The Role of Optical Wireless Communication Technologies in 5G/6G and IoT Solutions: Prospects, Directions, and Challenges
<p>OWC technologies for the 5G/6G and IoT systems.</p> "> Figure 2
<p>OWC networks for the 5G/6G and IoT platforms.</p> "> Figure 3
<p>High-speed connectivity using different OWC technologies.</p> "> Figure 4
<p>Scenario of heterogeneous multi-tier networks containing an RF macrocell, many RF small cells, and a large number of optical small cells.</p> "> Figure 5
<p>Few possible ways of connectivity using optical and RF hybrid systems.</p> "> Figure 6
<p>Few examples of massive connectivity using the OWC technologies.</p> "> Figure 7
<p>High-capacity backhaul connectivity for a remote hill, a remote island, and a remote city.</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
- The key characteristics of the 5G and IoT networks are discussed. The possible 6G requirements are also briefly presented.
- Different OWC technologies are briefly discussed in the 5GB and IoT systems’ points of view.
- The scope of the OWC technologies to meet the 5G/6G and IoT requirements is explained in detail.
- Recent works on the OWC technologies for the 5GB and IoT solutions are surveyed, and the research trends are discussed.
- The challenging issues related to the OWC deployment for the 5G/6G and IoT solutions are discussed.
2. Brief Overview of the 5G, 6G, and IoT Requirements
3. Brief Overview of the OWC Technologies
4. OWC Technologies for the 5G, 6G, and IoT Solutions
4.1. Why Choose OWC Technologies?
4.2. Fulfilling the Service Quality Characteristics
4.3. Fulfilling the Network and Infrastructure Characteristics
4.4. Surveys of OWC-Based 5G and IoT Systems
5. Challenges of the OWC in the 5G/6G and IoT Solutions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghassemlooy, Z.; Arnon, S.; Uysal, M.; Xu, Z.; Cheng, J. Emerging optical wireless communications-advances and challenges. IEEE J. Sel. Areas Commun. 2015, 33, 1738–1749. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Hossan, M.T.; Islam, A.; Jang, Y.M. A comparative survey of optical wireless technologies: Architectures and applications. IEEE Access 2018, 6, 9819–10220. [Google Scholar]
- Uysal, M.; Nouri, H. Optical wireless communications—An emerging technology. In Proceedings of the International Conference on Transparent Optical Networks, Graz, Austria, 6–10 July 2014. [Google Scholar]
- Xu, Z.; Sadler, R.B.M. Ultraviolet communications: Potential and state-of-the-art. IEEE Commun. Mag. 2008, 46, 67–73. [Google Scholar]
- Carruthers, J.B. Wireless Infrared Communications; Wiley Encyclopedia of Telecommunications: New York, NY, USA, 2003. [Google Scholar]
- Pathak, P.H.; Feng, X.; Hu, P.; Mohapatra, P. Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Commun. Surv. Tutor. 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Shafi, M.; Molisch, A.F.; Smith, P.J.; Haustein, T.; Zhu, P.; De Silva, P.; Tufvesson, F.; Benjebbour, A.; Wunder, G. 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. Sel. Areas Commun. 2017, 35, 1201–1221. [Google Scholar] [CrossRef]
- Jaber, M.; Imran, M.A.; Tafazolli, R.; Tukmanov, A. 5G backhaul challenges and emerging research directions: A survey. IEEE Access 2016, 4, 1143–1166. [Google Scholar] [CrossRef]
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.; Zhang, J.C. What will 5G be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Hassan, W.A.; Jo, H.-S.; Rahman, T.A. The feasibility of coexistence between 5G and existing services in the IMT-2020 candidate bands in Malaysia. IEEE Access 2017, 5, 14867–14888. [Google Scholar] [CrossRef]
- Ijaz, A.; Zhang, L.; Grau, M.; Mohamed, A.; Vural, S.; Quddus, A.U.; Imran, M.A.; Foh, C.H.; Tafazolli, R. Enabling massive IoT in 5G and beyond systems: PHY radio frame design considerations. IEEE Access 2016, 3322–3339. [Google Scholar] [CrossRef]
- David, K.; Berndt, H. 6G vision and requirements: Is there any need for beyond 5G? IEEE Veh. Technol. Mag. 2018, 13, 72–80. [Google Scholar] [CrossRef]
- Tariq, F.; Khandaker, M.; Wong, K.K.; Imran, M.; Bennis, M.; Debbah, M. A speculative study on 6G. arXiv arXiv:1902.06700.
