Efficient Design of Thermoelastic Structures Using a Krylov Subspace Preconditioner and Parallel Sensitivity Computation
<p>Sketch map of the regime of thermoelastic damping (TED). As the clamped-clamped microbeam resonator vibrates in a purely flexural mode, one side along the thickness of the beam stretches, which causes the temperature of the region to decrease. The temperature of the compressed side increases, causing a temperature gradient along the thickness of the beam. The irreversible heat flux induced by the temperature gradient causes the dissipation of energy.</p> "> Figure 2
<p>Flowchart of the topology optimization process.</p> "> Figure 3
<p>Flowchart of the modal repeated analysis method.</p> "> Figure 4
<p>Sketch map of the parallel method of the master-slave pattern.</p> "> Figure 5
<p>Topology optimization results for a clamped-clamped microbeam resonator. (<b>a</b>) The original structure. (<b>b</b>) The optimization result where the traditional subspace method is implemented in the finite element analysis step. (<b>c</b>) The optimization result where the proposed method is implemented in the finite element analysis step.</p> "> Figure 6
<p>Topology optimization results for a clamped-free microbeam resonator. (<b>a</b>) The original structure. (<b>b</b>) The optimization result where the traditional subspace method is implemented in the finite element analysis step. (<b>c</b>) The optimization result where the proposed method is implemented in the finite element analysis step.</p> ">
Abstract
:1. Introduction
2. Statement of the Modal Modification Problem
2.1. Governing Equation
2.2. Topology Optimization
3. Efficient Modal Modification Analysis Method
3.1. Neumann Series Expansion- and Reduced Basis-Based Preconditioner Method
Algorithm 1: Neumann basis procedure |
Algorithm 2: GSO procedure |
3.1.1. Procedure of the Proposed Preconditioner Method
3.1.2. Convergence Condition and Relative Computational Effort of the Neumann Series Expansion
3.2. Parallel Sensitivity Analysis Technique
Algorithm 3: Master-slave parallel procedure |
4. Results and Discussion
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, J.; Liu, S.; Zhang, L.; Yang, B.; Shu, L.; Yang, Y.; Ren, M.; Wang, Y.; Chen, J.; Chen, W. Smart textile-integrated microelectronic systems for wearable applications. Adv. Mater. 2020, 32, 1901958. [Google Scholar] [CrossRef]
- Kim, B.; Candler, R.N.; Hopcroft, M.A.; Agarwal, M.; Park, W.T.; Kenny, T.W. Frequency stability of wafer-scale film encapsulated silicon based MEMS resonators. Sens. Actuators Phys. 2007, 136, 125–131. [Google Scholar] [CrossRef]
- Sandberg, R.; Mølhave, K.; Boisen, A.; Svendsen, W. Effect of gold coating on the Q-factor of a resonant cantilever. J. Micromech. Microeng. 2005, 15, 2249–2253. [Google Scholar] [CrossRef]
- Hao, Q.; Chen, G.; Jeng, M.S. Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores. J. Appl. Phys. 2009, 106, 114321. [Google Scholar] [CrossRef]
- Biot, M.A. Thermoelasticity and Irreversible Thermodynamics. J. Appl. Phys. 1956, 27, 240–253. [Google Scholar] [CrossRef]
- Lifshitz, R.; Roukes, M.L. Thermoelastic damping in micro-and nanomechanical systems. Phys. Rev. B 2000, 61, 5600. [Google Scholar] [CrossRef]
- Guo, X.; Yi, Y.B.; Pourkamali, S. A finite element analysis of thermoelastic damping in vented MEMS beam resonators. Int. J. Mech. Sci. 2013, 74, 73–82. [Google Scholar] [CrossRef]
- Sherief, H.H.; Hussein, E.M. Fundamental solution of thermoelasticity with two relaxation times for an infinite spherically symmetric space. Z. Angew. Math. Phys. 2017, 68, 1–14. [Google Scholar] [CrossRef]
- Sherief, H.H.; Hussein, E.M. Contour integration solution for a thermoelastic problem of a spherical cavity. Appl. Math. Comput. 2018, 320, 557–571. [Google Scholar] [CrossRef]
