunga, Mars A. Ruben, Zarrintan Armin, Oana M. Mereuta, Sekhon Prabhjot, Daying Dai, Waleed Brinjikji, and et al. 2025. "Metagenomic Insights into Microbial Signatures in Thrombi from Acute Ischemic Stroke Patients Undergoing Endovascular Treatment" Brain Sciences 15, no. 2: 157. https://doi.org/10.3390/brainsci15020157
APA StyleThirupathi, K., Ghozy, S., Reda, A., Ranatunga, W. K., Ruben, M. A., Armin, Z., Mereuta, O. M., Prabhjot, S., Dai, D., Brinjikji, W., Kallmes, D. F., & Kadirvel, R. (2025). Metagenomic Insights into Microbial Signatures in Thrombi from Acute Ischemic Stroke Patients Undergoing Endovascular Treatment. Brain Sciences, 15(2), 157. https://doi.org/10.3390/brainsci15020157