Analysis of Sea Storm Events in the Mediterranean Sea: The Case Study of 28 December 2020 Sea Storm in the Gulf of Naples, Italy
<p>Location of the study area. Large scale—Italy (<b>a</b>), regional scale—Campania (<b>b</b>), local scales—Gulf of Naples (<b>c</b>), and Naples seafront (<b>d</b>) maps. Names of major localities cited in the text are also reported.</p> "> Figure 2
<p>Location of the weather stations used in this study. Monitoring sites are managed by various research institutions: ISMAR (Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, Sede di Napoli), ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), INGV (Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli-Osservatorio Vesuviano), and UniParthenope (Parthenope University of Naples).</p> "> Figure 3
<p>Via Caracciolo-Via Partenope waterfront (<b>a</b>) between Mergellina (West) and Castel dell’Ovo (East) (map modified by Reference [<a href="#B41-applsci-11-11460" class="html-bibr">41</a>], with images of the effects of historical sea storms); (<b>b</b>) destruction of road pavement in Via Partenope on 4 November 1966; (<b>c</b>) hydrofoil sunk at Mergellina maritime station on 23 December 1979; (<b>d</b>) large waves invade the roadway of Via Partenope on 11 January 1987, when a “tide up” phenomenon occurred along the coast, due to the occurrence of extremely low-pressure values (lower than 990 hPa) and strong breaking waves process in the previous hours. Photos are courtesy of “Il Mattino” newspaper, Naples.</p> "> Figure 4
<p>Sea level pressure maps from 4 November 1966 (<b>a</b>), 23 December 1979 (<b>b</b>), and 11 January 1987 (<b>c</b>). In all cases, a deep Mediterranean low, centered around Sardinia, is active with relevant horizontal barometric gradients on Italy and surrounding seas, triggering strong southerly winds (ERA-20C–1.000° (European Atmospheric Reanalysis of the 20 century). Maps downloaded by <a href="http://www.wetterzentrale.de" target="_blank">www.wetterzentrale.de</a>, accessed on 6 September 2021.</p> "> Figure 5
<p>Meteorological maps (CFS reanalysis 0.500° by wetterzentrale.de) (<b>a</b>–<b>c</b>) and satellite images (EUMETSAT 2020) (<b>d</b>–<b>f</b>) reconstructing the three-day evolution ((<b>a</b>,<b>e)</b>, 26 December; (<b>b</b>,<b>d)</b>, 27 December; (<b>c</b>,<b>f</b>), 28 December) of the storm during its transition from Iceland to the Mediterranean Sea. Maps downloaded by <a href="http://www.wetterzentrale.de" target="_blank">www.wetterzentrale.de</a>, accessed on 6 September 2021.</p> "> Figure 6
<p>(<b>a</b>) Sea Level Pressure forecasting map valid for 28 December 2020 H18:00 UTC (BOLAM Model [<a href="#B45-applsci-11-11460" class="html-bibr">45</a>]); (<b>b</b>) map highlighting the high horizontal gradients over Campania region.</p> "> Figure 7
<p>(<b>a</b>) Satellite image (EUMETSAT 2020) and (<b>b</b>) sea level barometric map (CFS Reanalysis) relative to 28 December 2020-H18:00 UTC. The intense cyclonic system over France is characterized by a complex system of occluded fronts (magenta lines). Blue lines are cold fronts, and red lines are warm fronts.</p> "> Figure 8
<p>Lago Patria, Capo Posillipo, and Port of Naples ISMAR weather stations wind diagrams in reference to the time interval: 28 December 2020-H00.00 to H24:00UTC.</p> "> Figure 9