- Hussein, E.M. Mathematical model for thermoelastic Porous spherical region problems. Comput. Therm. Sci. Int. J. 2020, 12. [Google Scholar] [CrossRef]
- Hussein, E.M. Mathematical model for thermo-poroelastic plate saturated with fluid. Spec. Top. Rev. Porous Media Int. J. 2020, 11. [Google Scholar] [CrossRef]
- Fu, H.; Nan, K.; Bai, W.; Huang, W.; Bai, K.; Lu, L.; Zhou, C.; Liu, Y.; Liu, F.; Wang, J. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nat. Mater. 2018, 17, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Zhang, W.; Quan, D.; Shi, G.; Tang, L.; Hou, Y.; Breitkopf, P.; Zhu, J.; Gao, T. From Topology Optimization Design to Additive Manufacturing: Today’s Success and Tomorrow’s Roadmap. Arch. Comput. Methods Eng. 2019, 27, 805–830. [Google Scholar] [CrossRef]
- Fu, Y.; Li, L.; Duan, K.; Hu, Y. A thermodynamic design methodology for achieving ultra-high frequency–quality product of microresonators. Thin-Walled Struct. 2021, 166, 108104. [Google Scholar] [CrossRef]
- Lohan, D.J.; Dede, E.M.; Allison, J.T. Topology optimization for heat conduction using generative design algorithms. Struct. Multidiscip. Optim. 2016, 55, 1063–1077. [Google Scholar] [CrossRef]
- Deng, S.; Suresh, K. Stress constrained thermo-elastic topology optimization with varying temperature fields via augmented topological sensitivity based level-set. Struct. Multidiscip. Optim. 2017, 56, 1413–1427. [Google Scholar] [CrossRef]
- Zhu, X.; Zhao, C.; Wang, X.; Zhou, Y.; Hu, P.; Ma, Z.D. Temperature-constrained topology optimization of thermo-mechanical coupled problems. Eng. Optim. 2019, 51, 1687–1709. [Google Scholar] [CrossRef]
- Gao, T.; Zhang, W. Topology optimization involving thermo-elastic stress loads. Struct. Multidiscip. Optim. 2010, 42, 725–738. [Google Scholar] [CrossRef]
- Homayouni-Amlashi, A.; Schlinquer, T.; Mohand-Ousaid, A.; Rakotondrabe, M. 2D topology optimization MATLAB codes for piezoelectric actuators and energy harvesters. Struct. Multidiscip. Optim. 2020, 63, 983–1014. [Google Scholar] [CrossRef]
- Candler, R.N.; Duwel, A.; Varghese, M.; Chandorkar, S.A.; Hopcroft, M.A.; Park, W.T.; Kim, B.; Yama, G.; Partridge, A.; Lutz, M. Impact of geometry on thermoelastic dissipation in micromechanical resonant beams. J. Microelectromech. Syst. 2006, 15, 927–934. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.K.; Kim, N.H. Structural Sensitivity Analysis and Optimization 1: Linear Systems; Springer Science and Business Media: New York, NY, USA, 2004. [Google Scholar]
- Chen, J.C.; Wada, B. Matrix perturbation for structural dynamic analysis. AIAA J. 1977, 15, 1095–1100. [Google Scholar] [CrossRef]
- Dedieu, J.P.; Tisseur, F. Perturbation theory for homogeneous polynomial eigenvalue problems. Linear Algebra Its Appl. 2003, 358, 71–94. [Google Scholar] [CrossRef]
- Li, L.; Hu, Y.J.; Wang, X.L. Modal modification of damped asymmetric systems without using the left eigenvectors. Proc. Appl. Mech. Mater. 2014, 490, 331–335. [Google Scholar] [CrossRef]
- Noor, A.K. Recent advances and applications of reduction methods. Appl. Mech. Rev. 1994, 125–146. [Google Scholar] [CrossRef]
- Kirsch, U. Reanalysis and sensitivity reanalysis by combined approximations. Struct. Multidiscip. Optim. 2010, 40, 1–15. [Google Scholar] [CrossRef]
- Sadeeq, M.M.; Abdulkareem, N.M.; Zeebaree, S.R.; Ahmed, D.M.; Sami, A.S.; Zebari, R.R. IoT and Cloud computing issues, challenges and opportunities: A review. Qubahan Acad. J. 2021, 1, 1–7. [Google Scholar] [CrossRef]
- Shao, W.; Yao, L.; Ge, Z.; Song, Z. Parallel computing and SGD-based DPMM for soft sensor development with large-scale semisupervised data. IEEE Trans. Ind. Electron. 2018, 66, 6362–6373. [Google Scholar] [CrossRef]
- Turgut, M.S.; Turgut, O.E.; Afan, H.A.; El-Shafie, A. A novel Master–Slave optimization algorithm for generating an optimal release policy in case of reservoir operation. J. Hydrol. 2019, 577, 123959. [Google Scholar] [CrossRef]
