Structural, Conformational and Spectroscopic Investigations of a Biologically Active Compound: L-Dopa
<p>Optimized structure of the lowest-energy conformer (C-I) of L-dopa.</p> "> Figure 2
<p>(<b>a</b>–<b>c</b>). Variation of the total energies with the dihedral angles for the rotations of the OH groups about their respective axes.</p> "> Figure 2 Cont.
<p>(<b>a</b>–<b>c</b>). Variation of the total energies with the dihedral angles for the rotations of the OH groups about their respective axes.</p> "> Figure 3
<p>Optimized structure of the lowest-energy dimer (D<sub>1</sub>) of the lowest-energy monomer (C-I).</p> "> Figure 4
<p>Computed and experimental IR and Raman spectra of L-dopa.</p> "> Figure 5
<p>Deconvolution of the broad and intense IR envelope in the range 2200–3400 cm<sup>−1</sup>.</p> "> Figure 6
<p>Pictorial representation of the MEP plots of the C-I monomer and the dimer D<sub>1</sub>.</p> "> Figure 7
<p>Frontier representation of the HOMO and LUMO orbitals of L-dopa.</p> ">
Abstract
:Highlights
- The L-dopa molecule has 108 stable configurations.
- Vibrational analysis confirms the existence of a dimeric form of L-dopa and a strong IR band peak at 2770 cm−1 suggests its OH forms.
- L-dopa molecules are found to be chemically soft and biologically active in nature.
- Strong active sites are near the O and H atoms of the OH and COOH groups.
- L-dopa molecule would be a good choice for medicinal application.
- Multiple active sites play significant role for its chemical activities.
Abstract
1. Introduction
2. Experimental Details
3. Computational Details
4. Results and Discussion
4.1. Determination of the Total Number of the Possible Conformers and the Barrier Heights for Different Tops
4.1.1. The Number of the Possible Conformers
4.1.2. Barrier Heights for Different Tops
4.2. Geometrical Parameters
4.3. APT Charges
4.4. Vibrational Analysis
4.4.1. -CH2-CH-NH2CO2(H) Moiety Modes (30)
14CH2 and 17CH Group Modes (6+3)
-NH2 Group Modes (6)
-CO2(H) Group Modes (6)
Side Chain Skeleton C14-C17 N22-C19 Modes (9)
4.4.2. Phenyl Ring Moiety Modes (30)
4.4.3. O-H Group Modes (9)
4.4.4. Effect on Vibrational Parameters in Going from Monomer to Dimer
4.5. Bioactive Scores
4.6. MEP Plots
4.7. HOMO-LUMO Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Echeverría, C.L.G.; Bressani, R. Effect of different cooking treatments of Mucuna beans on its L-Dopa. Arch Latinoam Nutr. 2006, 56, 175–184. (In Spanish) [Google Scholar]
- Lampariello, L.R.; Cortelazzo, A.; Guerranti, R.; Sticozzi, C.; Valacchi, G. The Magic Velvet Bean of Mucuna pruriens. J. Tradit. Complement Med. 2012, 2, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Frishman, W.H.; Hotchkiss, H. Selective and nonselective dopamine receptor agonists: An innovative approach to cardiovascular disease treatment. Am. Heart J. 1996, 132, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Del-Bel, E.; Bortolanza, M.; Pereira, M.D.S.; Bariotto, K.; Raisman-Vozari, R. L-dopa induced dyskinesia in perkinson’s disease: Are neuroinflammation and astrocytes key elements? Synapse 2016, 70, 479–500. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.A.; Janzen, D.H. Medical and ecological considerations of L-dopa and 5-HTP in seeds. Nature 1971, 229, 136–137. [Google Scholar] [CrossRef]
- Chaudhri, R.D. Herbal drugs industry, a practical approach to industrial pharmacognosy. In Herbal Drugs Industry: A Pratical Approach to Industrial Pharmacognosy; Eastern Publishers xii: Delhi, India, 1996. [Google Scholar]
- Gourie-Devi, M.; Ramu, M.G.; Venkataram, B.S. Treatment of Parkinson’s disease in Ayurveda (ancient Indian system of medicine): Discussion paper. J. R Soc. Med. 1991, 84, 491–492. [Google Scholar] [CrossRef]
- Ovallath, S.; Deepa, P. The history of parkinsonism: Descriptions in ancient Indian medical literature. Mov. Disord. 2013, 28, 566–568. [Google Scholar] [CrossRef]
- Rani, N.; Joy, B.; Abraham, T.E. Cell Suspension Cultures of Portulaca grandiflora as potent catalysts for biotransformation of L-tyrosine into L-Dopa, an Anti-Parkinson’s Drug. Pharm. Biol. 2007, 45, 48–53. [Google Scholar] [CrossRef]
- Available online: http://www.sigmaaldrich.com/spectra/ftir/FTIR001390 (accessed on 1 July 2023).
