Analysis of Dual- and Full-Circular Polarimetric SAR Modes for Rice Phenology Monitoring: An Experimental Investigation through Ground-Based Measurements
<p>Categorization of various polarimetric synthetic aperture radar (SAR) modes.</p> "> Figure 2
<p>The <math display="inline"> <semantics> <mi>H</mi> </semantics> </math>/<math display="inline"> <semantics> <mover accent="true"> <mi>α</mi> <mo stretchy="false">¯</mo> </mover> </semantics> </math> plane. (<b>a</b>) FCP and FLP; (<b>b</b>) DCP.</p> "> Figure 3
<p>Experimental geometry inside an anechoic chamber.</p> "> Figure 4
<p>Photographs and layout of the rice used in experimental validation. (<b>a</b>) Photographs taken on each measurement date within the observation period from 7 June 2016 until 14 September 2016; (<b>b</b>) Layout of the eight rice samples uniformly planted within a container box with 0.115 m depth of soil and 0.125 m depth of water.</p> "> Figure 5
<p>Reconstructed circularly polarized SAR (CP-SAR) images for the rice observed on 30 August 2016. The images are normalized to the maximum value of three images. (<b>a</b>) LL polarization; (<b>b</b>) RL polarization; (<b>c</b>) RR polarization.</p> "> Figure 6
<p>Backscattering coefficients of LL, RL, and RR polarization.</p> "> Figure 7
<p><math display="inline"> <semantics> <mi>H</mi> </semantics> </math>/<math display="inline"> <semantics> <mover accent="true"> <mi>α</mi> <mo stretchy="false">¯</mo> </mover> </semantics> </math> decomposition results of the FCP, DCP, and DLP modes. (<b>a</b>) Entropy; (<b>b</b>) Mean alpha.</p> "> Figure 8
<p>Scattering probabilities for the FCP and DCP modes. (<b>a</b>) FCP mode; (<b>b</b>) DCP mode.</p> "> Figure 9
<p>Alpha angle corresponding to each eigenvector. (<b>a</b>) FCP mode; (<b>b</b>) DCP mode.</p> "> Figure 10
<p>The <math display="inline"> <semantics> <mi>H</mi> </semantics> </math>/<math display="inline"> <semantics> <mover accent="true"> <mi>α</mi> <mo stretchy="false">¯</mo> </mover> </semantics> </math> 2D plane. (<b>a</b>) FCP mode; (<b>b</b>) DCP mode; (<b>c</b>) DLP mode.</p> "> Figure 11
<p>Four-/three-component decomposition results. (<b>a</b>) Four-component decomposition results for the FCP mode; (<b>b</b>) Three-component decomposition results for the DCP mode.</p> "> Figure 12
<p>Relative contribution of surface, double-bounce, and volume scattering components on the triangle plot. (<b>a</b>) FCP mode; (<b>b</b>) DCP mode.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Target Decomposition for FCP Data
2.2. Target Decomposition for DCP Data
2.2.1. / Decomposition
2.2.2. Three-Component Decomposition
2.3. Target Decomposition for DLP Data (/ Decomposition)
3. Experimental Scheme
3.1. System Description
3.2. Polarimetric Calibration of CP-SAR System
3.3. Phenology Description of Cultivated Rice
3.4. Methodology of Data Analysis
4. Rice Monitoring Results and Discussion
4.1. Backscattering Coefficient
4.2. / Decomposition
4.3. Four- and Three-Component Decomposition
5. Conclusions
- The / 2D plane showed a satisfactory clear pattern of each stage of rice growth and yielded rough discriminating capability. However, booting and ripening stages could not be separated.
- The DCP mode exhibited better classification capability than DLP mode on the / 2D plane.
- The four-/three-component decomposition results demonstrated a similar trend of surface and double-bounce scattering as backscattering coefficients of cross- and co-polarization respectively.
- The triangle plot of relative scattering components contribution showed adequate classification capability, similar to the / plane.
- Entropy showed a difference of ∼0.12 between each other, but overall evolution exhibited similarity. values almost coincided with each other except for non-rice and DoY 159 observations, but dominant and second dominant resulted in differences.
