Kinematic Precise Point Positioning Performance-Based Cost-Effective Robot Localization System
<p>The architecture of CPS-based mobile robots for localization function.</p> "> Figure 2
<p>Study scope.</p> "> Figure 3
<p>The study’s observed kinematic track (KSU campus), Riyadh, KSA (8 October 2022).</p> "> Figure 4
<p>The rover setup for the study’s observed track (KSU campus), Riyadh, KSA (8 October 2022).</p> "> Figure 5
<p>Kinematic PPP coordinate differences using (<b>a</b>) GPS single-frequency observations, (<b>b</b>) GLONASS single-frequency observations, (<b>c</b>) mixed GPS/GLONASS single-frequency observations, (<b>d</b>) GPS dual-frequency observations, (<b>e</b>) GLONASS dual-frequency observations, and (<b>f</b>) mixed GPS/GLONASS dual-frequency observations.</p> "> Figure 5 Cont.
<p>Kinematic PPP coordinate differences using (<b>a</b>) GPS single-frequency observations, (<b>b</b>) GLONASS single-frequency observations, (<b>c</b>) mixed GPS/GLONASS single-frequency observations, (<b>d</b>) GPS dual-frequency observations, (<b>e</b>) GLONASS dual-frequency observations, and (<b>f</b>) mixed GPS/GLONASS dual-frequency observations.</p> "> Figure 6
<p>Kinematic PPP RMSE from GPS, GLONASS, and mixed GPS/GLONASS using (<b>a</b>) single-frequency observations, and (<b>b</b>) dual-frequency observations.</p> ">
Abstract
:1. Introduction
2. Test Study Scope
3. Study Results
3.1. Kinematic PPP Positioning Accuracy Using Single-Frequency Observations
3.2. Kinematic PPP Positioning Accuracy Using Dual-Frequency Observations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y. Research on Real-Time High Precision BeiDou Positioning Service System. Cehui Xuebao/Acta Geod. Cartogr. Sin. 2018, 47, 1293. [Google Scholar] [CrossRef]
- Pacis, E.B.; Everett, H.R.; Farrington, N.; Bruemmer, D.J. Enhancing Functionality and Autonomy in Man-Portable Robots. In Unmanned Ground Vehicle Technology VI; SPIE: Bellingham, VA, USA, 2004; Volume 5422, pp. 355–366. [Google Scholar]
- Zhou, J.; Shi, J.; Qu, X. Statistical Characteristics of Landmark-Based Localization Performance. Int. J. Adv. Manuf. Technol. 2010, 46, 1215–1227. [Google Scholar] [CrossRef]
- Miljković, Z.; Vuković, N.; Mitić, M.; Babić, B. New Hybrid Vision-Based Control Approach for Automated Guided Vehicles. Int. J. Adv. Manuf. Technol. 2013, 66, 231–249. [Google Scholar] [CrossRef]
- Anitha Kumari, S.; Dost, A.B.; Bhadani, S. Design and Automation of Hybrid Quadruped Mobile Robot for Industry 4.0 Implementation. In New Horizons for Industry 4.0 in Modern Business; Nayyar, A., Naved, M., Rameshwar, R., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 171–188. ISBN 978-3-031-20443-2. [Google Scholar]
- Ismail, K.; Liu, R.; Zheng, J.; Yuen, C.; Guan, Y.L.; Tan, U.X. Mobile Robot Localization Based on Low-Cost LTE and Odometry in GPS-Denied Outdoor Environment. In Proceedings of the IEEE International Conference on Robotics and Biomimetics, ROBIO 2019, Dali, China, 6–8 December 2019; pp. 2338–2343. [Google Scholar]
- Wang, Z.; Mastrogiacomo, L.; Franceschini, F.; Maropoulos, P. Experimental Comparison of Dynamic Tracking Performance of IGPS and Laser Tracker. Int. J. Adv. Manuf. Technol. 2011, 56, 205–213. [Google Scholar] [CrossRef]
- Durrant-Whyte, H.; Bailey, T. Simultaneous Localization and Mapping: Part I. IEEE Robot. Autom. Mag. 2006, 13, 99–108. [Google Scholar] [CrossRef]
- Bongard, J. Probabilistic Robotics. Sebastian Thrun, Wolfram Burgard, and Dieter Fox. (2005, MIT Press.) 647 Pages. Artif. Life 2008, 14, 227–229. [Google Scholar] [CrossRef]
- Fox, D.; Burgard, W.; Thrun, S. Markov Localization for Mobile Robots in Dynamic Environments. J. Artif. Intell. Res. 1999, 11, 391–427. [Google Scholar] [CrossRef]