- Nawaz, S.J.; Sharma, S.K.; Wyne, S.; Patwary, M.N.; Asaduzzaman, M. Quantum machine learning for 6G communication networks: State-of-the-art and vision for the future. IEEE Access 2019, 7, 46317–46350. [Google Scholar] [CrossRef]
- Stoica, R.A.; Abreu, G.T.F. 6G: The wireless communications network for collaborative and AI applications. arXiv arXiv:1904.03413.
- Saad, W.; Bennis, M.; Chen, M. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. arXiv arXiv:1902.10265. [CrossRef]
- Nguyen, T.; Chowdhury, M.Z.; Jang, Y.M. A novel link switching scheme using pre-scanning and RSS prediction in visible light communication networks. EURASIP J. Wirel. Commun. Netw. 2013, 2013, 1–17. [Google Scholar] [CrossRef]
- Tsonev, D.; Videv, S.; Haas, H. Towards a 100 Gb/s visible light wireless access network. Opt. Express 2015, 23, 1627–1637. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.Z.; Hossan, M.T.; Hasan, M.K.; Jang, Y.M. Integrated RF/optical wireless networks for improving QoS in indoor and transportation applications. Wirel. Pers. Commun. 2018, 107, 1401–1430. [Google Scholar] [CrossRef]
- Haas, H.; Yin, L.; Wang, Y.; Chen, C. What is LiFi? J. Light. Technol. 2016, 34, 1533–1544. [Google Scholar] [CrossRef]
- Dimitrov, S.; Haas, H. Principles of LED Light Communications: Towards Networked Li-Fi; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Lu, H.H.; Li, C.Y.; Chen, H.W.; Ho, C.M.; Cheng, M.T.; Yang, Z.Y.; Lu, C.K. A 56 Gb/s PAM4 VCSEL-based LiFi transmission with two-stage injection-locked technique. IEEE Photonics J. 2017, 9, 1–8. [Google Scholar] [CrossRef]
- Hasan, M.K.; Chowdhury, M.Z.; Shahjalal, M.; Jang, Y.M. Fuzzy based network assignment and link-switching analysis in hybrid OCC/LiFi system. Wirel. Commun. Mob. Com. 2018, 2018. [Google Scholar] [CrossRef]
- Hossan, M.; Chowdhury, M.Z.; Hasan, M.; Shahjalal, M.; Nguyen, T.; Le, N.T.; Jang, Y.M. A new vehicle localization scheme based on combined optical camera communication and photogrammetry. Mob. Inf. Syst. 2018, 2018. [Google Scholar] [CrossRef]
- Shahjalal, M.; Hossan, M.; Hasan, M.; Chowdhury, M.Z.; Le, N.T.; Jang, Y.M. An implementation approach and performance analysis of image sensor based multilateral indoor localization and navigation system. Wirel. Commun. Mob. Comput. 2018, 2018. [Google Scholar] [CrossRef]
- Ghassemlooy, Z.; Luo, P.; Zvanovec, S. Optical camera communications. In Optical Wireless Communications; Uysal, M., Capsoni, C., Ghassemlooy, Z., Boucouvalas, A., Udvary, E., Eds.; Springer: Cham, Switzerland, 2016; pp. 547–568. [Google Scholar]
- Goto, Y.; Takai, I.; Yamazato, T.; Okada, H.; Fujii, T.; Kawahito, S.; Arai, S.; Yendo, T.; Kamakura, K. A new automotive VLC system using optical communication image sensor. IEEE Photonics J. 2016, 8, 1–17. [Google Scholar] [CrossRef]
- Malik, A.; Singh, P. Free space optics: Current applications and future challenges. Int. J. Opt. 2015, 2015. [Google Scholar] [CrossRef]
- Khalighi, M.A.; Uysal, M. Survey on free space optical communication: A communication theory perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Optical communication in space: Challenges and mitigation techniques. IEEE Commun. Surv. Tutor. 2017, 19, 57–97. [Google Scholar] [CrossRef]
- Mumtaz, S.; Jornet, J.M.; Aulin, J.; Gerstacker, W.H.; Dong, X.; Ai, B. Terahertz communication for vehicular networks. IEEE Trans. Veh. Technol. 2017, 66, 5617–5625. [Google Scholar] [CrossRef]
- Lovén, L.; Leppänen, T.; Peltonen, E.; Partala, J.; Harjula, E.; Porambage, P.; Ylianttila, M.; Riekki, J. Edge AI: A vision for distributed, edge-native artificial intelligence in future 6G networks. In Proceedings of the 6G Wireless Summit, Levi, Finland, 24–27 March 2019. [Google Scholar]
- Clazzer, F.; Munari, A.; Liva, G.; Lazaro, F.; Stefanovic, C.; Popovski, P. From 5G to 6G: Has the time for modern random access come? arXiv arXiv:1903.03063.
- Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Towards 6G networks: Use cases and technologies. arXiv arXiv:1903.12216.
- 5G Requirements. Available online: https://developer.samsung.com/tech-insights/5G/5g-requirements (accessed on 15 August 2019).
- Light Communications for Wireless Local Area Networking. Available online: https://futurenetworks.ieee.org/tech-focus/may-2018/light-communications-for-wireless-local-area-networking (accessed on 15 August 2019).
- Hu, P.; Pathak, P.H.; Das, A.K.; Yang, Z.; Mohapatra, P. PLiFi: Hybrid WiFi-VLC networking using power lines. In Proceedings of the Workshop on Visible Light Communication Systems, New York, NY, USA, 3–7 October 2016. [Google Scholar]
- Du, Z.; Wang, C.; Sun, Y.; Wu, G. Context-aware indoor VLC/RF heterogeneous network selection: Reinforcement learning with knowledge transfer. IEEE Access 2018, 33275–33284. [Google Scholar] [CrossRef]
- Koonen, T. Indoor optical wireless systems: Technology, trends, and applications. J. Light. Technol. 2018, 36, 1459–1467. [Google Scholar] [CrossRef]
- Danakis, C.; Afgani, M.; Povey, G.; Underwood, I.; Haas, H. Using a CMOS camera sensor for visible light communication. In Proceedings of the IEEE Globecom Workshops, Anaheim, CA, USA, 3–7 December 2012. [Google Scholar]
- Tsai, H.M.; Lin, H.M.; Lee, H.Y. Demo: Rollinglight-universal camera communications for single led. In Proceedings of the International Conference on Mobile Computing and Networking, Maui, HI, USA, 7–11 September 2014. [Google Scholar]
- Wei, L.Y.; Chow, C.W.; Chen, G.H.; Liu, Y.; Yeh, C.H.; Hsu, C.W. Tricolor visible-light laser diodes based visible light communication operated at 40.665 Gbit/s and 2 m free-space transmission. Opt. Express. 2019, 27, 25072–25077. [Google Scholar] [CrossRef] [PubMed]
- Chang, C. A 100-Gb/s multiple-input multiple-output visible laser light communication system. J. Light. Technol. 2014, 32, 4723–4729. [Google Scholar] [CrossRef]
- Knobloch, F. Delay analysis for optical wireless multihop networks. In Proceedings of the International Conference on Transparent Optical Networks (ICTON), Trento, Italy, 10–14 July 2016. [Google Scholar]
- Mustafa, H.A.U.; Imran, M.A.; Shakir, M.Z.; Imran, A.; Tafazolli, R. Separation framework: An enabler for cooperative and D2D communication for future 5G networks. IEEE Commun. Surv. Tutor. 2016, 18, 419–445. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, Z.; Mumtaz, S.; Rodriguez, J.; Sato, T. One integrated energy efficiency proposal for 5G IoT communications. IEEE Internet Things 2016, 3, 1346–1354. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, O.; Vasilakos, A.V. A survey on trust management for internet of things. J. Netw. Comput. Appl. 2014, 42, 120–134. [Google Scholar] [CrossRef]
- Palattella, M.R.; Dohler, M.; Grieco, A.; Rizzo, G.; Torsner, J.; Engel, T.; Ladid, L. Internet of things in the 5G era: Enablers, architecture, and business models. IEEE J. Sel. Areas Commun. 2016, 34, 510–527. [Google Scholar] [CrossRef]
- Ge, X.; Yang, J.; Gharavi, H.; Sun, Y. Energy efficiency challenges of 5G small cell networks. IEEE Commun. Mag. 2017, 55, 184–191. [Google Scholar] [CrossRef]
- Hao, Y.; Chen, M.; Hu, L.; Song, J.; Volk, M.; Humar, I. Wireless fractal ultra-dense cellular networks. Sensors 2017, 17, 841. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Jang, Y.M.; Haas, Z.J. Cost-effective frequency planning for capacity enhancement of femtocellular networks. Wirel. Pers. Commun. 2011, 60, 83–104. [Google Scholar] [CrossRef]
- Artiga, X.; Perez-Neira, A.; Baranda, J.; Lagunas, E.; Chatzinotas, S.; Zetik, R.; Gorski, P.; Ntougias, K.; Perez, D.; Ziaragkas, G. Shared access satellite-terrestrial reconfigurable backhaul network enabled by smart antennas at mmWave band. IEEE Netw. 2018, 32, 46–53. [Google Scholar] [CrossRef]
- Zhang, S.; Tsonev, D.; Videv, S.; Ghosh, S.; Turnbull, G.A.; Samuel, I.D.W.; Haas, H. Organic solar cells as high-speed data detectors for visible light communication. Optica 2015, 2, 607–610. [Google Scholar] [CrossRef] [Green Version]
- What is The Tactile Internet? Available online: https://5g.co.uk/guides/what-is-the-tactile-internet (accessed on 15 August 2019).