- The volume scattering component yielded a very similar trend and value. Surface and double-bounce scattering presented different power to each other.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dhar, A.T.; Gray, B.D.; Menges, C.C. Comparison of dual and full polarimetric entropy/alpha decompositions with TerraSAR-X, suitability for use in classification. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 456–458. [Google Scholar]
- Sugimoto, M.; Ouchi, K.; Nakamura, Y. On the similarity between dual-and quad-eigenvalue analysis in SAR polarimetry. Remote Sens. Lett. 2013, 4, 956–964. [Google Scholar] [CrossRef]
- Raney, R.K. Hybrid-polarity SAR architecture. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3397–3404. [Google Scholar] [CrossRef]
- Souyris, J.C.; Imbo, P.; Fjortoft, R.; Mingot, S.; Lee, J.S. Compact polarimetry based on symmetry properties of geophysical media: The π/4 mode. IEEE Trans. Geosci. Remote Sens. 2005, 43, 634–646. [Google Scholar] [CrossRef]
- Stacy, N.; Preiss, M. Compact polarimetric analysis of X-band SAR data. In Proceedings of the European Conference on Synthetic Aperture Radar (EUSAR), Dresden, Germany, 16–18 May 2006. [Google Scholar]
- Tetuko, S.S.J.; Koo, V.C.; Lim, T.S.; Kawai, T.; Ebinuma, T.; Izumi, Y.; Baharuddin, M.Z.; Gao, S.; Ito, K. Development of circularly polarized synthetic aperture radar on-board UAV JX-1. Int. J. Remote Sens. 2017, 38, 1–12. [Google Scholar] [CrossRef]
- Rao, Y. S.; Meadows, P.; Kumar, V. Evaluation of RISAT-1 compact polarization data for calibration. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3250–3253. [Google Scholar]
- Freeman, A. Calibration of linearly polarized polarimetric SAR data subject to Faraday rotation. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1617–1624. [Google Scholar] [CrossRef]
- Souyris, J.C.; Stacy, N.; Ainsworth, T.; Lee, J.S.; Dubois-Fernandez, P. SAR compact polarimetry (CP) for earth observation and planetology: Concept and challenges. In Proceedings of the PolInSAR, Frascati, Italy, 22–26 January 2007. [Google Scholar]
- Guo, R.; Liu, Y.B.; Wu, Y.H.; Zhang, S.X.; Xing, M.D.; He, W. Applying H–α decomposition to compact polarimetric SAR. IET Radar Sonar Navig. 2012, 6, 61–70. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, L.; Wang, C.; Wu, F.; Zhang, B. Investigation of the Capability of H–α Decomposition of Compact Polarimetric SAR. IEEE Geosci. Remote Sens. Lett. 2014, 11, 868–872. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Vicente-Guijalba, F.; Ballester-Berman, J.D.; Cloude, S.R. Polarimetric response of rice fields at C-band: Analysis and phenology retrieval. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2977–2993. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Cloude, S.R.; Ballester-Berman, J.D. Rice phenology monitoring by means of SAR polarimetry at X-band. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2695–2709. [Google Scholar] [CrossRef]
- Yang, Z.; Li, K.; Liu, L.; Shao, Y.; Brisco, B.; Li, W. Rice growth monitoring using simulated compact polarimetric C band SAR. Radio Sci. 2014, 49, 1300–1315. [Google Scholar] [CrossRef]
- Hayashi, N.; Sato, M. Measurement and analysis of paddy field by polarimetric GB-SAR. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, South Africa, 12–17 July 2009; pp. IV358–IV361. [Google Scholar]
- Li, K.; Brisco, B.; Yun, S.; Touzi, R. Polarimetric decomposition with RADARSAT-2 for rice mapping and monitoring. Can. J. Remote Sens. 2012, 38, 169–179. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geos. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Singh, G.; Yamaguchi, Y.; Park, S.E. General four-component scattering power decomposition with unitary transformation of coherency matrix. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3014–3022. [Google Scholar] [CrossRef]
- Cloude, S.R.; Goodenough, D.G.; Chen, H. Compact decomposition theory. IEEE Geosci. Remote Sens. Lett. 2012, 9, 28–32. [Google Scholar] [CrossRef]
- Nord, M.E.; Ainsworth, T.L.; Lee, J.S.; Stacy, N.J. Comparison of compact polarimetric synthetic aperture radar modes. IEEE Trans. Geosci. Remote Sens. 2009, 47, 174–188. [Google Scholar] [CrossRef]