- Siddiqui, S.A.; Pandey, A.K.; Dwivedi, A.; Jain, S.; Misra, N. Comparative conformational, structural and vibrational study on the molecular structure of tyrosine and L-DOPA using density functional theory. J. Chem. Pharm. Res. 2010, 2, 835–850. [Google Scholar]
- Chamundeeswari, S.P.V.; Samuel, E.J.J.; Sundaraganesan, N. Molecular structure and spectroscopic (FT-IR, Raman, 13C, 1H NMR and UV) studies of 3,4-dihydroxy-L-phenylalanine using density functional theory. Mol. Simul. 2012, 38, 987–1000. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A.1; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Palavarapu, P.L. Ab initio Vibrational Raman and Raman optical activity spectra. J. Phys. Chem. A 1990, 94, 8106–8112. [Google Scholar] [CrossRef]
- Martin, J.M.L.; Alsenoy, V.A.C.V. GAR2PED; University of Antwerp: Antwerp, Belgium, 1995. [Google Scholar]
- Culthup, N.B.; Daly, L.H.; Wiberley, S.T. Introduction to Infrared and Raman Spectroscapy; Academic Press: New York, NY, USA; London, UK, 1994. [Google Scholar]
- Bist, H.D.; Brand, J.C.D.; Williams, D.R. The vibrational spectrum and torsion of of phenol. J. Mol. Spectrosc. 1967, 24, 402–412. [Google Scholar] [CrossRef]
- Mao, J.X. Atomic charge in molecules: A classical concept in modern computational chemistry. J. Post Doct. Res. 2014, 2, 15–18. [Google Scholar] [CrossRef]
- Krause, P.F.; Katon, J.E.; Smith, K.K. The polarised IR spectrum of crystalline acrylic acid. Spectrchemica Acta 1976, 32A, 957–962. [Google Scholar] [CrossRef]
- Yadav, B.; Yadav, R.K.; Srivastav, G.; Yadav, R.A. Experimental Raman, FTIR and UV-vis spectra, DFT studies of molecular structures and barrier heights, thermodynamic functions and bioactivity of kaempferol. J. Mol. Strut. 2022, 1258, 132637. [Google Scholar] [CrossRef]
- Krause, P.F.; Katon, J.E.; Rogers, J.M.; Phillips, D.B. Infrared spectra of crystalline acetic acid, a Hydrogen Bonded polymer. Appl. Spectrosc. 1977, 31, 110–115. [Google Scholar] [CrossRef]
- Varsanyi, G. Assignment for Vibrational Spectra of Seven Hundred Benzene of Derivatives; Kavner, M.A., Lang, L., Eds.; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Bellamy, L.J.; Williams, R.L. The NH stretching frequencies of primary amines. Spectrochim. Acta 1957, 9, 341. [Google Scholar] [CrossRef]
- Yadav, R.K.; Yadav, B.; Yadav, R.A. Spectroscopic structural and conformational investigations of the major constituent of the clove oil: Eugenol. Comp. Theo. Chem. 2023, 1228, 114264. [Google Scholar] [CrossRef]
- Yadav, R.K.; Yadav, B.; Yadav, R.A.; Kostova, I. Experimental IR, Raman and UV-Vis spectra DFT structural and conformational studies: Bioactivity and Solvent effect on molecular properties of Methyl-eugenol. Molecules 2023, 28, 5409. [Google Scholar] [CrossRef]
