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Abstract: To generate proper responses to user queries, multi-turn chatbot models should selectively
consider dialogue histories. However, previous chatbot models have simply concatenated or
averaged vector representations of all previous utterances without considering contextual importance.
To mitigate this problem, we propose a multi-turn chatbot model in which previous utterances
participate in response generation using different weights. The proposed model calculates the
contextual importance of previous utterances by using an attention mechanism. In addition,
we propose a training method that uses two types of Wasserstein generative adversarial networks to
improve the quality of responses. In experiments with the DailyDialog dataset, the proposed model
outperformed the previous state-of-the-art models based on various performance measures.
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1. Introduction

Chatbots are computer systems that feature natural conversation with people. Recently, generative
chatbots that generate responses directly by the models have been developed with advances in deep
learning. Based on the number of dialogue contexts that chatbots should consider to generate responses,
chatbot models are divided into two categories: single-turn and multi-turn. Single-turn chatbots
generate a response based on an immediately preceding utterance called a user’s query (i.e., a user’s
utterance just before the response). Multi-turn chatbots generate a response based on multiple previous
utterances, called a dialogue context, as well as a user’s query. Table 1 shows the differences between
the responses of single- and multi-turn chatbots.

Table 1. Examples of chitchat.

ID Speaker Utterance
@ User I like pork.
2) Chatbot Me too.
3) User So I like Chinese food.
4) Chatbot I prefer Korean foods to Chinese food.
5) User Why?
(6-1) Chatbot-SING No reason.
(6-2) Chatbot-MULT Korean food is healthier.

In Table 1, Chatbot-SING and Chatbot-MULT are single- and multi-turn chatbots, respectively.
As shown, Chatbot-SING generates the short and safe response, “No reason” because it cannot
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look up any other previous utterances except the immediately preceding one, “Why?”. Compared
with Chatbot-SING, Chatbot-MULT generates the more context-aware response, “Korean foods are
healthier.”, because it can look up the full dialogue history. Although multi-turn chatbots are more
natural and informative, implementing multi-turn chatbots is not easy because they must determine
the previous utterances that are associated with a response and also the degree to which those previous
utterances affect the generation of a response. To overcome this problem, we propose a multi-turn
chatbot model in which previous utterances are effectively and differently considered to generate
responses using an attention mechanism. In addition, the proposed model uses two types of generative
adversarial network (GAN) architectures [1-4]: One maps a vector representation of a dialogue history
to a vector representation of a response, and the other maps a vector representation of a generated
response (i.e., a decoded response) to a vector representation of an original response (i.e., an encoded
response). The first GAN plays the role of generating a response vector associated with a dialogue
history, and the second GAN plays the role of generating a surface sentence (i.e., a sequence of words)
to realize a response vector.

The remainder of this paper is organized as follows: In Section 2, we review the previous
studies on generative chatbots, and in Section 3, we describe the proposed multi-turn chatbot model.
In Section 4, we explain the experimental setup and report some of our experimental results. We
provide a conclusion to our study in Section 5.

2. Previous Works

Most of the recent approaches on generative chatbots are primarily based on sequence-to-sequence
(5eg25Seq) learning. Seq2Seq is a supervised learning algorithm in which the input and the generated
output are each a sequence of words [5,6]. In general, Seq2Seq models consist of two recurrent neural
networks (RNNs): An RNN for encoding inputs and an RNN for generating outputs. Previous studies
have demonstrated that chatbots based on Seq2Seq models often respond with either a safe response
problem (i.e., the problem returning short and general responses such as “Okay” and “I see”) or a
semantically erroneous response [7,8]. A variational auto-encoder (VAE) is a continuous latent variable
model intended to learn a latent space using a given set of samples. The model consists of an encoder
and decoder: The encoder maps inputs into latent variables, and the decoder generates outputs that
are similar to the inputs based on the latent variables. As a result, VAEs represent high-level semantics
of the responses and help chatbots to generate various responses [9,10]. However, VAE models tend to
suffer from collapse problems, where the decoder learns to ignore the latent variable and simplifies the
latent variable to a standard normal distribution [11,12]. This problem has been partially solved by
learning latent variable space through adversarial learning [12]. In addition, various studies using
GAN architecture have been conducted [1-4]. However, adversarial learning for discrete tokens is
difficult because of non-differentiability [2,4]. To solve these problems, various studies have been
conducted, including those on a hybrid model of a GAN and reinforcement learning [4,13]. These
studies have problems when considering non-differentiability. Moreover, they must calculate the
word probability distribution of each step of the decoder to learn a discriminant model. In this study,
we propose a learning method that does not consider non-differentiability when learning using a
GAN because it uses the response vector generated by the decoder. To generate natural responses in
multi-turn dialogues, we propose an attention method between a query and its previous utterances
that helps chatbots selectively consider the given context.