- Fettweis, G. The tactile internet: Applications and challenges. IEEE Veh. Technol. Mag. 2014, 9, 64–70. [Google Scholar] [CrossRef]
- Aijaz, A.; Dohler, M.; Aghvami, A.H.; Friderikos, V.; Frodigh, M. Realizing the tactile internet: Haptic communications over next generation 5G cellular networks. IEEE Wirel. Commun. 2017, 24, 82–89. [Google Scholar] [CrossRef]
- Simsek, M.; Aijaz, A.; Dohler, M.; Sachs, J.; Fettweis, G. 5G-enabled tactile internet. IEEE J. Sel. Areas Commun. 2016, 34, 460–473. [Google Scholar] [CrossRef]
- Hossan, M.T.; Chowdhury, M.Z.; Shahjalal, M.; Jang, Y.M. Human bond communication with head-mounted displays: Scope, challenges, solutions, and applications. IEEE Commun. Mag. 2019, 57, 26–32. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Ahmed, E.; Imran, M.; Zeadally, S. 5G for vehicular communications. IEEE Commun. Mag. 2018, 56, 111–117. [Google Scholar] [CrossRef]
- Chen, S.; Hu, J.; Shi, Y.; Peng, Y.; Fang, J.; Zhao, R.; Zhao, L. Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G. IEEE Commun. Stand. Mag. 2017, 1, 70–76. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; MacCartney, G.R.; Molisch, A.F.; Mellios, E.; Zhang, J. Overview of millimeter wave communications for fifth-generation (5G) wireless networks—With a focus on propagation models. IEEE Trans. Antenna. Propag. 2017, 65, 6213–6230. [Google Scholar] [CrossRef]
- Luo, P.; Zhang, M.; Ghassemlooy, Z.; Le Minh, H.; Tsai, H.M.; Tang, X.; Png, L.C.; Han, D. Experimental demonstration of RGB LED-based optical camera communications. IEEE Photonics J. 2015, 7, 1–12. [Google Scholar] [CrossRef]
- Takai, I.; Harada, T.; Andoh, M.; Yasutomi, K.; Kagawa, K.; Kawahito, S. Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver. IEEE Photonics J. 2014, 6, 1–14. [Google Scholar] [CrossRef]
- Ayyash, M.; Elgala, H.; Khreishah, A.; Jungnickel, V.; Little, T.; Shao, S.; Rahaim, M.; Schulz, D.; Hilt, J.; Freund, R. Coexistence of WiFi and LiFi toward 5G: Concepts, opportunities, and challenges. IEEE Commun. Mag. 2016, 54, 64–71. [Google Scholar] [CrossRef]
- Yamazato, T.; Kawagita, N.; Okada, H.; Fujii, T.; Yendo, T.; Arai, S.; Kamakura, K. The uplink visible light communication beacon system for universal traffic management. IEEE Access 2017, 5, 22282–22290. [Google Scholar] [CrossRef]
- Rahaim, M.B.; Little, T.D.C. Toward practical integration of dual-use VLC within 5G networks. IEEE Wirel. Commun. 2015, 22, 97–103. [Google Scholar] [CrossRef]
- Na, Z.; Wang, Y.; Xiong, M.; Liu, X.; Xia, J. Modeling and throughput analysis of an ADO-OFDM based relay-assisted VLC system for 5G networks. IEEE Access 2018, 6, 17586–17594. [Google Scholar] [CrossRef]
- Wu, S.; Wang, H.; Youn, C. Visible light communications for 5G wireless networking systems: From fixed to mobile communications. IEEE Netw. 2014, 28, 41–45. [Google Scholar] [CrossRef]
- Pergoloni, S.; Biagi, M.; Colonnese, S.; Cusani, R.; Scarano, G. Coverage optimization of 5G atto-cells for visible light communications access. In Proceedings of the IEEE International Workshop on Measurements & Networking (M&N), Coimbra, Portugal, 12–13 October 2015. [Google Scholar]
- Feng, L.; Hu, R.Q.; Wang, J.; Xu, P.; Qian, Y. Applying VLC in 5G networks: Architectures and key technologies. IEEE Netw. 2016, 30, 77–83. [Google Scholar] [CrossRef]
- Sarigiannidis, P.; Lagkas, T.; Bibi, S.; Ampatzoglou, A.; Bellavista, P. Hybrid 5G optical-wireless SDN-based networks, challenges and open issues. IET Netw. 2017, 6, 141–148. [Google Scholar] [CrossRef]