- Koopmans, T. Uber die Zuordnung von Wellenfunktionen und Eigenwertenzu den Einzelnen Elektronen Eines Atoms. Phisica 1934, 1, 104–113. [Google Scholar] [CrossRef]
- Yoshida, H.; Takeda, K.; Okamura, J.; Ehara, A.; Matsuura, H. A new approach to vibrational analysis of large molecules by density functional theory: Wavenumber linear scaling method. J. Phys. Chem. A 2002, 106, 3580–3586. [Google Scholar] [CrossRef]
Conf. | Total Energy | ∆E Relative to C-I | ||
---|---|---|---|---|
Hartree | Hartree | kcal/mol | K | |
C-I | −705.460596 | 0 | 0 | 0.0 |
C-II | −705.459368 | 0.001228 | 0.771 | 388 |
C-III | −705.458329 | 0.002267 | 1.423 | 716 |
C-IV | −705.458148 | 0.002449 | 1.537 | 773 |
C-V | −705.457772 | 0.002824 | 1.772 | 892 |
C-VI | −705.457510 | 0.003086 | 1.936 | 975 |
Top | Foldness | ∆EAB | ∆EBC | ∆ECD | ∆EDE | ∆EEF | ∆EFG |
---|---|---|---|---|---|---|---|
C19-OH | 2 | 20.565 | 11.340 | 11.340 | 20.565 | - | - |
C1-OH | 1 | 9.775 | - | - | - | - | - |
C6-OH | 2 | 9.223 | 2.232 | 2.232 | 9.223 | - | - |
C14-C17 | 3 | 5.992 | 2.936 | 3.140 | 0.126 | 5.580 | 10.890 |
C3-C14 | 2 | 2.301 | 1.544 | 1.945 | 2.710 | - | - |
C-CO2H | 2 | 6.013 | 6.395 | 2.988 | 2.606 | - | - |
C1-OH $ | 2 | 2.588 | 6.314 | 6.517 | 2.854 | - | - |
Bond Lengths # | C-I (1) | D1 | Ref. [10] (4) | Ref. [11] (5) | (2)-(1) | (3)-(1) | (4)-(1) | (5)-(1) | |
---|---|---|---|---|---|---|---|---|---|
(2) | (3) | ||||||||
r(C1-C2) | 1.389 | 1.390 | 1.390 | 1.385 | 1.390 | 0.001 | 0.001 | −0.004 | 0.001 |
r(C1-C6) | 1.404 | 1.408 | 1.408 | 1.415 | 1.408 | 0.004 | 0.004 | 0.011 | 0.004 |
r(C2-C3) | 1.404 | 1.404 | 1.404 | 1.401 | 1.409 | 0.000 | 0.000 | −0.003 | 0.005 |
r(C3-C4) | 1.398 | 1.398 | 1.398 | 1.394 | 1.402 | 0.000 | 0.000 | −0.004 | 0.004 |
r(C4-C5) | 1.397 | 1.398 | 1.398 | 1.396 | 1.400 | 0.001 | 0.001 | −0.001 | 0.003 |
r(C5-C6) | 1.388 | 1.386 | 1.386 | 1.389 | 1.391 | −0.002 | −0.002 | 0.001 | 0.003 |
r(C1-O12) | 1.373 | 1.358 | 1.358 | 1.386 | 1.377 | −0.015 | −0.015 | 0.013 | 0.004 |
r(C6-O10) | 1.368 | 1.362 | 1.362 | 1.363 | 1.362 | −0.006 | −0.006 | −0.005 | −0.006 |
r(O10-H11) | 0.967 | 0.968 | 0.968 | 0.965 | 0.969 | 0.001 | 0.001 | −0.002 | 0.002 |
r(O12-H13) | 0.965 | 0.982 | 0.982 | 0.964 | 0.967 | 0.017 | 0.017 | −0.001 | 0.002 |
r(C14-H15) | 1.092 | 1.092 | 1.092 | 1.095 | 1.097 | 0.000 | 0.000 | 0.003 | 0.005 |
r(C14-H16) | 1.092 | 1.094 | 1.094 | 1.095 | 1.095 | 0.002 | 0.002 | 0.003 | 0.003 |
r(C14-C17) | 1.549 | 1.551 | 1.551 | 1.562 | 1.555 | 0.002 | 0.002 | 0.013 | 0.006 |
