Combined CFD-Stochastic Analysis of an Active Fluidic Injection System for Jet Noise Reduction
"> Figure 1
<p>Representation of the wave vector <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="bold-italic">k</mi> <mi>n</mi> </msub> </mrow> </semantics> </math> and velocity direction vector <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="bold-italic">σ</mi> <mi>n</mi> </msub> </mrow> </semantics> </math> and definition of the stochastic angles (Adapted from [<a href="#B13-applsci-07-00623" class="html-bibr">13</a>]).</p> "> Figure 2
<p>Two-point space correlation of a jet plume. (<b>a</b>) First approach based on blobs structure; (<b>b</b>) Second approach based on an adaptive Cartesian mesh.</p> "> Figure 3
<p>Computational domain (Adapted from Andersson [<a href="#B7-applsci-07-00623" class="html-bibr">7</a>]).</p> "> Figure 4
<p>(<b>a</b>) Mesh used for the Reynolds Averaged Navier Stokes (RANS) jet flow simulation; (<b>b</b>) Contour plots of the RANS solution. Mean velocity on the top and turbulent kinetic energy on the bottom.</p> "> Figure 5
<p>The vertical dashed lines indicate lines along which profiles of time-averaged quantities were extracted (Adapted from Andersson [<a href="#B7-applsci-07-00623" class="html-bibr">7</a>]).</p> "> Figure 6
<p>(<b>a</b>) Centerline profile of the axial velocity; (<b>b</b>) Axial profiles of turbulence intensity. (Dotted black lines: experimental results; continuous red line: <span class="html-italic">K</span>-ε model; dashed green line: <span class="html-italic">K</span>-ω SST model; dotted-dashed blue line: LES).</p> "> Figure 7
<p>(<b>a</b>) Radial profiles of axial velocity; (<b>b</b>) Radial profiles of <span class="html-italic">uv</span> correlation. The profiles have been staggered according to their axial location. (Dotted black lines: experimental results; continuous red line: <span class="html-italic">K</span>-ε model; dashed green line: <span class="html-italic">K</span>-ω SST model; dotted-dashed blue line: LES).</p> "> Figure 8
<p>(<b>a</b>) 3D acoustic domain; (<b>b</b>) 3D contour plot of turbulent kinetic energy.</p> "> Figure 9
<p>Position of the microphones (Adapted from Andersson [<a href="#B7-applsci-07-00623" class="html-bibr">7</a>]).</p> "> Figure 10
<p>(<b>a</b>) Power spectra of far-field pressure signal for a few observer locations on the inner arc, <math display="inline"> <semantics> <mrow> <mn>30</mn> <msub> <mi>D</mi> <mi>j</mi> </msub> </mrow> </semantics> </math>. The Power Spectral Density (PSD) spectra have been staggered by multiplying the amplitude by a factor <math display="inline"> <semantics> <mrow> <msup> <mn>10</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> </semantics> </math>, where <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>θ</mi> <mo>−</mo> <mn>20</mn> </mrow> <mrow> <mn>40</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mi>θ</mi> </semantics> </math> being the angle from the jet axis; (<b>b</b>) Overall Sound Pressure Level Directivity.</p> "> Figure 11
<p>(<b>a</b>) Power spectra of far-field pressure signal for a few observer locations on the outer arc, <math display="inline"> <semantics> <mrow> <mn>30</mn> <msub> <mi>D</mi> <mi>j</mi> </msub> </mrow> </semantics> </math>. The PSD spectra have been staggered by multiplying the amplitude by a factor <math display="inline"> <semantics> <mrow> <msup> <mn>10</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> </semantics> </math>, where <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>θ</mi> <mo>−</mo> <mn>20</mn> </mrow> <mrow> <mn>40</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mi>θ</mi> </semantics> </math> being the angle from the jet axis; (<b>b</b>) Overall Sound Pressure Level Directivity.</p> "> Figure 12
<p>Sound radiation from the jet. Real part of the acoustic pressure [Pa] at 700 Hz.</p> "> Figure 13
<p>Sketch of the active Fluidic Injection System.</p> "> Figure 14
<p>Sketch of the low frequency turbulence region.</p> "> Figure 15
<p>Sketch of the exhaust plumes emitted from a jet engine without (on the top) and with fluid injection (on the bottom).</p> "> Figure 16
<p>Turbulent kinetic energy levels [m<sup>2</sup>/s<sup>2</sup>] for the injection patterns tested.</p> "> Figure 17