<p>Main wave exposure angle relative to point P<sub>1</sub> in front of Via Partenope.</p> "> Figure 10
<p>Position of the point P<sub>0</sub> (coastal waterfront point) and P<sub>1</sub> (offshore point, with seafloor at −34 m), significant in analysis of wave motion. Base map by Reference [<a href="#B47-applsci-11-11460" class="html-bibr">47</a>].</p> "> Figure 11
<p>Map and diagram of fetch relative to P<sub>1</sub> in <a href="#applsci-11-11460-f010" class="html-fig">Figure 10</a>. Map highlights the reduction of fetch in the main wave exposure through the green circle.</p> "> Figure 12
<p>Meteorological map (GFS Operational 0.250°) valid on 28 December 2020-H05:00 UTC for 10 m wind (kt). There is chromatic evidence of winds with gale force. For explanation of 1 and 2 corridors see the main text. Downloaded by <a href="http://www.wetterzentrale.de" target="_blank">www.wetterzentrale.de</a>, accessed on 6 September 2021.</p> "> Figure 13
<p>Hourly average anemometric values (Capo Posillipo and ISPRA-Port of Naples weather stations), with linear interpolation line (red values on the right). Wind direction changes are less than 30°; hence, for simplicity, wave heights and periods are computed along a single (mean) direction.</p> "> Figure 14
<p>Wave growth nomogram modified by Gröen and Dorrestein [<a href="#B28-applsci-11-11460" class="html-bibr">28</a>]. The red line illustrates the development of wave motion considering a constant anemometric event (14.4 m s<sup>−1</sup>) lasting for 14 h.</p> "> Figure 15
<p>Significant wave height of the study event (red point) evaluated with the nomogram modified by Breugem-Holthuijsen [<a href="#B30-applsci-11-11460" class="html-bibr">30</a>].</p> "> Figure 16
<p>Sea surface oscillation in the Gulf of Naples on 27–29 December 2020 (Time: UTC). The diagram shows the stormy phase.</p> "> Figure 17
<p>Photos taken from the buildings along Via Partenope, showing the waves scenario during the phase of maximum intensity of the swell.</p> "> Figure 18
<p>Complex scenario of wave motion in front of Via Partenope, due to the reflection of incident waves on the western bastion of Castel dell’Ovo. Reflected waves are indicated with dotted light blu lines 1′-2′-3′ (<b>a</b>). (<b>b</b>) The energy flux reflected by Castel dell’Ovo, enhances the wave energy impacting Via Partenope. Equation indications are from Equation (20).</p> "> Figure 19
<p>Hydrodynamic motion occurring on the western side of the Castel dell’Ovo. Water masses climb up the western bastion of Castel dell’Ovo and then are reflected back towards the seaside. This means that almost no energy dissipation occurs.</p> "> Figure 20
<p>Energy content of a surface sine wave [<a href="#B48-applsci-11-11460" class="html-bibr">48</a>].</p> "> Figure 21
<p>UAS survey and raster maps produced from low-altitude aerial images using Structure from Motion (SfM). The location of the obtained high-resolution DEM and orthophoto corresponds to the red line in <a href="#applsci-11-11460-f018" class="html-fig">Figure 18</a>a. (<b>a</b>) Camera locations and image overlap. The black point indicates the grid plan. The different colors show the number of acquired photos; (<b>b</b>) digital elevation model (DEM); (<b>c</b>) orthophoto.</p> "> Figure 21 Cont.