- Cloude, S. The dual polarization entropy/alpha decomposition: A PALSAR case study. In Proceedings of the PolInSAR, Frascati, Italy, 22–26 January 2007. [Google Scholar]
- Stutzman, W.L. Polarization in Electromagnetic Systems; Artech House: Boston, MA, USA; London, UK, 1993. [Google Scholar]
- Gao, S.; Luo, Q.; Zhu, F. Circularly Polarized Antennas; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Wiesbeck, W.; Kahny, D. Single reference, three target calibration and error correction for monostatic, polarimetric free space measurements. Proc. IEEE 1991, 79, 1551–1558. [Google Scholar] [CrossRef]
- Izumi, Y.; Demirci, S.; Baharuddin, M.Z.; Waqar, M.M.; Sumantyo, J.T.S. The development and comparison of two polarimetric calibration techniques for ground-based circularly polarized radar system. Prog. Electromagn. Res. B 2017, 73, 79–93. [Google Scholar]
- Lancashire, P.D.; Bleiholder, H.; Boom, T.V.D.; Langeluddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Demirci, S.; Yigit, E.; Ozdemir, C. Wide-field circular SAR imaging: An empirical assessment of layover effects. Microw. Opt. Technol. Lett. 2015, 57, 489–497. [Google Scholar] [CrossRef]
- Sagues, L.; Lopez-Sanchez, J.M.; Fortuny, J.; Fabregas, X.; Broquetas, A.; Sieber, A.J. Indoor experiments on polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 671–684. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Fortuny-Guasch, J.; Cloude, S.R.; Sieber, A.J. Indoor polarimetric radar measurements on vegetation samples at L, S, C and X band. J. Electromagn. Waves Appl. 2000, 14, 205–231. [Google Scholar] [CrossRef]
- Zhou, Z.S.; Cloude, S. Structural parameter estimation of australian flora with a ground-based polarimetric radar interferometer. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), Denver, CO, USA, 31 July–4 August 2006; pp. 71–74. [Google Scholar]
- Inoue, Y.; Sakaiya, E.; Wang, C. Capability of C-band backscattering coefficients from high-resolution satellite SAR sensors to assess biophysical variables in paddy rice. Remote Sens. Environ. 2014, 140, 257–266. [Google Scholar] [CrossRef]
- Yonezawa, C.; Negishi, M.; Azuma, K.; Watanabe, M.; Ishitsuka, N.; Ogawa, S.; Saito, G. Growth monitoring and classification of rice fields using multitemporal RADARSAT-2 full-polarimetric data. Int. J. Remote Sens. 2012, 33, 5696–5711. [Google Scholar] [CrossRef]
Date | DoY (Day of Year) | Mean Height (cm) | BBCH Code | Phenological Stage |
---|---|---|---|---|
Soil and water | NA | NA | 0 | 1: Germination |
7 June 2016 | 159 | 19 | 21-29 | 2: Tillering |
22 June 2016 | 174 | 27 | 21-29 | 2: Tillering |
6 July 2016 | 188 | 34 | 30-39 | 3: Stem elongation |
21 July 2016 | 203 | 42 | 30-39 | 3: Stem elongation |
3 August 2016 | 216 | 49 | 41-49 | 4: Booting |
22 August 2016 | 235 | 52 | 83-85 | 5: Ripening |
30 August 2016 | 243 | 52 | 87-89 | 5: Ripening |
14 September 2016 | 258 | 45 | 93 | 5: Ripening |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izumi, Y.; Demirci, S.; Bin Baharuddin, M.Z.; Watanabe, T.; Sumantyo, J.T.S. Analysis of Dual- and Full-Circular Polarimetric SAR Modes for Rice Phenology Monitoring: An Experimental Investigation through Ground-Based Measurements. Appl. Sci. 2017, 7, 368. https://doi.org/10.3390/app7040368
Izumi Y, Demirci S, Bin Baharuddin MZ, Watanabe T, Sumantyo JTS. Analysis of Dual- and Full-Circular Polarimetric SAR Modes for Rice Phenology Monitoring: An Experimental Investigation through Ground-Based Measurements. Applied Sciences. 2017; 7(4):368. https://doi.org/10.3390/app7040368
Chicago/Turabian StyleIzumi, Yuta, Sevket Demirci, Mohd Zafri Bin Baharuddin, Tomoro Watanabe, and Josaphat Tetuko Sri Sumantyo. 2017. "Analysis of Dual- and Full-Circular Polarimetric SAR Modes for Rice Phenology Monitoring: An Experimental Investigation through Ground-Based Measurements" Applied Sciences 7, no. 4: 368. https://doi.org/10.3390/app7040368
APA StyleIzumi, Y., Demirci, S., Bin Baharuddin, M. Z., Watanabe, T., & Sumantyo, J. T. S. (2017). Analysis of Dual- and Full-Circular Polarimetric SAR Modes for Rice Phenology Monitoring: An Experimental Investigation through Ground-Based Measurements. Applied Sciences, 7(4), 368. https://doi.org/10.3390/app7040368