- Šimkus, A.; Turskienė, S. Parallel computing for the finite element method in MATLAB. Comput. Sci. Tech. 2013, 1, 214–221. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, S.; Zhang, F.; Bi, Y.; Huang, L. Accelerating matlab code using gpu: A review of tools and strategies. In Proceedings of the 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), Zhengzhou, China, 8–10 August 2011; pp. 1875–1878. [Google Scholar] [CrossRef]
- Fu, Y.; Li, L.; Hu, Y. Enlarging quality factor in microbeam resonators by topology optimization. J. Therm. Stress. 2019, 42, 341–360. [Google Scholar] [CrossRef]
- Sigmund, O. A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 2001, 21, 120–127. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Y.M. Evolutionary topology optimization of continuum structures with an additional displacement constraint. Struct. Multidiscip. Optim. 2009, 40, 409–416. [Google Scholar] [CrossRef]
- Jinling, Y.; Ono, T.; Esashi, M. Energy dissipation in submicrometer thick single-crystal silicon cantilevers. J. Microelectromech. Syst. 2002, 11, 775–783. [Google Scholar] [CrossRef]
- Fried, I.; Malkus, D.S. Finite element mass matrix lumping by numerical integration with no convergence rate loss. Int. J. Solids Struct. 1975, 11, 461–466. [Google Scholar] [CrossRef]
- Kim, K.O. A review of mass matrices for eigenproblems. Comput. Struct. 1993, 46, 1041–1048. [Google Scholar] [CrossRef]
- Jensen, M.S. High convergence order finite elements with lumped mass matrix. Int. J. Numer. Methods Eng. 1996, 39, 1879–1888. [Google Scholar] [CrossRef]
- Wu, S.R. Lumped mass matrix in explicit finite element method for transient dynamics of elasticity. Comput. Methods Appl. Mech. Eng. 2006, 195, 5983–5994. [Google Scholar] [CrossRef]
- Guyan, R.J. Reduction of stiffness and mass matrices. AIAA J. 1965, 3, 380. [Google Scholar] [CrossRef]
- Reddy, J.N.; Gartling, D.K. The Finite Element Method in Heat Transfer and Fluid Dynamics; CRC Series in Computational Mechanics and Applied Analysis; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Thomson, W. Theory of Vibration with Applications; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Li, L.; Hu, Y.; Deng, W.; Lü, L.; Ding, Z. Dynamics of structural systems with various frequency-dependent damping models. Front. Mech. Eng. 2015, 10, 48–63. [Google Scholar] [CrossRef]
- Li, L.; Hu, Y.; Wang, X. Design sensitivity analysis of dynamic response of nonviscously damped systems. Mech. Syst. Signal Process. 2013, 41, 613–638. [Google Scholar] [CrossRef]
- Ito, K.; Ravindran, S.S. A reduced-order method for simulation and control of fluid flows. J. Comput. Phys. 1998, 143, 403–425. [Google Scholar] [CrossRef]
- Sen, S.; Veroy, K.; Huynh, D.B.P.; Deparis, S.; Nguyen, N.C.; Patera, A.T. “Natural norm” a posteriori error estimators for reduced basis approximations. J. Comput. Phys. 2006, 217, 37–62. [Google Scholar] [CrossRef]
- Saad, Y. Analysis of augmented Krylov subspace methods. SIAM J. Matrix Anal. Appl. 1997, 18, 435–449. [Google Scholar] [CrossRef]
- Bai, Z.; Su, Y. SOAR: A second-order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 2005, 26, 640–659. [Google Scholar] [CrossRef]
- Bai, Z.; Demmel, J.; Dongarra, J.; Ruhe, A.; van der Vorst, H. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide; SIAM: Philadelphia, PA, USA, 2000. [Google Scholar]
- Kearfott, R.B.; Hu, C.; Novoa, M., III. A review of preconditioners for the interval Gauss-Seidel method. Interval Comput. 1991, 1, 59–85. [Google Scholar]
- Turkel, E. Preconditioning techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 1999, 31, 385–416. [Google Scholar] [CrossRef]