- Ulgen, O.; Ozmat, U.; Gunaydin, E. Hybrid implementation of millimeter wave and visible light communications for 5G networks. In Proceedings of the Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018. [Google Scholar]
- Feng, L.; Yang, H.; Hu, R.Q.; Wang, J. mmWave and VLC-based indoor channel models in 5G wireless networks. IEEE Wirel. Commun. 2018, 25, 70–77. [Google Scholar] [CrossRef]
- Alzenad, M.; Shakir, M.Z.; Yanikomeroglu, H.; Alouini, M. FSO-based vertical backhaul/fronthaul framework for 5G+ wireless networks. IEEE Commun. Mag. 2018, 56, 218–224. [Google Scholar] [CrossRef]
- Chi, N.; Shi, J.; Zhou, Y.; Wang, Y.; Zhang, J.; Huang, X. High speed LED based visible light communication for 5G wireless backhaul. In Proceedings of the IEEE Photonics Society Summer Topical Meeting Series (SUM), Newport Beach, CA, USA, 11–13 August 2016. [Google Scholar]
- Shi, L.; Li, W.; Zhang, X.; Zhang, Y.; Chen, G.; Vladimirescu, A. Experimental 5G new radio integration with VLC. In Proceedings of the IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux, France, 9–12 December 2018. [Google Scholar]
- Jenila, C.; Jeyachitra, R.K. Design of green indoor IoT networking through optical wireless communication using passive optical reflectors. In Proceedings of the IEEE Recent Advances in Intelligent Computational Systems (RAICS), Thiruvananthapuram, India, 6–8 December 2018. [Google Scholar]
- Dahrouj, H.; Douik, A.; Rayal, F.; Al-Naffouri, T.Y.; Alouini, M. Cost-effective hybrid RF/FSO backhaul solution for next generation wireless systems. IEEE Wirel. Commun. 2015, 22, 98–104. [Google Scholar] [CrossRef]
- Warmerdam, K.; Pandharipande, A.; Caicedo, D. Connectivity in IoT indoor lighting systems with visible light communications. In Proceedings of the IEEE Online Conference on Green Communications (OnlineGreenComm), Piscataway, NJ, USA, 10–12 November 2015; pp. 47–52. [Google Scholar]
- Koumaras, H.; Makris, D.; Foteas, A.; Xilouris, G.; Kourtis, M.A.; Koumaras, V.; Cosmas, J.A. SDN-based WiFi-VLC coupled system for optimised service provision in 5G networks. In Proceedings of the IEEE International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Chania, Greece, 12–15 June 2018. [Google Scholar]
- Pan, G.; Lei, H.; Ding, Z.; Ni, Q. 3-D Hybrid VLC-RF indoor IoT systems with light energy harvesting. IEEE Trans. Green Commun. Netw. 2019, 3, 853–865. [Google Scholar] [CrossRef]
- Chavez-Burbano, P.; Vitek, S.; Teli, S.R.; Guerra, V.; Rabadan, J.; Perez-Jimenez, R.; Zvanovec, S. Optical camera communication system for internet of things based on organic light emitting diodes. Electron. Lett. 2019, 55, 334–336. [Google Scholar] [CrossRef]
- Hasan, M.K.; Shahjalal, M.; Chowdhury, M.Z.; Jang, Y.M. Real-time healthcare data transmission for remote patient monitoring in patch-based hybrid OCC/BLE networks. Sensors 2019, 19, 1208. [Google Scholar] [CrossRef] [PubMed]
- Pujapanda, K.P. LiFi Integrated to power-lines for smart illumination cum communication. In Proceedings of the International Conference on Communication Systems and Network Technologies, Gwalior, India, 6–8 June 2013. [Google Scholar]
Acronym | Definition |
---|---|
5G | Fifth generation |
6G | Sixth generation |
5GB | 5G-and-beyond |
BLE | Bluetooth Low Energy |
DSRC | Dedicated short-range communications |
eHealth | Electronic health |
EH | Energy harvesting |
FSO | Free-space optics |
HBC | Human bond communication |
HMD | Head-mounted displays |
IoT | Internet of Things |
IR | Infrared |
LD | Laser diode |
LED | Light emitting diode |
LiFi | Light fidelity |
LOS | Line-of-sight |