r(C3-C14) | 1.514 | 1.513 | 1.513 | 1.510 | 1.517 | −0.001 | −0.001 | −0.004 | 0.003 |
r(C17-C19) | 1.542 | 1.541 | 1.541 | 1.517 | 1.547 | −0.001 | −0.001 | −0.025 | 0.005 |
r(C17-N22) | 1.470 | 1.471 | 1.471 | 1.458 | 1.456 | 0.001 | 0.001 | −0.012 | −0.014 |
r(C19-O20) | 1.333 | 1.323 | 1.323 | 1.355 | 1.355 | −0.01 | −0.01 | 0.022 | 0.022 |
r(C19-O21) | 1.212 | 1.216 | 1.216 | 1.201 | 1.209 | 0.004 | 0.004 | −0.011 | −0.003 |
r(O20-H24) | 0.996 | 0.992 | 0.992 | 0.969 | 0.974 | −0.004 | −0.004 | −0.027 | −0.022 |
Atomic Site | C-I | D1 | |
---|---|---|---|
C1 | 0.616 | 0.502 | 0.502 |
C2 | −0.141 | −0.100 | −0.100 |
C3 | −0.021 | −0.044 | −0.044 |
C4 | −0.110 | −0.099 | −0.099 |
C5 | −0.074 | −0.050 | −0.050 |
C6 | 0.657 | 0.485 | 0.485 |
H7 | 0.077 | 0.061 | 0.061 |
H8 | 0.052 | 0.027 | 0.027 |
H9 | 0.068 | 0.048 | 0.048 |
O10 | −0.981 | −0.762 | −0.762 |
H11 | 0.400 | 0.332 | 0.332 |
O12 | −0.966 | −0.930 | −0.930 |
H13 | 0.380 | 0.583 | 0.583 |
C14 | 0.156 | 0.139 | 0.139 |
H15 | −0.017 | 0.001 | 0.001 |
H16 | −0.033 | −0.034 | −0.034 |
C17 | 0.274 | 0.192 | 0.192 |
H18 | −0.021 | −0.026 | −0.026 |
C19 | 1.419 | 1.106 | 1.106 |
O20 | −1.021 | −0.737 | −0.737 |
O21 | −1.019 | −0.938 | −0.938 |
N22 | −0.697 | −0.530 | −0.530 |
H23 | 0.247 | 0.195 | 0.195 |
H24 | 0.554 | 0.429 | 0.429 |
H25 | 0.202 | 0.149 | 0.149 |
# Dimer D1 | † IR | † Raman | PEDs | Assignments |
---|---|---|---|---|
39(0,19)0.75 51(0,11)0.75 | - | 52 s | τ(C3-C14)(53)+τ(C14-C17)(29)-τ(C17-N22)(6) | τ(C3-C14) |
54(0,7)0.66 62(0,4)0.75 | - | 64 m | τ(C17-C19)(44)-τ(C17-N22)(11)-τ(C19-O20)(8)-α(C3-C14-C17)(7)-γ(C3-C14)(7)-δ1(CNCH)(6)-δ2(CNCH)(5) | γ(C3-C14) 17 a |
75(0,3)0.75 78(0,1)0.75 | - | 75 m | τ(C17-C19)(27)+τ(C14-C17)(26)-τ(C3-C14)(21)-τ(C17-N22)(8)-τ(C19-O20)(5)-ϕ(R)(4) | τ(C14-C17) |
89(0,0)0.66 95(0,4)0.75 | - | 88 w 96 m | τ(C17-C19)(51)-τ(C17-N22)(14)-τ(C19-O20)(10)+γ(C3-C14)(6)+α(C3-C14-C17)(3)+ϕ(R)(3) | τ(C17-C19) |
170(0.1,2)0.75 171(0,1)0.12 | - | 166 m | ϕ(R)(49)-α(C3-C14-C17)(11)-δ1(CNCH)(7)-τ(C17-C19)(6)-τ(C1-O12)(4)-τ(C3-C14)(3)+τ(C17-N22)(3) | α(C3-C17-C14) |
207(0.6,0)0.75 214(0.1,1)0.39 | - | 192 w 211 vw | δ1(CNCH)(31)-β(C3-C14)(25)+ϕ(R)(8)+ρ(CO2H)(5)-δ2(CNCH)(4)+ω(CO2H)(3)-τ(C1-O12)(3) | β(C3-C14) |
237(0.1,1)0.75 240(0.1,1)0.72 | - | 251 m | τ(C1-O12)(30)-ϕ(R)(19)+γ(C1-O12)(10)+γ(C2-H7)(7)-δ2(CNCH)(6)+τ(C6-O10)(5)-α(C3-C14-C17)(5) | γ(C1-O12) 10 b |
321(1.1,0)0.75 322(0,0)0.73 | - | 312 w | β(C1-O12)(34)-β(C6-O10)(34)+α(C6-O10-H11)(10)-α(C1-O12-H13)(7)+α(R)(8) | β(C-O)op (9 a) |
327(0.7,0)0.75 327(0.1,0)0.50 | - | 327 sh | τ(C17-N22)(36)-τ(C19-O20)(14)+δ3(CNCH)(9)-βs(CO2H)(8)-β(C3-C14)(7)-ρ(CO2H)(4)+β(C6-O10)(4)-ν(O20-H24)(4) | τ(C19-O20) |