3. Multi-Turn Chatbot Model Based on Dual Wasserstein Generative Adversarial Networks

The proposed model consists of three sub-modules: a query encoder, a query-to-response (QR)
mapper, and a response-to-response (RR) mapper, as shown in Figure 1.
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Figure 1. Overall architecture of the proposed chatbot. RNN: recurrent neural network; FNN:
fully-connected neural network.

The query encoder returns a query vector embedding a current utterance U, (i.e., user query)
and a dialogue context composed of k previous utterances U1, Uy, ..., U,_, by using RNNs
and a scaled dot product attention mechanism [14]. At training time, the QR mapper makes a query
vector similar to an RNN-encoded response vector (i.e., a vector of a next utterance U, 1; a vector of a
chatbot’s response) through an adversarial learning scheme. Then, it decodes an encoded response
vector through an auto-encoder learning scheme. At the inference time, a query vector is input to a
response decoder based on an RNN. The RR mapper makes an encoded response vector similar to a
response vector decoded by the RNN through an adversarial learning scheme.

3.1. Query Encoder

Given a current utterance U, (user query) and its dialogue context composed of k utterances,
U,k ..., Uy—1, the query encoder encodes each utterance by using gated recurrent unit (GRU)
networks [15], as shown in the following equation:

E; = GRU(Uj;) @

where E; is an utterance vector encoded by a GRU network (i.e., the last output vector of a GRU
network). Then, the query encoder reflects contextual information to each encoded utterance by using
GRU networks, as shown in the following equation:

E; = GRU(E;) @)

where E; is an output vector of the ith step in a GRU network. To strongly reflect the contextual
associations between the current and previous utterances, the query encoder computes attention scores
through the well-known scaled dot products [14] between the encoded current utterance E, and the
encoded previous utterances En_k, ey En_1 as shown in the following equation:

EioE,

Vd

a; = —exp( ), wherei# n (©)]

Z
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where Z and d are a normalization factor and the size of an encoded vector, respectively. Then, the query
encoder computes an attention vector A known as a query-to-context (QC) attention, which represents a
dialogue context that should be considered to generate a response, as shown in the following equation:

A= i aiEl- (4)

i=1

Finally, the query encoder returns a query vector in which the encoded current utterance E,, and
the QC attention A are concatenated, as shown in the following equation:

Q=EL,9A. ©)

3.2. Query-to-Response Mapper

The QR mapper plays the role of mapping a query vector into a response vector. To enhance
the mapping performance, we adopt the wasserstein auto-encoder (WAE) model [12], in which a
Wasserstein GAN (WGAN) [16] is used to optimize a generator. The reason we choose the WGAN
is that it has been shown to produce good results in text generation [16]. Given a dialogue history
U,k ..., Uy—1, U, and a next utterance U, 1 (chatbot response), the QR mapper encodes the next
utterance by using gated recurrent unit (GRU) networks [15] and generates a gold response vector R
by concatenating the query vector Q that embeds the dialogue history and the encoded next utterance
E;+1, as shown in the following equation:

R=Q®E, . (6)

Then, the QR mapper adds two Gaussian noises ¢ and ¢ to the gold response vector R and the query
vector Q by using prior networks that are fully-connected neural networks (FNNs) resulting in means
and co-variances, respectively. The Gaussian noises are transformed into two latent variables, namely
Z, representing a gold response, and Z representing a query, through FNNs. The training process of
the QR mapper consists of two steps. In the first stage of training, the FNN-based discriminator Dy
(i.e., a classifier based on a FNN), as given in Figure 1, tries to distinguish the fake vector Z from the
real vector Z. Through this training process, the QR mapper makes the query vector Q similar to the
gold response vector R. In the second stage of training, the RNN-based response decoder G; (i.e., a
language model based on an RNN)), as given in Figure 1, tries to properly reconstruct a sequence of
words in a gold response. At the inference time, the query vector Q is transformed into the latent
variable Z. Then, the latent variable Z is input to the response decoder G,.