- Mardal, K.; Winther, R. Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra Appl. 2011, 18, 1–40. [Google Scholar] [CrossRef]
- Pearson, J.W.; Pestana, J. Preconditioners for Krylov subspace methods: An overview. GAMM-Mitteilungen 2020, 43, e202000015. [Google Scholar] [CrossRef]
- Cai, X.C.; Sarkis, M. A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 1999, 21, 792–797. [Google Scholar] [CrossRef]
- Santo, N.D.; Deparis, S.; Manzoni, A.; Quarteroni, A. Multi space reduced basis preconditioners for large-scale parametrized PDEs. SIAM J. Sci. Comput. 2018, 40, A954–A983. [Google Scholar] [CrossRef] [Green Version]
- Bathe, K.J. Finite Element Procedures; PRENTICE HALL: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Li, Y.; Zhang, Z. Parallel computing: Review and perspective. In Proceedings of the 2018 5th International Conference on Information Science and Control Engineering (ICISCE), Zhengzhou, China, 20–22 July 2018; pp. 365–369. [Google Scholar] [CrossRef]
- Mei, Y.; Omidvar, M.N.; Li, X.; Yao, X. A competitive divide-and-conquer algorithm for unconstrained large-scale black-box optimization. ACM Trans. Math. Softw. (TOMS) 2016, 42, 1–24. [Google Scholar] [CrossRef]
- Estebanez, A.; Llanos, D.R.; Gonzalez-Escribano, A. A survey on thread-level speculation techniques. ACM Comput. Surv. (CSUR) 2016, 49, 1–39. [Google Scholar] [CrossRef]
- Bader, D. Analyzing massive social networks using multicore and multithreaded architectures. In Facing the Multicore-Challenge; Springer: Berlin/Heidelberg, Germany, 2010; p. 1. [Google Scholar]
- Li, L.; Hu, Y.; Wang, X. A parallel way for computing eigenvector sensitivity of asymmetric damped systems with distinct and repeated eigenvalues. Mech. Syst. Signal Process. 2012, 30, 61–77. [Google Scholar] [CrossRef]
- Lin, R.; Ng, T. Repeated eigenvalues and their derivatives of structural vibration systems with general nonproportional viscous damping. Mech. Syst. Signal Process. 2021, 159, 107750. [Google Scholar] [CrossRef]
- Li, L.; Hu, Y.; Wang, X. Design sensitivity and Hessian matrix of generalized eigenproblems. Mech. Syst. Signal Process. 2014, 43, 272–294. [Google Scholar] [CrossRef]
- Lin, R.; Mottershead, J.; Ng, T. A state-of-the-art review on theory and engineering applications of eigenvalue and eigenvector derivatives. Mech. Syst. Signal Process. 2020, 138, 106536. [Google Scholar] [CrossRef]
Clamped-Clamped Microbeam (400 × 40 mesh) | |||
---|---|---|---|
Eigenvalue Solution | Global Sensitivity Number | Combined Time | |
Traditional method (s) | 4.3108 | 6.1492 | 10.46 |
Proposed method (s) | 1.5779 | 0.9175 | 2.4954 |
Time saved | 63.4% | 85.08% | 76.14% |
Clamped-Free Microbeam (300 × 60 mesh) | |||
---|---|---|---|
Eigenvalue Solution | Global Sensitivity Number | Combined Time | |
Traditional method (s) | 5.778 | 9.6368 | 15.4148 |
Proposed method (s) | 1.2508 | 1.7626 | 3.0134 |
Time saved | 78.35% | 81.71% | 80.45% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Li, L.; Hu, Y. Efficient Design of Thermoelastic Structures Using a Krylov Subspace Preconditioner and Parallel Sensitivity Computation. Appl. Sci. 2022, 12, 8978. https://doi.org/10.3390/app12188978
Fu Y, Li L, Hu Y. Efficient Design of Thermoelastic Structures Using a Krylov Subspace Preconditioner and Parallel Sensitivity Computation. Applied Sciences. 2022; 12(18):8978. https://doi.org/10.3390/app12188978
Chicago/Turabian StyleFu, Yu, Li Li, and Yujin Hu. 2022. "Efficient Design of Thermoelastic Structures Using a Krylov Subspace Preconditioner and Parallel Sensitivity Computation" Applied Sciences 12, no. 18: 8978. https://doi.org/10.3390/app12188978
APA StyleFu, Y., Li, L., & Hu, Y. (2022). Efficient Design of Thermoelastic Structures Using a Krylov Subspace Preconditioner and Parallel Sensitivity Computation. Applied Sciences, 12(18), 8978. https://doi.org/10.3390/app12188978