341(0,2)0.40 342(0.8,0)0.75 | - | 340 w | τ(C17-N22)(44)-τ(C19-O20)(11)-δ3(CNCH)(9)+β(C3-C14)(8)+ρ(CO2H)(4.) | τ(C17-N22) |
350(0,1)0.41 352(0,1)0.75 | - | γ(C6-O10)(17)+δ1(CNCH)(8)-γ(C3-C14)(8)+γ(C1-O12)(8)+ δ3(CNCH)(6)+ϕ(R)(16)+γ(C5-H9)(5)+ δ2(CNCH)(4)-τ(C14-C17)(3.) | γ(C6-O10) (10 a) | |
375(0,0)0.71 377(0.3,1)0.75 | - | 360 w | δ3(CNCH)(16)-δ2(CNCH)(15)-τ(C14-C17)(6) +δ1(CNCH)(6) +t(CH2)(6)-γ(C6-O10)(6)+β(C3-C14)(5)-βs(CO2H)(5) | δ(CNCH) |
420(0,3)0.21 422(0.2,1)0.75 | 416 w | 402 w br | τ(C6-O10)(81)-τ(C1-O12)(8)-γ(C1-O12)(6) | τ(C6-O10) |
449(0.4,0)0.75 450(1.5,0)0.72 | 451 m | 457 m | α(R)(25)-δ2(CNCH)(17)+α(R)(16)+ν(C3-C14)(9)-ω(CO2H)(4)+τ(C19-O20)(3) | α(R) 6 a |
474(0.6,1)0.75 474(4.7,0)0.62 | 472 m | - | ϕ(R)(37)-γ(C1-O12)(21)-γ(C6-O10)(18)-ϕ(R)(14) | ϕ(R) 16 b |
486(0.1,0)0.75 490(0.1,2)0.23 | 509 w | - | α(R)(19) +β(C1-O12)(17)+β(C6-O10)(10)+β(C3-C14)(8)-α(C1-O12-H13)(6)+ϕ(R)(3)-ν(C2-C3)(3) | β(C-O)ip (9 b) |
527(0.5,0)0.75 531(0,3)0.70 | 525 ms | 523 | ρ(CO2H)(43)+ν(C17-C19)(16)-δ1(CNCH)(6) +δ3(CNCH)(4)-ω(CO2H)(4)+ν(C17-N22)(3) | ρ(CO2H) |
546(0.1,1)0.02 551(0.5,0)0.75 | 550 w | 548 m | δ2(CNCH)(13)-ϕ(R)(25)+α(R)(8)-α(C3-C14-C17)(8)+ω(CO2H)(9)-γ(C3-C14)(4) -β(C1-O12)(3)+γ(C1-O12)(3) | δ2(CNCH) |
575(0.2,1)0.51 576(0,0)0.75 | βs(CO2H)(29)+δ3(CNCH)(22)-ν(C14-C17)(10)+ ω(CO2H)(8)-ϕ(R)(9)+α(R)(3)-ν(C17-C19)(3) | βs(CO2H) | ||
597(0.6,0)0.75 597(0,3)0.41 | 588 m | 585 m | α(R)(30)-β(C6-O10)(23)-β(C1-O12)(10)-ν(C5-C6)(8)+α(C6-O10-H11)(6)- ν(C1-O12)(6)-β(C3-C14)(6) | α(R) 6 b |
653(0.3,0)0.75 654(0.3,0)0.60 | 663 | 591 sh | γ(C3-C14)(20)-ϕ(R)(23)-γ(C1-O12)(15)+γ(C6-O10)(8)-α(C3-C14-C17)(7)-βs(CO2H)(6)-δ3(CNCH)(4)+ω(CO2H)(3) | ϕ(R) 16 a |
702(2,1)0.05 706(0.5,0)0.75 | - | 683 w | τ(C1-O12)(51)+τ(C6-O10)(18)+ϕ(R)(18)-γ(C2-H7)(4.) | τ(C1-O12) |
722(0.1,0)0.75 723(0,5)0.15 | 717 m | 716 s | ϕ(R)(21)+α(R)(23)-ν(C3-C14)(10)+γ(C1-O12)(10)-γ(C6-O10)(8)-ω(CO2H)(6)-ν(C3-C4)(3) | α(R)-12 |
731(0.1,0)0.75 739(0.4,0)0.47 | 731 m | - | ϕ(R)(50)+γ(C1-O12)(15)-γ(C6-O10)(15)+γ(C3-C14)(4)+ω(CO2H)(4) | Φ(R)-4 |
774(0.6,5)0.02 776(0.2,0)0.75 | 777 m | 777 vs | βs(CO2H)(18)+ν(C17-C19)(14)+ϕ(R)(8)+ν(C14-C17)(7)-α(C3-C14-C17)(7)-ρ(CO2H)(6)+ν(C19=O20)(6)-ω(CO2H)(5)+γ(C3-C14)(5)+ν(C17-N22)(5) | ν(C17-C19) |
792(0.1,11)0.06 792(1.4,1)0.75 | 808 s | 808 s vs | ν(C1-C6)(25)+ν(C6-O10)(22)-α(R)(10)+ν(C5-C6)(9)+ν(C1-C2)(6) + ν(C1-O12)(6)+α(R)(5.) | ν(R) 1 |
813(2,1)0.53 813(0.3,0)0.75 | - | 813 sh | γ(C5-H9)(22)+γ(C4-H8)(19)-ν(C17-C19)(12)+ω(NH2)(7)-γ(C6-O10)(5)+t(CH2)(5)-ω(CO2H)(4) | γ(C-H) 10 a |
834(0.1,0)0.75 835(0.1,0)0.17 | 839 m | 836 m | γ(C5-H9)(24)+γ(C4-H8)(12)-γ(C2-H7)(7)+ν(C17-C19)(6) +ω(CO2H)(5)+α(C3-C14-C17)(5)-γ(C6-O10)(4)-t(CH2)(4)-ν(C17-N22)(4)-δ1(CNCH)(3) | α(R) |