MBS | Macrocellular base station |
NR | New radio |
OCC | Optical camera communication |
OWC | Optical wireless communication |
P2P | Point-to-point |
P2mP | Point-to-multipoint |
PD | Photodetector |
NLOS | Non-line-of-sight |
QoE | Quality of experience |
QoS | Quality of service |
RF | Radio frequency |
UV | Ultraviolet |
V2V | Vehicle-to-vehicle |
V2X | Vehicle-to-everything |
VL | Visible light |
VLC | Visible light communication |
WiFi | Wireless fidelity |
Issue | VLC | LiFi | OCC | FSO |
---|---|---|---|---|
Communication topology | Unidirectional or bidirectional | Must be bidirectional | Unidirectional | Unidirectional or bidirectional |
Communication distance | 20 m | 10 m | 60 m | Greater than 10,000 km |
Mobility support | Optional | Must | Optional | No |
Environmental effect | Indoors: No Outdoors: Yes | Indoors: No Outdoors: Yes | No | Yes |
Interference level | Low | Low | Zero | Low |
Data rate | 10 Gbps using LED and 100 Gbps using LD | 10 Gbps using LED and 100 Gbps using LD | 55 Mbps | 40.665 Gbps |
Security | High | High | High | High |
Spectral Category/Sub-Category | Frequency Range | ||
---|---|---|---|
RF (3 kHz to 300 GHz) | Very low–super high frequency | 3 kHz to 30 GHz | |
Microwave | 225 MHz to 100 GHz | ||
Millimeter wave | 30–300 GHz | ||
Optical (300 GHz to 30 PHz) | IR (300 GHz to 394.7 THz) | Far infrared | 0.3–20 THz |
Thermal infrared | 20–100 THz | ||
Short-wavelength infrared | 100–214.3 THz | ||
Near infrared | 214.3–394.7 THz | ||
VL (394.7–833.3 THz) | Red | 394.7–491.8 THz | |
Orange | 491.8–507.6 THz | ||
Yellow | 507.6–526.3 THz | ||
Green | 526.3–600 THz | ||
Blue | 600–666.7 THz | ||
Violet | 666.7–833.3 THz | ||
UV (750 THz to 30 PHz) | Near ultraviolet | 0.750–1 PHz | |
Middle ultraviolet | 1–1.5 PHz | ||
Far ultraviolet | 1.5–2.459 PHz | ||
Hydrogen Lyman-alpha | 2.459–2.479 PHz | ||
Extreme ultraviolet | 2.479–30 PHz | ||
Vacuum ultraviolet | 1.5–30 PHz |
Technology | Peak Throughput | Latency | Option |
---|---|---|---|
Optical fiber | 100 Gbps | <1 ms | P2P |
Microwave | 1 Gbps | <1 ms/hop | P2P/P2mP |
mmWave | 10 Gbps | <1 ms | P2P |
FSO | 40 Gbps | <1 ms | P2P |
Satellite | 50 Mbps | 300 ms | LOS |
Reference | Contribution and Research Direction | OWC Technology |
---|---|---|
[58] | An HBC method based on head-mounted displays, which enables continuous bidirectional communication among multiple users with or without internet connection is proposed. | OCC |
[63] | An OCC-based optical V2V communication system is developed. | OCC |
[64] | The primary characteristics of WiFi and LiFi technologies and the possibility for them to coexist for the 5G systems are presented. | LiFi |
[65] | The feasibility study of the uplink VLC beacon system for the universal traffic management system is presented. | VLC |
[66] | The feasibility analysis to integrate the VLC with the RF networks is presented. | VLC |
[67] | A relay-assisted VLC system based on asymmetrically clipped direct current-biased optical orthogonal frequency-division multiplexing for the 5G networks is proposed. An amplify-and-forward relay is used in the proposed system to forward the signals from the source terminal and to simultaneously transmit its own signals. | VLC |
[68] | The strengths and weaknesses of the VLC in comparison with RF-based communications, particularly in a spectrum, spatial reuse, security, and energy efficiency for implementing the 5G system, are highlighted. | VLC, OCC, and FSO |
[69] | The best cell size for indoor VLC access when users move indoors is investigated. The average rate achieved by the users is maximized. | VLC |