3.3. Response-to-Response Mapper

The RR mapper plays the role of mapping a generated response vector into an encoded response
vector in an auto-encoder model. To enhance the mapping performance, we adopt the WAE model [12]
again. Through the WAE process based on WGAN, we expect that the qualities of generated responses
will be enhanced because the response decoder refers outputs of the response encoder once again.
Given an RNN-encoded next utterance E, ;1 (i-e., a last output vector of the response encoder; an
encoded response of a chatbot) and an RNN-decoded next utterance E/ , (i.e., a last output vector of
the response decode; a decoded response of a chatbot), the RR mapper makes E’, 41 similar to E; 1
through adversarial learning. When training begins, an encoded gold response E,, 11, a gold latent
variable Z, and a decoded gold response E;  ; are input to the FNN-based discriminator D; as given in
Figure 1. The discriminator tries to distinguish E] | from E; 1.
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3.4. Implementation and Training

The proposed model was implemented using TensorFlow 1.4 [17]. The RNNs in the query encoder
were bidirectional GRU networks [18] with 300 hidden units in each direction. The RNNSs in the QR
mapper were GRU networks with 1421 hidden units. The dimensions of QC attentions were 600.
The discriminators (i.e., D1 in the QR mapper and D; in the RR mapper) were three-layer FNNs with
rectified linear unit activation [19]. The vocabulary size was set to 16,925, and all the out-of-vocabulary
words were defined to the special token “UNK” meaning an unknown word. The word-embedding size
was 200, and word-embedding vectors were initialized using pre-trained Glove vectors [20]. The size of
the dialogue context was set to 10 with a maximum utterance length of 41. The response decoder used a
greedy decoding algorithm. In the training step, the mini-batch size was set to 32. The training process
of the entire model consisted of three steps. First, the WGAN in the QR mapper was trained through
adversarial learning. Then, the entire model, except the RR mapper, was trained through multi-task
learning to maximize the log probability for the response decoder to generate correct words. Finally,
the WGAN in the RR mapper was trained through adversarial learning. All adversarial learning that
was employed reduced the Wasserstein distance [16]. In addition, the gradient penalty was used
when training the discriminant models [21], and its hyper-parameter A was set to 10. To maximize the
log-probability, a cross-entropy function was used. In the inference step, Z was used instead of Z as a
latent variable.

4. Evaluation

4.1. Data Sets and Experimental Settings

We evaluated our model on a DailyDialog dataset [22], which has been widely used in recent
studies. DailyDialog has 13,118 daily conversations for English learners. The datasets are separated into
training, validation, and testing as 8:1:1. Bilingual evaluation understudy (BLEU) [23,24], bag-of-words
(BOW) embedding [25], and Distinct [7] were used as performance measures. BLEU measures the
number of generated responses that contain word n-gram overlaps with gold responses, as shown in
the following equation:

1
n n

) (H precison;) (7)

i=1

length of a generated sentence

BLEU = min(1
min(1, length of a gold sentence

where 71 is the maximum number length of n-grams considered and is commonly set to 4, and precison;
is a word i-gram precision (i.e., the number of correct word i-grams divided by the number of word
i-grams in a generated sentence). Precision of BLEU is an average score of BLEUs of 10 generated
sentences per query, and Recall of BLEU is a maximum score among BLEUs of 10 generated sentences
per query. The BOW embedding metric is the cosine similarity of BOW embedding between generated
and gold responses. The BOW embedding metric consists of three metrics: Greedy [26], Average [27],
and Extrema [28]. In our test, the maximum BOW embedding score among the 10 sampled responses
was reported. The distinct score, such as Intra-dist or Inter-dist, computes the diversity of the generated
responses. Dist-n is defined as the ratio of unique word n-grams over all word n-grams in the generated
responses. Intra-dist is defined as the average of distinct values within each sampled response, and
Inter-dist as the distinct value among all sampled responses.