<p>Comparison between the different injection patterns in terms of velocity and turbulence intensity. (<b>a</b>) Centerline profile of the axial velocity; (<b>b</b>) Axial profiles of turbulence intensity.</p> "> Figure 18
<p>Turbulent velocity difference, Δ????<sub>????????????????</sub> [m/s] between the baseline case and the 4th test in the whole domain of interest.</p> "> Figure 19
<p>(<b>a</b>) Overall Sound Pressure Level Directivity on the inner arc; (<b>b</b>) Overall Sound Pressure Level Directivity on the outer arc.</p> ">
Abstract
:1. Introduction
2. Model Description and Validation
2.1. Model Description
2.2. Model Validation
3. Active Fluidic Injection System
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
A | numerical constant |
Ainj | injection section area |
stochastic model parameters | |
constant pressure and costant volume specific heat | |
D | nozzle diameter |
E | monodimensional turbulent kinetic energy spectrum |
G | Green function |
K | turbulent kinetic energy |
k | acoustic wave number |
k | turbulent wave vector |
wave number of maximum E | |
Kolmogorov wave number | |
turbulence integral length scale | |
M | Mach number |
convective Mach number | |
mass flow rate | |
number of Fourier modes | |
number of grid points per Fourier component | |
p | acoustic pressure |
probability density function | |
jet pressure and temperature at the nozzle inlet section | |
jet pressure and temperature at the nozzle outlet section | |
ambient pressure and temperature | |
pressure and temperature of the drained mass flow rate | |
R | microphone radial distance |
jet Reynolds number based on nozzle diameter | |
St | Strouhal number |
t | time |
U | mean-flow velocity |
jet centerline velocity and Mach number at nozzle outlet section | |
fluctuating turbulent velocity and vorticity | |
injection velocity | |
magnitude, phase and direction of nth Fourier component of u′ | |
turbulent wave vector random angles | |
injection angle | |
maximum distance between node i and its neighboring nodes j | |
cubic cells dimension of 3D domain | |
turbulent velocity difference | |
turbulent dissipation rate | |
kinematical viscosity | |
vortex convection velocity ratio | |
radian frequency or specific turbulent dissipation rate | |
t | time |
mean-flow velocity | |
jet centerline velocity and Mach number at nozzle outlet section |
References
- Colonius, T.; Lele, S.K.; Moin, P. Sound generation in a mixing layer. J. Fluid Mech. 1997, 330, 375–409. [Google Scholar]
- Colonius, T.; Mohseni, K.; Freund, J.B.; Lele, S.K.; Moin, P. Evaluation of noise radiation mechanisms in a turbulent jet. In Proceedings of the Summer Program of Center for Turbulence Research, Stanford, CA, USA, 2 June 1998; pp. 159–167. [Google Scholar]
- Freund, J. Noise Sources in a Low-Reynolds-number Turbulent Jet at Mach 0.9. J. Fluid Mech. 2011, 438, 277–305. [Google Scholar] [CrossRef]
- Mitchell, B.; Lele, S.; Moin, P. Direct Computation of the Sound Generated by Vortex Pairing in an Axisymmetric Jet. J. Fluid Mech. 1999, 383, 113–142. [Google Scholar] [CrossRef]
- Bogey, C.; Bailly, C.; Juvè, D. Computation of the Sound Radiated by a 3-D Jet Using Large Eddy Simulation. In Proceedings of the 6th AIAA/CEAS Aeroacoustics Conference, Lahaina, HI, USA, 12–14 June 2000. [Google Scholar]
- Mankbadi, R.; Shih, S.; Hixon, R.; Povinelli, L. Direct Computation of Jet Noise Produced by Large-Scale Axisymmetric Structures. J. Propuls. Power 2000, 16, 207–215. [Google Scholar] [CrossRef]
- Andersson, N.; Eriksson, L.E.; Davidson, L. A Study of Mach 0.75 Jets and Their Radiated Sound Using Large-Eddy Simulation. In Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference, Manchester, UK, 10–12 May 2004. [Google Scholar]
- Kraichnan, R.H. Diffusion by a Random Velocity Field. Phys. Fluids 1970, 13, 22–31. [Google Scholar] [CrossRef]
- Fung, J.C.H.; Hunt, J.C.R.; Malik, N.A.; Perkins, R.J. Kinematic Simulation of Homogeneous Turbulence by Unsteady Random Fourier Modes. J. Fluid Mech. 1992, 236, 281–318. [Google Scholar] [CrossRef]
- Béchara, W.; Bailly, C.; Lafon, P.; Candel, S. Stochastic Approach to Noise Modeling for Free Turbulent Flows. AIAA J. 1994, 32, 455–464. [Google Scholar] [CrossRef]
