A Methodology Linking Tamping Processes and Railway Track Behaviour
<p>Concept and scope of this paper.</p> "> Figure 2
<p>Principal track geometry parameters according to EN 13848-1; red lines illustrate the deviation from the ideal geometry.</p> "> Figure 3
<p>Theoretical track behaviour by means of the vertical track geometry quality.</p> "> Figure 4
<p>Main phases of a tamping process.</p> "> Figure 5
<p>(<b>a</b>) Tamping machine Unimat 09-4x4/4S E<sup>3</sup> and (<b>b</b>,<b>c</b>) measurement equipment installed on its four tamping unit segments.</p> "> Figure 6
<p>(<b>a</b>) Raw measurements and low-pass filtered data of the squeezing distance and (<b>b</b>) squeezing force and calculated parameters; the data originate from two different squeezing processes.</p> "> Figure 7
<p>Illustration of the outlier detection algorithm.</p> "> Figure 8
<p>(<b>a</b>) Three metre sine wave and (<b>b</b>) 25 m sine wave and respective standard deviations with influence lengths of 100, 25, and 10 m.</p> "> Figure 9
<p>Longitudinal level (LL) D1 signals and standard deviations (SD) calculated with a moving window over 25 m; (<b>a</b>) before, (<b>b</b>) after the synchronisation process. Each colour represents an individual measurement run.</p> "> Figure 10
<p>Merging process of sleeper-specific tamping data with the DRP control measurement.</p> "> Figure 11
<p>Merging tamping data and track geometry data by means of longitudinal level measurements; (<b>a</b>) before, (<b>b</b>) after the synchronisation process.</p> "> Figure 12
<p>Application of the tamping machine measurements: Ballast condition assessment (penetration force per tamping tine; modified from [<a href="#B48-applsci-13-02137" class="html-bibr">48</a>]).</p> ">
Abstract
:1. Introduction
2. Basics of Track Geometry
2.1. Track Quality Indices
2.2. Track Behaviour
3. Principles of Tamping Processes
3.1. Tamping Parameters
3.2. Compactness of the Ballast
4. Proposed Methodology
4.1. Tamping Data Preparation
4.2. Track Geometry Data Preparation
4.3. Linking Tamping Machine Measurements to Track Geometry Data
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forschungs- und Versuchsamt des Internationalen Eisenbahnwesens (ORE). Frage D 161.1: Dynamische Auswirkungen auf Das Gleis Infolge 22,5 t Radsatzlast—Bericht Nr. 4: Dynamische Auswirkungen der Anhebung der Radsatzlast von 20 auf 22,5 t und der geschätzte Anstieg der Oberbauerhaltungskosten; Forschungs- und Versuchsamt des Internationalen Eisenbahnwesens (ORE): Utrecht, The Netherlands, 1987. [Google Scholar]
- Forschungs- und Versuchsamt des Internationalen Eisenbahnwesens (ORE). Frage D 161: Dynamische Erscheinungen der Wechselwirkung Fahrzeug/Gleis, aus der Sicht der Gleisunterhaltung—Bericht Nr. 3: Schlussbericht, Schlussfolgerungen und Empfehlungen; Forschungs- und Versuchsamt des Internationalen Eisenbahnwesens (ORE): Utrecht, The Netherlands, 1988. [Google Scholar]
- Caetano, L.F.; Teixeira, P.F. Optimisation model to schedule railway track renewal operations: A life-cycle cost approach. Struct. Infrastruct. Eng. 2014, 11, 1524–1536. [Google Scholar] [CrossRef]
- Przybylowicz, M.; Sysyn, M.; Kovalchuk, V.; Nabochenko, O.; Parneta, B. Experimental and Theoretical Evaluation of Side Tamping Method for Ballasted Railway Track Maintenance. Transp. Probl. 2020, 15, 93–106. [Google Scholar] [CrossRef]
- Neuhold, J.; Landgraf, M.; Marschnig, S.; Veit, P. Measurement Data-Driven Life-Cycle Management of Railway Track. Transp. Res. Rec. J. Transp. Res. Board 2020, 2674, 685–696. [Google Scholar] [CrossRef]
- Vale, C.; Ribeiro, I.M.; Calçada, R. Integer programming to optimize tamping in railway tracks as preventive maintenance. J. Transp. Eng. 2012, 138, 123–131. [Google Scholar] [CrossRef]
- Caetano, F.; Teixeira, P.F. Predictive maintenance model for ballast tamping. J. Transp. Eng. 2016, 142, 04016006. [Google Scholar] [CrossRef]
- Bakhtiary, A.; Zakeri, J.A.; Mohammadzadeh, S. An opportunistic preventive maintenance policy for tamping scheduling of railway tracks. Int. J. Rail Transp. 2020, 9, 1–22. [Google Scholar] [CrossRef]
- Neuhold, J. Tamping within Sustainable Track Asset Management; Verlag der Technischen Universität Graz: Graz, Austria, 2020. [Google Scholar]
- Martey, E.N.; Attoh-Okine, N. Modeling tamping recovery of track geometry using the copula-based approach. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2018, 232, 2079–2096. [Google Scholar] [CrossRef]
- Audley, M.; Andrews, J.D. The effects of tamping on railway track geometry degradation. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 2013, 227, 376–391. [Google Scholar] [CrossRef]
- EN 13848-1; Railway Applications—Track–Track Geometry Quality—Part 1: Characterization of Track Geometry. Austrian Standards Institute: Vienna, Austria, 2019.