<p>UAS survey and raster maps produced from low-altitude aerial images using Structure from Motion (SfM). The location of the obtained high-resolution DEM and orthophoto corresponds to the red line in <a href="#applsci-11-11460-f018" class="html-fig">Figure 18</a>a. (<b>a</b>) Camera locations and image overlap. The black point indicates the grid plan. The different colors show the number of acquired photos; (<b>b</b>) digital elevation model (DEM); (<b>c</b>) orthophoto.</p> "> Figure 22
<p>Reduction in width of the seawall, with a maximum in correspondence of the bend of Via Partenope Street (<a href="#sec1-applsci-11-11460" class="html-sec">Section 1</a>). The three section profiles are shown in <a href="#applsci-11-11460-f023" class="html-fig">Figure 23</a>.</p> "> Figure 23
<p>Profile sections in correspondence of the damaged area of Via Partenope: the orthophoto shows the very reduced width of the cliff in <a href="#sec1-applsci-11-11460" class="html-sec">Section 1</a>, about half with respect to <a href="#sec2-applsci-11-11460" class="html-sec">Section 2</a>. The graphical section (Length Scale LS equal to 0.5 Height Scale HS) gives evidence of the complete overtopping of the cliff during the phase of maximum wave heights. Profile traces are in <a href="#applsci-11-11460-f022" class="html-fig">Figure 22</a>.</p> ">
Abstract
:1. Introduction
2. Material and Methods
- -
- “Consiglio Nazionale delle Ricerche-Istituto di Scienze Marine” (CNR-ISMAR)–meteorological data by a Campi Flegrei network [23];
- -
- “Istituto Superiore per la Protezione e la Ricerca Ambientale” (ISPRA)–“Rete Mareografica Nazionale” [24]; meteorological and tidal data in the Port of Naples;
- -
- “Istituto Nazionale di Geofisica e Vulcanologia-Osservatorio Vesuviano” (INGV-OV)–“MEDUSA Project”-tidal data by instrumented buoys operating in the Gulf of Pozzuoli [25]; and
- -
- University of Naples “Parthenope”–waves data by instrumented buoy operating in the Gulf of Naples (courtesy of prof. G. Budillon, Parthenope University).
3. Study Area and Historical Events
4. Meteorological Analysis of the 28 December 2020 Sea Storm Event
4.1. Meteorological Background at Synoptic Scale
4.2. Meteorological Analysis at Regional Scale
4.3. Anemometric Event Analysis at Sub-Regional Scale
5. Sea Conditions Analysis of the Sea Storm Event of 28 December 2020
- -
- Hs (m) = 1.00,
- -
- Ts (s) = 4.1 → L = 25 m,
- -
- Dir (°) = 264.
- -
- Hc = 3.80 m,
- -
- Tc = 7.3 s,
- -
- Hmax = 1.29 Hs = 4.90 m, and
- -
- Tmax = 7.8 s.
- -
- Hs = 3.80 m.
Tidal Analysis
- maximum rise in sea level: Sm(+) = +0.21 m,
- maximum lowering of sea level: Sm(−) = −0.21 m.
- -
- Kp = 3 × 10−6,
- -
- G = 9.8065 m s−2,
- -
- d = depth of the seabed at the point where the surge is calculated, assumed to be 0 m,
- -
- D = limit depth assumed for the continental shelf, assumed to be −200 m,
- -
- U = constant storm wind speed (set equal to 14.4 m s−1 for the event under consideration), and
- -
- Lp = extension of the continental shelf (distance between d and D) equal to 15,000 m.
- -
- Hb = Hc,tot = reference wave height at breaking = 4.5 m,
- -
- T = period related to reference wave at breaking = 7.8 s,
- -
- hb = depth of sea bottom at breaking = 1.3 Hb = 5.85 m,
- -
- ΔS = 0.15 hb = 0.88 m,
- -
- Sdw = 0.536 Hb(3/2) /g1/2 T = 0.21 m, and
- -
- Sup = 0.88–0.21 = 0.67 m.