- Zhou, T.; Lian, B.; Yang, S.; Zhang, Y.; Liu, Y. Improved GNSS Cooperation Positioning Algorithm for Indoor Localization. Comput. Mater. Contin. 2018, 56, 225–245. [Google Scholar] [CrossRef]
- Panigrahi, P.K.; Bisoy, S.K. Localization Strategies for Autonomous Mobile Robots: A Review. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 6019–6039. [Google Scholar] [CrossRef]
- Ge, G.; Qin, Z.; Chen, X. Integrating WSN and Laser SLAM for Mobile Robot Indoor Localization. Comput. Mater. Contin. 2023, 74, 6351–6369. [Google Scholar] [CrossRef]
- Cai, G.S.; Lin, H.Y.; Kao, S.F. Mobile Robot Localization Using GPS, IMU and Visual Odometry. In Proceedings of the 2019 International Automatic Control Conference, CACS 2019, Keelung, Taiwan, 13–16 November 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Woo, A.; Fidan, B.; Melek, W.W. Localization for Autonomous Driving. In Handbook of Position Location; Wiley: Hoboken, NJ, USA, 2019; pp. 1051–1087. [Google Scholar]
- Jwo, D.J.; Wu, J.C.; Ho, K.L. Support Vector Machine Assisted GPS Navigation in Limited Satellite Visibility. Comput. Mater. Contin. 2021, 69, 555–574. [Google Scholar] [CrossRef]
- Elsheikh, M.; Abdelfatah, W.; Nourledin, A.; Iqbal, U.; Korenberg, M. Low-Cost Real-Time PPP/INS Integration for Automated Land Vehicles. Sensors 2019, 19, 4896. [Google Scholar] [CrossRef] [PubMed]
- Jwo, D.J. Estimator-Based GPS Attitude and Angular Velocity Determination. Comput. Mater. Contin. 2022, 71, 6107–6124. [Google Scholar] [CrossRef]
- Jurišica, L.; Duchoň, F.; Kaštan, D.; Babinec, A. High Precision GNSS Guidance for Field Mobile Robots. Int. J. Adv. Robot. Syst. 2012, 9, 169. [Google Scholar] [CrossRef]
- Liu, S.; Wang, K.; Abel, D. Robust State and Protection-Level Estimation within Tightly Coupled GNSS/INS Navigation System. GPS Solut. 2023, 27, 111. [Google Scholar] [CrossRef]
- Pattinson, M.; Tiwari, S.; Zheng, Y.; Campo-cossio, M.; Arnau, R.; Obregón, D.; Ansuategui, A.; Tubio, C.; Lluvia, I.; Rey, O.; et al. GNSS Precise Point Sositioning for Autonomous Robot Navigation in Greenhouse Environment for Integrated Pest Monitoring. In Proceedings of the 12th Annual Baška GNSS Conference, Krk Island, Croatia, 6–9 May 2018; pp. 51–68. [Google Scholar]
- Wu, B.F.; Lee, T.T.; Chang, H.H.; Jiang, J.J.; Lien, C.N.; Liao, T.Y.; Perng, J.W. GPS Navigation Based Autonomous Driving System Design for Intelligent Vehicles. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Montreal, QC, Canada, 7–10 October 2007; pp. 3294–3299. [Google Scholar]
- Toapanta, A.; Zea, D.; Tasiguano Pozo, C.; Vera, M.G. Low-Cost RTK System for Positioning Error Correction in Autonomous Vehicles. In Innovation and Research—A Driving Force for Socio-Econo-Technological Development; Springer: Berlin/Heidelberg, Germany, 2022; Volume 511 LNNS, pp. 270–282. [Google Scholar]
- Park, S.; Ryu, S.; Lim, J.; Sup, Y. A Real-Time High-Speed Autonomous Driving Based on a Low-Cost RTK-GPS. J. Real-Time Image Process. 2021, 18, 1321–1330. [Google Scholar] [CrossRef]
- Melita, C.D.; Muscato, G.; Poncelet, M. A Simulation Environment for an Augmented Global Navigation Satellite System Assisted Autonomous Robotic Lawn-Mower. J. Intell. Robot. Syst. Theory Appl. 2013, 71, 127–142. [Google Scholar] [CrossRef]
- Zhang, G.; Hsu, L.T. A New Path Planning Algorithm Using a GNSS Localization Error Map for UAVs in an Urban Area. J. Intell. Robot. Syst. Theory Appl. 2019, 94, 219–235. [Google Scholar] [CrossRef]
- Zhang, G.; Wen, W.; Hsu, L.-T. Rectification of GNSS-Based Collaborative Positioning Using 3D Building Models in Urban Areas. GPS Solut. 2019, 23, 83. [Google Scholar] [CrossRef]
- Bisnath, S.; Gao, Y. Current State of Precise Point Positioning and Future Prospects and Limitations. In Proceedings of the International Association of Geodesy Symposia, Perugia, Italy, 2–13 July 2007; Sideris, M.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 133, pp. 615–623. [Google Scholar]