- Bailly, C.; Juvé, D. A Stochastic Approach to Compute Subsonic Noise Using Linearized Euler’s Equations. In Proceedings of the 5th AIAA/CEAS Aeroacoustics Conference, Seattle, WA, USA, 8–9 November 1999. [Google Scholar]
- Billson, M.; Eriksson, L.; Davidson, L. Jet Noise Modeling Using Synthetic Anisotropic Turbulence. In Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference, Manchester, UK, 10–12 May 2004. [Google Scholar]
- Casalino, D.; Barbarino, M. Stochastic Method for Airfoil Self-Noise Computation in Frequency-Domain. AIAA J. 2011, 49, 2453–2469. [Google Scholar] [CrossRef]
- Di Francescantonio, P. Side Mirror Noise with Adaptive Spectral Reconstruction. In Proceedings of the SAE 2015 Noise and Vibration Conference and Exhibition, Grand Rapids, MI, USA, 22–25 June 2015. [Google Scholar]
- Lighthill, M.J. Jet Noise. AIAA J. 1963, 1, 1507–1517. [Google Scholar] [CrossRef]
- Bridges, J.; Brown, C.A. Parametric Testing of Chevrons on Single Flow Hot Jets: NASA TM 2004–213107. In Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference, Manchester, UK, 10–12 May 2004. [Google Scholar]
- Engblom, W.A.; Kharavan, A.; Bridges, J. Numerical Prediction of Chevron Nozzle Noise Reduction Using WIND-MGBK Methodology. In Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference, Manchester, UK, 10–12 May 2004. [Google Scholar]
- Birch, S.F.; Lyubimov, D.A.; Maslov, V.P.; Secundov, A.N. Noise Prediction for Chevron Nozzle Flows. In Proceedings of the 12nd AIAA/CEAS Aeroacoustics Conference, Cambridge, MA, USA, 8–10 May 2006. [Google Scholar]
- Massey, S.J.; Elmiligui, A.A.; Hunter, C.A.; Thomas, R.H.; Pao, S.P.; Mengle, V.G. Computational Analysis of a Chevron Nozzle Uniquely Tailored for Propulsion Airframe Aeroacoustics. In Proceedings of the 12nd AIAA/CEAS Aeroacoustics Conference, Cambridge, MA, USA, 8–10 May 2006. [Google Scholar]
- Shur, M.L.; Spalart, P.R.; Strelets, M.K. Noise Prediction for Increasingly Complex Jets, Part II: Applications. Int. J. Aeroacoustics 2005, 4, 247–266. [Google Scholar] [CrossRef]
- Shur, M.L.; Spalart, P.R.; Strelets, M.K.; Garbaruk, A.V. Further Steps in LES-Based Noise Prediction for Complex Jets. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006. [Google Scholar]
- Henderson, B.S.; Kinzie, K.W.; Whitmire, J.; Abeysinghe, A. The impact of fluidic chevrons on jet noise. In Proceedings of the 11th AIAA/CEAS Aeroacoustics Conference, Monterey, CA, USA, 23–25 May 2005. [Google Scholar]
- Kinzie, K.W.; Henderson, B.S.; Whitmire, J.; Abeysinghe, A. Fluidic chevrons for jet noise reduction. In Proceedings of the 2004 International Symposium on Active Control of Sound and Vibration (ACTIVE 2004), Williamsburg, VA, USA, 20–22 September 2004. [Google Scholar]
- Henderson, B.S.; Kinzie, K.W.; Whitmire, J.; Abeysinghe, A. Aeroacoustic Improvements to Fluidic Chevron Nozzles. In Proceedings of the 12th AIAA/CEAS Aeroacoustics Conference, Cambridge, MA, USA, 8–10 May 2006. [Google Scholar]
TEST | Injection Mass Flow Rate/Nozzle Mass Flow Rate | Injection Section Area/Nozzle Outlet Area | Injection Direction [deg] | Injection Velocity [m/s] |
---|---|---|---|---|
1 | 13.0% | 10.2% | 45 | 350 |
2 | 13.0% | 10.2% | 60 | 450 |
3 | 13.0% | 10.2% | 80 | 690 |
4 | 6.5% | 4.08% | 80 | 720 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbarino, M.; Ilsami, M.; Tuccillo, R.; Federico, L. Combined CFD-Stochastic Analysis of an Active Fluidic Injection System for Jet Noise Reduction. Appl. Sci. 2017, 7, 623. https://doi.org/10.3390/app7060623
Barbarino M, Ilsami M, Tuccillo R, Federico L. Combined CFD-Stochastic Analysis of an Active Fluidic Injection System for Jet Noise Reduction. Applied Sciences. 2017; 7(6):623. https://doi.org/10.3390/app7060623
Chicago/Turabian StyleBarbarino, Mattia, Mario Ilsami, Raffaele Tuccillo, and Luigi Federico. 2017. "Combined CFD-Stochastic Analysis of an Active Fluidic Injection System for Jet Noise Reduction" Applied Sciences 7, no. 6: 623. https://doi.org/10.3390/app7060623
APA StyleBarbarino, M., Ilsami, M., Tuccillo, R., & Federico, L. (2017). Combined CFD-Stochastic Analysis of an Active Fluidic Injection System for Jet Noise Reduction. Applied Sciences, 7(6), 623. https://doi.org/10.3390/app7060623