862(3,2)0.17 862(3.5,0)0.75 | 865 m | 864 m | ω(NH2)(37)+ν(C17-N22)(17)+ν(C14-C17)(10)+ω(CO2H)(6)+τ(C19-O20)(5)-δ3(CNCH)(5)+α(R)(4)-δ2(CNCH)(4) | ω(NH2) |
876(0.3,0)0.75 879(0.3,0)0.59 | 865 m | 864 m | γ(C2-H7)(63)-ϕ(R)(18)-γ(C3-C14)(5)-γ(C1-O12)(4)+γ(C4-H8)(3) | γ(C-H) 5 |
908(0.6,0)0.74 909(1.3,2)0.03 | 905 w | - | t(CH2)(30)-ω(NH2)(16)-τ(C19-O20)(15)+ν(C3-C4)(4)-δ1(CNCH)(4)+α(R)(4)+ν(C14-C17)(3)-α(R)(3) | t(CH2) |
933(2.4,0)0.75 934(1,0)0.71 | 943 s | 943 ms | τ(C19-O20)(72)-ω(NH2)(12)+t(CH2)(7) | τ(C-OH) |
924(0.3,0)0.75 925(0,0)0.39 | 918 m | 917 ms | γ(C4-H8)(46)-γ(C5-H9)(37)-ϕ(R)(10) | γ(C-H) 17 b |
963(0,1)0.20 963(0.6,0)0.75 | - | 960 vw | ν(C3-C14)(12)- ν(C1-O12)(11)+α(R)(14)+ ν(C2-C3)(9)-t(CH2)(8)+ ν(C3-C4)(6)+β(C5-H9)(5)-ν(C17-N22)(4) | ν(Cph-C) |
1006(0.5,0)0.75 1006(2,1)0.28 | 982 s 1016 w | 982 s | ν(C14-C17)(25)-t(CH2)(12)-ω(NH2)(11)-ν(C19=O20)(10)-ν(C17-C19)(8)+δ3(CNCH)(7)-ν(C3-C4)(4)-ρ(CH2)(4) | ν(C14-C17) |
1075(0.1,100)0.57 1075(0.3,0)0.75 | 1063 ms | 1060 s | ν(C17-N22)(39)-ν(C14-C17)(11)-ρ(CH2)(6)+ ν(C2-C3)(5)-ρ(NH2)(5)-δ(C17-H)(4)-t(CH2)(4)-ρ(CO2H)(4)+δ1(CNCH)(3) | ν(C17-N) |
1117(1.6,0)0.75 1117(0,1)0.56 | 1119 vs | 1119 m | α(C1-O12-H13)(19)-α(R)(17)- ν(C1-O12)(13)-β(C4-H8)(12)- ν(C1-C2)(6) +ν(C4-C5)(5)-ν(C3-C4)(4)+ν(C6-O10)(3) | β(C-H) 18 b |
1143(1,0)0.75 1143(0.1,4)0.20 | 1137 w | 1135 w | β(C5-H9)(19)+ν(C4-C5)(11)-ν(C3-C14)(10)-ρ(NH2)(8)+ ν(C1-O12)(7)-α(C1-O12-H13)(7)-β(C4-H8)(5)-ν(C19=O20)(3) | β(C-H) 18 a |
1156(0.2,0)0.75 1156(0,0)0.07 | 1160 w | 1158 m | ρ(NH2)(28)-α(C1-O12-H13)(8)+δ(C17-H)(7)+δ′(C17-H)(7)-ρ(CH2)(6)-β(C4-H8)(6)-ω(CH2)(5)+β(C5-H9)(5)+ν(C19=O20)(4)+ν(C17-N22)(4) | ρ(NH2) |
1192(0,2)0.08 1196(2.3,0)0.75 | 1188 sh | 1181 w | α(C1-O12-H13)(21)-β(C2-H7)(15)-α(C6-O10-H11)(11)-ν(C3-C14)(7)+ν(C2-C3)(6) + ν(C1-C6)(5)-ν(C5-C6)(5)- ν(C1-C2)(4)+ ν(C4-C5)(4)+ν(C19=O20)(3)-ρ(CH2)(3) | α(C-O-H) |
1202(1.3,0)0.69 1202(0.5,2)0.14 | - | 1197 w | ν(C19=O20)(33)+ρ(CO2H)(11)-ν(C17-C19)(10)-ρ(NH2)(7)+α(C19-O21-H22)(6)+δ3(CNCH)(5)-ρ(CH2)(4)+α(C6-O10-H11)(3) | ν(C19-O(H)) |
1222(6,0)0.75 1223(0,4)0.25 | 1202 m | - | α(C6-O10-H11)(33)-β(C2-H7)(13)-β(C5-H9)(12)+ν(C5-C6)(12)-ν(C3-C14)(7)+ν(C3-C4)(5) | α(C-O-H) |
1233(0.4,2)0.69 1233(3.5,1)0.75 | 1229 ms | 1227 w | ρ(CH2)(24)+δ(C17-H)(16)-δ′(C17-H)(12)+ν(C19=O20)(7)+ ν(C3-C4)(5)+ν(C17-N22)(5)-ω(CH2)(5)-ν(C2-C3)(4) | ρ(CH2) |
1261(0.5,5)0.71 1262(5.8,0)0.75 | 1249 s | 1246 w | ν(C6-O10)(41)-α(R)(19)+β(C4-H8)(6)-α(C1-O12-H13)(5)-ν(C4-C5)(5)- ν(C1-C6)(4)+β(C5-H9)(3) | ν(C-OH) |
1274(3.8,0)0.72 1274(0.4,8)0.10 | δ(C17-H)(23)-ω(CH2)(13)-ρ(CH2)(12)-ρ(NH2)(10)-ν(C14-C17)(9)-δ′(C17-H)(6)+ν(C17-C19)(5)+δ2(CNCH)(5) | δ(C17-H) | ||