6. Sea Storm Effect Analysis
6.1. Local Scale Interactions between Wave Motion and Coastal Features
6.2. Reflective Effect of Castel Dell’Ovo on Wave Motion
6.3. UAS Survey Results
7. Discussion
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez-Maqueo, O.; Intralawan, A.; Martínez, M. Coastal disasters from the perspective of ecological economics. Ecol. Econ. 2007, 63, 273–284. [Google Scholar] [CrossRef]
- White, A.U. Global summary of human response to natural hazards: Tropical cyclones. In Nat Hazards: Local, National, Global; Oxford University Press: New York, NY, USA, 1974; pp. 255–265. [Google Scholar]
- Mucerino, L.; Albarella, M.; Carpia, L.; Besioc, G.; Benedettid, A.; Corradia, N.; Firpoa, M.; Ferrari, M. Coastal exposure assessment on Bonassola bay. Ocean. Coast. Manag. 2019, 167, 20–31. [Google Scholar] [CrossRef]
- Littmann, T. An empirical classification of weather types in the Mediterranean basin and their interrelation with rainfall. Theor. Appl. Climatol. 2000, 66, 161–171. [Google Scholar] [CrossRef]
- González-Alemán, J.J.; Pascale, S.; Gutierrez-Fernandez, J.; Murakami, H.; Gaertner, M.A.; Vecchi, G.A. Potential increase in hazard from Mediterranean hurricane activity with global warming. Geophys. Res. Lett. 2019, 46, 1754–1764. [Google Scholar] [CrossRef]
- Androulidakis, Y.S.; Kombiadou, K.D.; Makris, C.V.; Baltikas, V.N.; Krestenitis, Y.N. Storm surges in the Mediterranean Sea: Variability and trends under future climatic conditions. Dyn. Atmos. Ocean. 2015, 71, 56–82. [Google Scholar] [CrossRef]
- Pasi, F.; Orlandi, A.; Onorato, L.F.; Gallino, S. A study of the 1 and 2 January 2010 sea-storm in the Ligurian Sea. Adv. Sci. Res. 2011, 6, 109–115. [Google Scholar] [CrossRef]
- Kerkmann, J.; Higgins, M.; Lancaster, S.; Roesli, H.P.; Tsiniari, E.; Sachweh, M. Medicane Qendresa Hits Malta and Sicily. EUMETSAT. 2014. Available online: https://www.eumetsat.int/medicane-qendresa-hits-Malta-and-Sicily (accessed on 6 September 2021).
- Nietosvaara, V.; Mahovic, N.S.; Szenyan, I.; Azcarate, A.A. Tropical Storm-Like Cyclone Causing Storms, Severe Wind and High Seas over Ionian Sea. EUMETSAT. 2020. Available online: https://www.eumetsat.int/medicane-over-ionian-sea-causes-storms-italy-and-greece (accessed on 6 September 2021).
- Köppen, W. Das geographische system der klimate. In Handbuchder Klimatologie; Köppen, W., Geiger, R., Eds.; Gebrüder Borntraeger: Berlin, Germany, 1936; Volume I, Part C. [Google Scholar]
- Belda, M.; Holtanová, E.; Halenka, T.; Kalvová, J. Climate classification revisited: From Köppen to Trewartha. Clim. Res. 2014, 59, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Uttieri, M.; Cianelli, D.; Buongiorno Nardelli, B.; Buonocore, B.; Falco, P.; Colella, S.; Zambianchi, E. Multiplatform observation of the surface circulation in the Gulf of Naples (Southern Tyrrhenian Sea). Ocean Dyn. 2011, 61, 779–796. [Google Scholar] [CrossRef]
- de Ruggiero, P. A high-resolution ocean circulation model of the Gulf of Naples and adjacent areas. Nuovo Cim. 2013, 36, 143–150. [Google Scholar]
- de Ruggiero, P.; Napolitano, E.; Iacono, R.; Pierini, S. A high-resolution modelling study of the circulation along the Campania coastal system, with a special focus on the Gulf of Naples. Cont. Shelf Res. 2016, 122, 85–101. [Google Scholar] [CrossRef]
- Menna, M.; Mercatini, A.; Uttieri, M.; Buonocore, B.; Zambianchi, E. Wintertime transport processes in the Gulf of Naples investigated by HF radar measurements of surface currents. Nuovo Cim. 2007, 30, 605–622. [Google Scholar]
- Bartzokas, A. Annual variation of pressure over the Mediterranean area. Theor. Appl. Climatol. 1989, 40, 135. [Google Scholar] [CrossRef]