- EN 13848-5; Railway Applications—Track—Track Geometry Quality—Part 5: Geometrical Quality Levels—Plain Line, Switches and Crossings. Austrian Standards Institute: Vienna, Austria, 2017.
- Sadeghi, J. Development of Railway Track Geometry Indexes Based on Statistical Distribution of Geometry Data. J. Transp. Eng. 2010, 136, 693–700. [Google Scholar] [CrossRef]
- Liu, R.-K.; Xu, P.; Sun, Z.-Z.; Zou, C.; Sun, Q.-X. Establishment of Track Quality Index Standard Recommendations for Beijing Metro. Discret. Dyn. Nat. Soc. 2015, 2015, 473830. [Google Scholar] [CrossRef]
- Offenbacher, S.; Neuhold, J.; Veit, P.; Landgraf, M. Analyzing Major Track Quality Indices and Introducing a Universally Applicable TQI. Appl. Sci. 2020, 10, 8490. [Google Scholar] [CrossRef]
- EN 13848-6; Railway Applications—Track—Track Geometry Quality—Part 6: Characterisation of Track Geometry Quality. Austrian Standards Institute: Vienna, Austria, 2014.
- Neuhold, J.; Vidovic, I.; Marschnig, S. Preparing Track Geometry Data for Automated Maintenance Planning. J. Transp. Eng. Part A: Syst. 2020, 146, 04020032. [Google Scholar] [CrossRef]
- BB-Infrastruktur AG. Instandhaltungsplan Oberbauanlagen; BB-Infrastruktur AG: Vienna, Austria, 2017; pp. 1–57. [Google Scholar]
- SBB. Einbau, Kontrollen und Unterhalt von Gleisen, no. 4161906; SBB: Bern, Switzerland, 2020; pp. 1–23. [Google Scholar]
- Hansmann, F.; Nemetz, W.; Spoors, R. Keeping Track of Track Geometry, 1st ed.; PMC Media House GmbH: Leverkusen, Germany, 2021. [Google Scholar]
- Sauni, M.; Luomala, H.; Kolisoja, P.; Nummi, T. Advancing Railway Asset Management Using Track Geometry Deterio-ration Modeling Visualization. J. Transp. Eng. Part A Syst. 2022, 148, 1–12. [Google Scholar] [CrossRef]
- Marschnig, S.; Fellinger, M.; Kumar, N.; Six, K. Zum Verhalten von Einzelfehlern der Gleislage. ZEVrail 2022, 146, 91–97. [Google Scholar]
- ElKhoury, N.; Hitihamillage, L.; Moridpour, S.; Robert, D. Degradation Prediction of Rail Tracks: A Review of the Existing Literature. Open Transp. J. 2018, 12, 88–104. [Google Scholar] [CrossRef]
- Soleimanmeigouni, I.; Ahmadi, A.; Kumar, U. Track geometry degradation and maintenance modelling: A review. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 2016, 232, 73–102. [Google Scholar] [CrossRef]
- Soleimanmeigouni, I.; Ahmadi, A.; Nissen, A.; Xiao, X. Prediction of railway track geometry defects: A case study. Struct. Infrastruct. Eng. 2019, 16, 987–1001. [Google Scholar] [CrossRef]
- Offenbacher, S.; Antony, B.; Barbir, O.; Auer, F.; Landgraf, M. Evaluating the applicability of multi-sensor equipped tamping machines for ballast condition monitoring. Measurement 2020, 172, 108881. [Google Scholar] [CrossRef]
- Barbir. Development of Condition-Based Tamping Process in Railway Engineering—Operating Phases and Motion Behavior, Ballast Condition Determination, Ballast fluidization; TU Wien: Vienna, Austria, 2022. [Google Scholar]
- Zaayman, L. Chapter 6—Track Lifting, Levelling, Aligning and Tamping. In Mechanisation of Track Work in Developing Countries, 1st ed.; De Rooi Publications: Utrecht, The Netherlands, 2003; pp. 136–165. [Google Scholar]
- EN 13231-1; Railway Applications—Infrastructure—Acceptance of Works—Part 1: Works on Ballasted Track—Plain Line, Switches and Crossings. Austrian Standards Institute: Vienna, Austria, 2022.