1288(0.8,13)0.04 1289(7.2,0)0.74 | 1281 | - | β(C2-H7)(21)- ν(C1-O12)(20)+ ν(C4-C5)(10)+β(C4-H8)(9)+ ν(C1-C6)(9)+ν(C2-C3)(7)-ν(C3-C14)(6)-ν(C6-O10)(4)-α(R)(4)-ω(CH2)(3) | ν(C-OH) |
1373(0.1,4)0.10 1374(1.7,1)0.75 | - | - | ν(C2-C3)(11)-α(C1-O12-H13)(11)+ω(CH2)(9)-β(C5-H9)(8)-ν(C3-C4)(8)+ρ(CH2)(7)+ν(C4-C5)(6)+ ν(C1-C6)(5)- ν(C1-C2)(4)-β(C2-H7)(4)-ν(C5-C6)(4)-δ′(C17-H)(4) | β(C-H) (3) |
1338(0.8,0)0.75 1338(0,10)0.44 | 1351 m | 1345 m | ω(CH2)(46)+δ(C17-H)(13)+β(C4-H8)(6)-ν(C3-C14) (6)+β(C5-H9)(5)-α(C19-O21-H22)(4)-ρ(CH2)(3)+ α(C6-O10-H11)(3) | ω(CH2) |
1361(0,5)0.41 1362(3.3,1)0.75 | 1362 sh | 1358 ms | δ′(C17-H)(29)-α(C6-O10-H11)(10)-ρ(NH2)(9)+δ(C17-H)(8)+ν(C3-C4)(6)+ν(C1-C2)(5)-β(C4-H8)(4)+ν(C5-C6)(3) | δ′(C17-H) |
1389(2.3,0)0.51 1389(0,12)0.11 | - | 1386 vw | δ′(C17-H)(20)- ν(C1-C2)(12)-ν(C3-C4)(10)+α(C6-O10-H11)(9)-ν(C5-C6)(6)+β(C4-H8)(6)-ρ(NH2)(5)+ ρ(CH2)(5)+ ν(C1-O12)(4)+ν(C1-C6)(4)+ν(C4-C5)(3) | ν(R) 14 |
1410(3,1)0.75 1414 (21,3)0.11 | 1404 ms | 1406 m | α(C19-O21-H22)(60)-ν(C19=O20)(14)+ν(C19-O21)(6)-ρ(CO2H)(4) | α(C-O-H) |
1448(0.9,4)0.17 1449(8.8,0)0.75 | 1439 m | 1436 m | ν(C1-C2)(18)-ν(C4-C5)(17)-β(C4-H8)(9)+ν(C2-C3)(8)+β(C5-H9)(7)- ν(C1-O12)(7)-β(C3-C14)(5)+ρ(CH2)(5)+β(C6-O10)(5)-β(CH2)(4)+β(C1-O12)(3) | ν(R) 19 b |
1455(0.1,1)0.75 1455(0.8,4)0.74 | 1460 m | 1458 w | β(CH2)(89)+α(C3-C14-C17)(3) | βs(CH2) |
1529(0.6,2)0.71 1530(5.5,0)0.75 | 1527 m | 1531 w | β(C2-H7)(16)-ν(C5-C6)(12)-β(C5-H9)(11)-β(C4-H8)(11)- ν(C1-C6)(10)+ν(C2-C3)(9)+ν(C6-O10)(8)+ν(C3-C4)(7)-ν(C3-C14)(4)+β(C1-O12)(4) | ν(R) 19 a |
1606(1.8,1)0.75 1606(0.1,7)0.58 | 1606 w | 1606 s | ν(C1-C6)(20)-ν(C5-C6)(19)+ν(C3-C4)(13)-ν(C2-C3)(10)+βs(NH2)(10)-α(R)(6)+β(C6-O10)(5) | ν(R) 8 b |
1609(0,0)0.58 1610(2.9,0)0.75 | 1606 w | 1606 s | βs(NH2)(71)+ν(C5-C6)(7)+ν(C2-C3)(4)-1(3) | βs(NH2) |
1617(0,1)0.75 1617(2.8,0)0.75 | 1606 w | 1606 s | ν(C1-C2)(20)+ν(C4-C5)(16)+βs(NH2)(11)-α(R)(8)- ν(C1-C6)(7)-ν(C3-C4)(7)-ν(C5-C6)(5)+β(C4-H8)(4)-β(C2-H7)(4)-β(C5-H9)(4)+β(C1-O12)(3)-ν(C2-C3)(3) | ν(R) 8 a |
1741(4.1,5)0.19 1743(29.6,0)0.75 | - | 1678 w | ν(C19=O21)(74)-βs(CO2H)(8)-α(C19-O21-H22)(6)-ν(C17-C19)(5)-ν(C19-O20)(3) | ν(C=O) |
2927(0.1,11)0.62 2927(0.5,1)0.73 | 2928 w | 2928 s | ν(C17-H18)(50)-ν(C14-H16)(30)-ν(C14-H15)(20) | νs(CH2) |
2939(1.1,9)0.75 2939(0.9,14)0.02 | 2928 w | 2928 s | ν(C17-H18)(50)+ν(C14-H16)(28)+ν(C14-H15)(22) | ν(C-H) |
2979(0.4,3)0.75 2979(0,1)0.45 | 2978 w | 2979 s | ν(C14-H15)(58)-ν(C14-H16)(42) | νas(CH2) |
3038(0.1,4)0.41 3038(0.6,1)0.64 | 3042 m | 3033 ms | ν(C2-H7)(59)-ν(C4-H8)(36)+ν(C5-H9)(5) | ν(C-H) 7 b |
3059(0.1,0)0.74 3059 (0,5)0.27 | 3042 m | - | ν(C4-H8)(48)+ν(C2-H7)(40)-ν(C5-H9)(11) | ν(C-H) 13 |