- Hatzaki, M.; Flocas, H.A.; Simmonds, I.; Kouroutzoglou, J.; Keay, K.; Rudeva, I. Seasonal aspects of an objective climatology of anticyclones Affecting the Mediterranean. J. Clim. 2014, 27, 9272–9289. [Google Scholar] [CrossRef]
- Cianelli, D.; Uttieri, M.; Buonocore, B.; Falco, P.; Zambardino, G.; Zambianchi, E. Dynamics of a very special Mediterranean coastal area: The Gulf of Naples. In Mediterranean Ecosystems; Williams, G.S., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2012; pp. 129–150. [Google Scholar]
- Saviano, S.; Kalampokis, A.; Zambianchi, E.; Uttieri, M. A year-long assessment of wave measurements retrieved from an HF radar network in the Gulf of Naples (Tyrrhenian Sea, Western Mediterranean Sea). J. Oper. Oceanogr. 2019, 12, 1–15. [Google Scholar] [CrossRef]
- Mazzarella, V.; Maiello, I.; Ferretti, R.; Capozzi, V.; Picciotti, E.; Alberoni, P.P.; Marzano, F.S.; Budillon, G. Reflectivity and velocity radar data assimilation for two flash flood events in central Italy: A comparison between 3D and 4D variational methods. Q. J. R. Meteorol. Soc. 2020, 146, 348–366. [Google Scholar] [CrossRef]
- De Pippo, T.; Donadio, C.; Pennetta, M.; Petrosino, C.; Terlizzi, F.; Valente, A. Coastal hazard assessment and mapping in Northern Campania, Italy. Geomorphology 2008, 97, 451–466. [Google Scholar] [CrossRef]
- World Meteorological Organization. World Weather Information Service. Official Forecasts. Available online: https://worldweather.wmo.int/en/home.html (accessed on 6 September 2021).
- CNR-ISMAR. Buoy, Platforms and Other Fixed Sites. Available online: http://www.ismar.cnr.it/infrastrutture/sistemi-osservativi/boe-piattaforme-e-altre-reti-fisse (accessed on 6 September 2021).
- ISPRA. The National Tidegauge Network. 2021. Available online: https://www.mareografico.it (accessed on 6 September 2021).
- INGV. MEDUSA—Multiparametric Elastic-beacon Devices and Underwater Sensors Acquisition System. Available online: https://portale.ov.ingv.it/medusa/ (accessed on 6 September 2021).
- Davis Instruments. Vantage Pro2 Weather Station. 2001. Available online: https://www.davisinstruments.com/pages/vantage-pro2 (accessed on 6 September 2021).
- Rete Mareografica Nazionale. Available online: https://www.mareografico.it/?session=0S227407388089CR77OD8883&syslng=ita&sysmen=-1&sysind=-1&syssub=-1&sysfnt=0&code=SENS&idse=3 (accessed on 6 September 2021).
- Gröen, P.; Dorrestein, R. Zeegolven, Derde, Herziene Druk; Staatsdrukkerij-En Uitgeverijbedrijf: The Hague, The Netherlands, 1976; p. 124. [Google Scholar]
- World Meteorological Organization. Guide to Wave Analysis and Forecasting; No. 8; WMO: Geneva, Switzerland, 2018; ISBN 978-92-63-10008-5. [Google Scholar]
- Breugem, W.A.; Holthuijsen, L.H. Generalized shallow water wave growth from Lake George. J. Waterw. Port Coast. Ocean. Eng. 2007, 133, 3. [Google Scholar] [CrossRef]
- Spetsakis, M.; Aloimonos, J.Y. A multi-frame approach to visual motion perception. Int. J. Comput. Vis. 1991, 6, 245–255. [Google Scholar] [CrossRef]
- Lowe, D.G. Object recognition fromlocal scale-invariant features. In Proceedings of the Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157. [Google Scholar]
- Rabah, M.; Basiouny, M.; Ghanem, E.; Elhadary, A. Using RTK and VRS in direct geo-referencing of the UAV imagery. NRIAG J. Astron. Geophys. 2018, 7, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, J.A.; Henriques, R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J. Photogramm. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Agisoft. Metashape 1.7. Available online: https://www.agisoft.com/ (accessed on 6 September 2021).