- Lichtberger, B. Track Compendium, 2nd ed.; DVV Media Group GmbH I Eurailpress: Hamburg, Germany, 2011. [Google Scholar]
- Zaayman, L. The Basic Principles of Mechanised Track Maintenance, 3rd ed.; PMC Media House GmbH: Bingen am Rhein, Germany, 2017. [Google Scholar]
- Fischer, J. Einfluss von Frequenz und Amplitude auf die Stabilisierung von Oberbauschotter; Graz University of Technology: Graz, Austria, 1983. [Google Scholar]
- Zhou, T.; Hu, B.; Sun, J.; Liu, Z. Discrete Element Method Simulation of Railway Ballast Compactness During Tamping Process. Open Electr. Electron. Eng. J. 2013, 7, 103–109. [Google Scholar] [CrossRef]
- Omerović, S.; Daxberger, H.; Koczwara, C.; Antony, B.; Auer, F. Anwendung der Diskrete-Elemente-Methode im Eisen-bahnbau; Ei—Der Eisenbahningenieur: Hamburg, Germany, 2021; pp. 39–41. [Google Scholar]
- Saussine, G.; Azéma, E.; Perales, R.; Radjai, F. Compaction of Railway Ballast During Tamping Process: A Parametric Study. AIP Conf. Proc. 2009, 1145, 469–472. [Google Scholar] [CrossRef]
- Sysyn, M.; Kovalchuk, V.; Gerber, U.; Nabochenko, O.; Pentsak, A. Experimental study of railway ballast consolidation inhomogeneity under vibration loading. Pollack Period. 2020, 15, 27–36. [Google Scholar] [CrossRef]
- Barbir, O.; Antony, B.; Kopf, F.; Pistrol, J.P.; Adam, D.; Auer, F. Compaction energy as an indicator for ballast quality. In Proceedings of the 12th World Congress on Railway Research, Tokyo, Japan, 28 October–1 November 2019; pp. 1–6. [Google Scholar]
- Sysyn, M.; Nabochenko, O.; Kovalchuk, V.; Gerber, U. Evaluation of Railway Ballast Layer Consolidation after Maintenance Works. Acta Polytech. 2019, 59, 77–87. [Google Scholar] [CrossRef]
- Liu, J.; Wang, P.; Liu, G.; Xiao, J.; Liu, H.; Gao, T. Influence of a tamping operation on the vibrational characteristics and resistance-evolution law of a ballast bed. Constr. Build. Mater. 2019, 239, 117879. [Google Scholar] [CrossRef]
- Przybyłowicz, M.; Sysyn, M.; Gerber, U.; Kovalchuk, V.; Fischer, S. Comparison of the effects and efficiency of vertical and side tamping methods for ballasted railway tracks. Constr. Build. Mater. 2021, 314, 125708. [Google Scholar] [CrossRef]
- Ilinykh, A.; Manakov, A.; Abramov, A.; Kolarzh, S. Quality assurance and control system for railway track tamping. MATEC Web Conf. 2018, 216, 03004. [Google Scholar] [CrossRef]
- Zhou, T.; Hu, B.; Sun, J. Study of Railway Ballast Compactness under Tamping Operation. J. Appl. Sci. 2013, 13, 2072–2076. [Google Scholar] [CrossRef]
- Barbir, O.; Adam, D.; Kopf, F.; Pistrol, J.; Auer, F.; Antony, B. Development of condition-based tamping process in railway engineering. ce/papers 2018, 2, 969–974. [Google Scholar] [CrossRef]
- Shi, S.; Gao, L.; Cai, X.; Yin, H.; Wang, X. Effect of tamping operation on mechanical qualities of ballast bed based on DEM-MBD coupling method. Comput. Geotech. 2020, 124, 103574. [Google Scholar] [CrossRef]
- Hummitzsch, R. Zur Prognostizierbarkeit des Qualitätsverhaltens von Gleisen: Statistische Analyse des Gleisverhaltens zur Erstellung eines Prognosemodells; TU Graz: Graz, Austria, 2009. [Google Scholar]
- Auer, F. Gleislagequalitätsanalyse zur Instandhaltungsoptimierung; ETR—Eisenbahntechnische Rundschau: Berlin, Germany, 2004; Volume 1, pp. 838–844. [Google Scholar]
- Fellinger, M. Sustainable Asset Management for Turnouts—From Measurement Data Analysis to Behaviour and Maintenance Prediction; Graz University of Technology: Graz, Austria, 2020. [Google Scholar]
- Offenbacher, S.; Landgraf, M.; Marschnig, S.; Antony, B.; Koczwara, C. Ballast condition monitoring with tamping ma-chines. In Proceedings of the World Congress on Railway Research, Birmingham, UK, 6–10 June 2022; pp. 1–6. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Offenbacher, S.; Koczwara, C.; Landgraf, M.; Marschnig, S. A Methodology Linking Tamping Processes and Railway Track Behaviour. Appl. Sci. 2023, 13, 2137. https://doi.org/10.3390/app13042137
Offenbacher S, Koczwara C, Landgraf M, Marschnig S. A Methodology Linking Tamping Processes and Railway Track Behaviour. Applied Sciences. 2023; 13(4):2137. https://doi.org/10.3390/app13042137
Chicago/Turabian StyleOffenbacher, Stefan, Christian Koczwara, Matthias Landgraf, and Stefan Marschnig. 2023. "A Methodology Linking Tamping Processes and Railway Track Behaviour" Applied Sciences 13, no. 4: 2137. https://doi.org/10.3390/app13042137