- Cai, C. Precise Point Positioning Using Dual-Frequency GPS and GLONASS Measurements. Master’s Thesis, University of Calgary, Calgary, AB, USA, 2009. [Google Scholar]
- Soycan, M. A Quality Evaluation of Precise Point Positioning within the Bernese GPS Software Version 5.0. Arab. J. Sci. Eng. 2012, 37, 147–162. [Google Scholar] [CrossRef]
- Ding, W.; Tan, B.; Chen, Y.; Teferle, F.N.; Yuan, Y. Evaluation of a Regional Real-Time Precise Positioning System Based on GPS/BeiDou Observations in Australia. Adv. Sp. Res. 2018, 61, 951–961. [Google Scholar] [CrossRef]
- Du, Y.; Wang, J.; Rizos, C.; El-Mowafy, A. Vulnerabilities and Integrity of Precise Point Positioning for Intelligent Transport Systems: Overview and Analysis. Satell. Navig. 2021, 2, 3. [Google Scholar] [CrossRef]
- Yurdakul, Ö. Performance Investigation of GLONASS in the Static PPP Technique with Independent Short Measurement Times Using Online Processing Services. Surv. Rev. 2023, 55, 567–577. [Google Scholar] [CrossRef]
- Morallo, N.T. Vehicle Tracker System Design Based on GSM and GPS Interface Using Arduino as Platform. Indones. J. Electr. Eng. Comput. Sci. 2021, 23, 258–264. [Google Scholar] [CrossRef]
- Erol, S. A Comparative Study for Performance Analysis of Kinematic Multi-Constellation Gnss Ppp in Dynamic Environment. J. Mar. Sci. Eng. 2020, 8, 514. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Wang, N.; Wang, Z. Real-Time GNSS Precise Point Positioning for Low-Cost Smart Devices. GPS Solut. 2021, 25, 69. [Google Scholar] [CrossRef]
- Federal Ministry for Economic Affairs and Energy. Reference Architectural Model Industrie 4.0 (RAMI4.0)—An Introduction. Standardization & Reference Architecture Plattform Industrie 4.0; Federal Ministry for Economic Affairs and Energy: Berlin, Germany, 2018. [Google Scholar]
- Standardization Council Industry 4.0. German Standardization Roadmap Industrie 4.0; Version 4; Standardization Council Industry 4.0: Berlin, Germany, 2020; p. 138. [Google Scholar]
- Chen, J.; Yang, J.; Zhou, H.; Xiang, H.; Zhu, Z.; Li, Y.; Lee, C.H.; Xu, G. CPS Modeling of CNC Machine Tool Work Processes Using an Instruction-Domain Based Approach. Engineering 2015, 1, 247–260. [Google Scholar] [CrossRef]
- Clauer, D.; Fottner, J.; Rauch, E.; Prüglmeier, M. Usage of Autonomous Mobile Robots Outdoors—An Axiomatic Design Approach. Procedia CIRP 2021, 96, 242–247. [Google Scholar] [CrossRef]
- Farah, A. Effect Analysis of GPS Observation Type and Duration on Convergence Behavior of Static PPP. J. Geomat. 2013, 7, 153–157. [Google Scholar]
- Farah, A. Assessment Study of Static-PPP Convergence Behaviour Using GPS, GLONASS and Mixed GPS/GLONASS Observations. Artif. Satell. 2014, 49, 55–61. [Google Scholar] [CrossRef]
- Farah, A. Accuracy Evaluation for Online Precise Point Positioning Services Precise Point Positioning. J. Geomat. 2016, 10, 12–18. [Google Scholar]
- Farah, A. Behavior of Broadcast Ionospheric-Delay Models from GPS, Beidou, and Galileo Systems. Artif. Satell. 2020, 55, 61–76. [Google Scholar] [CrossRef]
- Farah, A. Static-PPP Behaviour Using GPS, GLONASS and Mixed GPS/GLONASS Single/Dual Observations under Different Satellites Geometry Processed by CSRS-PPP Version-3 Service (Riyadh, KSA). J. Geomat. 2021, 15, 160–165. [Google Scholar]
- Farah, A. Efficient Cost-Effective Static-PPP Using Mixed GPS/Glonass Single-Frequency Observations (KSA). Artif. Satell. 2022, 57, 1–17. [Google Scholar] [CrossRef]
- Farah, A. Static-PPP Performance Using Multi-GNSS (Single, Dual and Triple) Frequency Observations. J. Geomat. 2023, 17, 101–108. [Google Scholar] [CrossRef]
- Martín, A.; Anquela, A.B.; Berné, J.L.; Sanmartin, M. Kinematic GNSS-PPP Results from Various Software Packages and Raw Data Configurations. Sci. Res. Essays 2012, 7, 419–431. [Google Scholar] [CrossRef]