4.2. Experimental Results

Our first experiment involved evaluating the effectiveness of the proposed model at the architecture
level, as shown in Table 2.

In Table 2, WAE is a conditional WAE model [12] that is the baseline model because it has similar
architecture to that of the proposed model. WAE + query encoder (QE) is a modified WAE in which
the encoding module of a dialog context is changed into the proposed query encoder. WAE + QE +
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RR is a modified WAE + QE to which the RR mapper (i.e., WGAN for response generation) is added.
As shown in Table 1, WAE + QE showed better BLEU-R and BLEU-F1 than did WAE. This means that
the proposed query encoder can provide some assistance in generating words in gold responses by
selectively looking up dialogue contexts. The final model, WAE + QE + RR, showed better performance
than did WAE + QE at all measures except Intra-dist. This means that WGAN for response generation
improves the overall quality of responses.

Table 2. Performance comparison based on change in architecture.

BLEU BOW Embedding Intra-dist Inter-dist
Model R P F1 A E G Dist-1  Dist-2  Dist-1  Dist-2
WAE 0.341 0.278 0.306 0948 0578 0.846  0.830 0.940 0.327 0.583
WAE + QE 0442 0268 0334 0947 0680 0845 0913 0.995 0.322 0.475
WAE + QE+RR 0463 0283 0.351 0949 0.688 0.851 0.902 0.993 0.371 0.585

P: Precision, R: Recall, F1: F1 score, A: Average, E: Extrema, G: Greedy. BLEU: bilingual evaluation understudy;
BOW: bag-of-words; WAE: wasserstein auto-encoder; QE: query encoder; RR: response-to-response. The bolds
indicate the highest scores in each evaluation measure.

In the second experiment, we compared the performance of the proposed model with those of the
previous state-of-the-art models, as shown in Table 3.

Table 3. Performance comparison between proposed and previous models.

BLEU BOW Embedding Intra-dist Inter-dist
Model R P F1 A E G Dist-1  Dist-2  Dist-1  Dist-2
HRED 0.232 0.232 0232 0915 0511 0798 0935 0.969 0.093 0.097
CVAE 0265 0222 0242 0923 0543 0811  0.938 0.973 0.177 0.222
CVAE-BOW 0256 0224 0239 0923 0540 0812  0.947 0.976 0.165 0.206
CVAE-CO 0259 0244 0251 0914 0530 0818 0.821 0.911 0.106 0.126
WAE 0.341 0278 0306 0948 0578 0.846  0.830 0.940 0.327 0.583
WAE +QE+RR 0463 0283 0.351 0949 0.688 0.851 0.902 0.993 0.371 0.585

The bolds indicate the highest scores in each evaluation measure.

In Table 3, HRED is a generalized Seq2Seq model with a hierarchical RNN encoder [29]. CVAE
is a conditional VAE model with KL-annealing [9]. CVAE-BOW is a conditional VAE model with a
BOW loss [9]. CVAE-CO is a collaborative conditional VAE model [10]. WAE is a conditional WAE
model [12]. As shown in Table 3, the proposed model, WAE + QE + RR, outperformed the comparison
models at all measures except Dist-1.

5. Conclusions

We proposed a generative, multi-turn chatbot model. To generate responses that consider dialogue
histories, the proposed model used the query-context attention mechanism in the query encoding
step. Furthermore, to improve the quality of responses, the proposed model used two types of
WGAN: A WGAN for dialogue modeling and a WGAN for response generation. In experiments with
DailyDialog datasets, the proposed model outperformed the previous state-of-the-art models and
generated responses with higher quality. The proposed chatbot model has the lack of a consistent
personality because it is typically trained using many dialogues from different speakers. To alleviate
this problem, we will study how to have a chatbot that maintains a consistent persona. In addition,
we will study how a chatbot can search and use outer knowledge for open-domain dialogue.
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