3068(0.5,0)0.72 3069(0,13)0.24 | 3061 m | 3072 m | ν(C5-H9)(83)+ν(C4-H8)(16) | ν(C-H) 2 |
2836(0.5,6)0.12 2836(28.2,0)0.73 | 2770 s | - | ν(O20-H24)(100) | ν(O-H) |
3278(2.4,1)0.72 3278(0.1,13)0.14 | - | - | ν(N22-H23)(79)+ν(N22-H25)(20) | νs(NH2) |
- | 3216 w | 3206 w | - | 1st overtone of 1606 |
3374(0,16)0.38 3374(2.1,0)0.72 | 3370 m | 3362 vw | ν(N22-H25)(79)-ν(N22-H23)(21) | νas(NH2) |
3311(0.4,10)0.12 3311(6,1)0.75 | - | - | ν(O10-H11)(100) | ν(O-H) |
3051(0,28)0.24 3042(100,0)0.75 | 3045 m | 3046 ms | ν(O12-H13)(100) | ν(O-H) |
Observed | Computed | ||||
---|---|---|---|---|---|
IR | Raman | C-I | D1 | D2 | D3 |
2770 s | - | 2870 | 2942/2943 | 2939/2919 | 2758/2949 |
3045 m | - | 3048/3052 | 3045 | 3174 | |
3216 | 3206 m | - | 1606 | 3226 | - |
3370 m | 3362 vw | 3378/3326 | 3366/3366 | 3326/3326 | 3381/3336/3325 |
Bioactive Acceptors | OH Form | ZI Form |
---|---|---|
GPCR ligand | −0.04 | −0.22 |
Ion channel modulator | 0.39 | 0.03 |
Kinase inhibitor | −0.60 | −0.57 |
Nuclear receptor ligand | −0.17 | −0.52 |
Protease inhibitor | −0.01 | −0.61 |
Enzyme inhibitor | 0.29 | −0.15 |
Conformers | Energy in Unit (eV) | Electronegativity (χ) | Chemical Hardness (η) | ||
---|---|---|---|---|---|
HOMO | LUMO | ΔE | |||
C-I | −5.8276 | −0.9630 | 4.8646 | 3.3953 | 2.4323 |
D1 | −5.7966 | −0.9388 | 4.8578 | 3.3677 | 2.4289 |
D2 | −6.2115 | −0.7170 | 5.4945 | 3.4643 | 2.7473 |
Absorption Bands | Excitation Energies (eV) | Oscillator Strength (f) | * Contributions | |
---|---|---|---|---|
λexp (nm) | λcal (nm) | |||
271.6 | 259.2 | 4.7837 | 0.0636 | H-1L+1% H-1L+3 11% HL86% |
235 $ | 246.7 | 5.0252 | 0.0088 | HL+1 62% HL+2 38% |
225–215 $ | 241.6 | 5.1327 | 0.0108 | HL+1 33% HL+2 60% HL+3 7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, R.K.; Yadav, R.A.; Kostova, I. Structural, Conformational and Spectroscopic Investigations of a Biologically Active Compound: L-Dopa. Appl. Sci. 2023, 13, 13336. https://doi.org/10.3390/app132413336
Yadav RK, Yadav RA, Kostova I. Structural, Conformational and Spectroscopic Investigations of a Biologically Active Compound: L-Dopa. Applied Sciences. 2023; 13(24):13336. https://doi.org/10.3390/app132413336
Chicago/Turabian StyleYadav, Rohit Kumar, Ram Anjore Yadav, and Irena Kostova. 2023. "Structural, Conformational and Spectroscopic Investigations of a Biologically Active Compound: L-Dopa" Applied Sciences 13, no. 24: 13336. https://doi.org/10.3390/app132413336
APA StyleYadav, R. K., Yadav, R. A., & Kostova, I. (2023). Structural, Conformational and Spectroscopic Investigations of a Biologically Active Compound: L-Dopa. Applied Sciences, 13(24), 13336. https://doi.org/10.3390/app132413336