- Marreiros, P.; Joana Fernandes, M.; Bastos, L. Evaluating the Feasibility of GPS Measurements of SSH on Board a Ship along the Portuguese West Coast. Adv. Sp. Res. 2013, 51, 1492–1501. [Google Scholar] [CrossRef]
- Alkan, R.M.; Öcalan, T. Usability of the GPS Precise Point Positioning Technique in Marine Applications. J. Navig. 2013, 66, 579–588. [Google Scholar] [CrossRef]
- Abdallah, A.; Schwieger, V. Kinematic Precise Point Positioning (PPP) Solution for Hydrographic Applications. In Proceedings of the FIG Working Week 2015—From the Wisdom of the Ages to the Challenges of the Modern World, Sofia, Bulgaria, 17–21 May 2015; pp. 17–21. [Google Scholar]
- Ju, B.; Jiang, W.; Tao, J.; Hu, J.; Xi, R.; Ma, J.; Liu, J. Performance Evaluation of GNSS Kinematic PPP and PPP-IAR in Structural Health Monitoring of Bridge: Case Studies. Measurement 2022, 203, 112011. [Google Scholar] [CrossRef]
- Gurturk, M.; Soycan, M. Accuracy Assessment of Kinematic PPP versus PPK for GNSS Flights Data Processing. Surv. Rev. 2022, 54, 48–56. [Google Scholar] [CrossRef]
- KSU King Saud University. Available online: https://www.ksu.edu.sa/ (accessed on 10 January 2023).
- SOKKIA. SOKKIA GRX1 MANUAL. Available online: https://www.manualslib.com/manual/1282897/Sokkia-Grx1.html (accessed on 3 February 2023).
- NET_Diff. The Online PPP/RTK Processing Service of Net_Diff. Available online: http://129.211.69.159:8090/Main.aspx (accessed on 10 January 2023).
- TEQC|Software|UNAVCO. Available online: https://www.unavco.org/software/data-processing/teqc/teqc.html (accessed on 20 March 2023).
- Hamed, M.; Abdallah, A.; Farah, A. Kinematic PPP Using Mixed GPS/Glonass Single-Frequency Observations. Artif. Satell. 2019, 54, 97–112. [Google Scholar] [CrossRef]
- Gurturk, M.; Soycan, M. The Effects of Various Parameters on the Accuracy of Kinematic PPP in Different Platforms. Sigma J. Eng. Nat. Sci. 2022, 40, 268–280. [Google Scholar] [CrossRef]
System | Average No. Visible Satellites | Average PDOP |
---|---|---|
GPS | 9 | 1.85 |
GLONASS | 6 | 3.41 |
Mixed GPS/GLONASS | 15 | 1.39 |
PPP Processing Parameters | Values |
---|---|
Reference System | ITRF2008 |
Coordinate format | ENH (UTM) |
Satellite orbit and clock ephemeris source | CODE final 30 s for clock 15 min for orbits |
Satellite phase center offset | IGS ANTEX |
Receiver phase center offset | IGS ANTEX |
Tropospheric model | Saastamoinen |
Meteorological model | GPT |
Mapping function | Global Mapping Function (GMF) |
Ionospheric model | Final Global Ionospheric Maps (GIM) from IGS |
Mask angle | 10° |
Observation type | Code + Phase |
System | GPS/GLONASS/BeiDou/Galileo/QZSS/IRNSS |
Frequency | Single/Dual/Triple |
Processing mode | Static |
Estimation method | Kalman Filter |
Obs. Type | System | RMSE (m) | 3D Position RMSE (m) | ||
---|---|---|---|---|---|
Lat. | Long. | Height | |||
Single Frequency | GPS | 0.056 | 0.125 | 0.157 | 0.208 |
GLONASS | 0.129 | 0.314 | 0.258 | 0.426 | |
GPS/GLONASS | 0.039 | 0.071 | 0.104 | 0.132 | |
Dual Frequency | GPS | 0.031 | 0.074 | 0.078 | 0.112 |
GLONASS | 0.044 | 0.141 | 0.122 | 0.192 | |
GPS/GLONASS | 0.021 | 0.069 | 0.057 | 0.092 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farah, A.; Tlija, M. Kinematic Precise Point Positioning Performance-Based Cost-Effective Robot Localization System. Appl. Sci. 2023, 13, 10408. https://doi.org/10.3390/app131810408
Farah A, Tlija M. Kinematic Precise Point Positioning Performance-Based Cost-Effective Robot Localization System. Applied Sciences. 2023; 13(18):10408. https://doi.org/10.3390/app131810408
Chicago/Turabian StyleFarah, Ashraf, and Mehdi Tlija. 2023. "Kinematic Precise Point Positioning Performance-Based Cost-Effective Robot Localization System" Applied Sciences 13, no. 18: 10408. https://doi.org/10.3390/app131810408