[70] | A heterogeneous multi-layer 5G cellular architecture considering three layers, namely the macrocell layer operating below 3 GHz, the picocell layer operating in the mmWave spectrum, and the optical attocell layer operating at the visible spectrum with a control plane and user plane separation scheme, is presented. | LiFi |
[71] | A set of critical challenges in advancing 5G networks fueled by the utilization of the network function virtualization and software-defined radio and software-defined network techniques is highlighted. | Generalized OWC |
[72] | mmWave and VLC technologies are harmonized and used to create high-speed continuous networks for indoor scenarios. | VLC |
[73] | The detailed analysis on path loss and the time dispersion for both mmWave and VLC channels are elaborated. Moreover, comparisons between mmWave and VLC channels and discussions on VLC and mmWave applications are presented. | VLC |
[74] | The feasibility of a vertical backhaul/fronthaul framework, where the networked flying platforms transport the backhaul/fronthaul traffic between the access and core networks through point-to-point FSO links, is studied. | FSO |
[75] | VLC-based wireless backhaul technologies are studied for high-data-rate access. | VLC |
[76] | The integration of a 5G New Radio VLC downlink architecture is proposed and experimentally implemented. | VLC |
[77] | The high-capacity and energy-efficient IR-based wireless communication system using low-power laser sources and the retinal hazardless IR region of 1550 nm is designed for smart devices interconnected in the IoT network. | IR-based OWC |
[78] | A low-cost hybrid RF/FSO solution, wherein base stations are connected to each other using either an optical fiber or hybrid RF/FSO links, is proposed, considering the combination of RF’s and FSO’s advantages. | FSO |
[79] | The VLC for providing connectivity over the range of a few meters among sensors and luminaires is considered in an IoT smart lighting system. | VLC |
[80] | An SDN-assisted VLC system, which is coupled with the WiFi access technology, is presented and experimentally validated. | VLC |
[81] | A three-dimensional hybrid VLC/RF indoor IoT system with spatially random terminals with one PD is presented, and the outage performance of the system is studied. | VLC |
[82] | An experimental demonstration of optical LED-based OCC system for the IoT is presented. | OCC |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, M.Z.; Shahjalal, M.; Hasan, M.K.; Jang, Y.M. The Role of Optical Wireless Communication Technologies in 5G/6G and IoT Solutions: Prospects, Directions, and Challenges. Appl. Sci. 2019, 9, 4367. https://doi.org/10.3390/app9204367
Chowdhury MZ, Shahjalal M, Hasan MK, Jang YM. The Role of Optical Wireless Communication Technologies in 5G/6G and IoT Solutions: Prospects, Directions, and Challenges. Applied Sciences. 2019; 9(20):4367. https://doi.org/10.3390/app9204367
Chicago/Turabian StyleChowdhury, Mostafa Zaman, Md. Shahjalal, Moh. Khalid Hasan, and Yeong Min Jang. 2019. "The Role of Optical Wireless Communication Technologies in 5G/6G and IoT Solutions: Prospects, Directions, and Challenges" Applied Sciences 9, no. 20: 4367. https://doi.org/10.3390/app9204367
APA StyleChowdhury, M. Z., Shahjalal, M., Hasan, M. K., & Jang, Y. M. (2019). The Role of Optical Wireless Communication Technologies in 5G/6G and IoT Solutions: Prospects, Directions, and Challenges. Applied Sciences, 9(20), 4367. https://doi.org/10.3390/app9204367