- Trifuoggi, M.; Donadio, C.; Mangoni, O.; Ferrara, L.; Bolinesi, F.; Nastro, R.A.; Stanislao, C.; Toscanesi, M.; Di Natale, G.; Arienzo, M. Distribution and enrichment of trace metals in surface marine sediments in the Gulf of Pozzuoli and off the coast of the brownfield metallurgical site of Ilva of Bagnoli (Campania, Italy). Mar. Pollut. Bull. 2017, 124, 502–511. [Google Scholar] [CrossRef]
- Buccino, M.; Daliri, M.; Calabrese, M.; Somma, R. A numerical study of arsenic contamination at the Bagnoli bay seabed by a semi-anthropogenic source. Analysis of current regime. Sci. Total. Environ. 2021, 782, 146811. [Google Scholar] [CrossRef] [PubMed]
- Buonocore, E.; Donnarumma, L.; Appolloni, L.; Miccio, A.; Russo, G.F.; Franzese, P.P. Marine natural capital and ecosystem services: An environmental accounting model. Ecol. Model. 2020, 424, 109029. [Google Scholar] [CrossRef]
- Mattei, G.; Rizzo, A.; Anfuso, G.; Aucelli, P.P.C.; Gracia, F.J. A tool for evaluating the archaeological heritage vulnerability to coastal processes: The case study of Naples Gulf (Southern Italy). Ocean Coast. Manag. 2019, 179, 104876. [Google Scholar] [CrossRef]
- Mattei, G.; Aucelli, P.P.C.; Caporizzo, C.; Rizzo, A.; Pappone, G. New Geomorphological and Historical Elements on Morpho-Evolutive Trends and Relative Sea-Level Changes of Naples Coast in the Last 6000 Years. Water 2020, 12, 2651. [Google Scholar] [CrossRef]
- Romano, P.; Di Vito, M.A.; Giampaola, D.; Cinque, A.; Bartoli, C.; Boenzi, G.; Detta, F.; Di Marco, M.; Giglio, M.; Iodice, S.; et al. Intersection of exogenous, endogenous and anthropogenic factors in the Holocene landscape: A study of the Naples coastline during the last 6000 years. Quat. Int. 2013, 303, 107–119. [Google Scholar] [CrossRef]
- Autorità di Bacino Nord Occidentale della Campania. Carta della pericolosita’ da inondazione ed erosione della costa bassa. Piano per la Difesa delle Coste. Map 2008, 1. 10.000 scale. [Google Scholar]
- Autorità di Bacino Nord Occidentale della Campania. Relazione Idraulico-Marittima. In Piano per la Difesa delle Coste; Autorità di Bacino Nord Occidentale della Campania: Naples, Italy, 2009; p. 142. [Google Scholar]
- Città di Venezia. Le Acque Alte Eccezionali. Available online: https://www.comune.venezia.it/it/content/le-acque-alte-eccezionali (accessed on 6 September 2021).
- CNR-ISAC. Previsioni Meteorologiche CNR-ISAC, GLOBO—BOLAM—MOLOCH Forecasts. Available online: https://www.isac.cnr.it/dinamica/projects/forecasts/bolam/ (accessed on 6 September 2021).
- World Meteorological Organization. Guide to Instruments and Methods of Observation Volume I—Measurement of Meteorological Variables; No. 8; WMO IIM: Rome, Italy, 2018; ISBN 978-92-63-10008-5. [Google Scholar]
- Istituto Idrografico della Marina. Tyrrhenian Sea from Ischia Island to Punta Licosa. Naut. Map 1974. [Google Scholar]
- MATTM-PODIS. Difesa delle Coste e Salvaguardia dei Litorali. In Ministero dell’Ambiente e della Tutela del Territorio. PODIS: Progetto Operativo Difesa Suolo; Istituto Poligrafico e Zecca dello Stato: Roma, Italy, 2005; p. 104. [Google Scholar]
- Drews, C. Directional Storm Surge in Enclosed Seas: The Red Sea, the Adriatic, and Venice. J. Mar. Sci. Eng. 2015, 3, 356–367. [Google Scholar] [CrossRef]
- Hoeke, R.K.; McInnes, K.L.; O’Grady, J.G. Wind and Wave Setup Contributions to Extreme Sea Levels at a Tropical High Island: A Stochastic Cyclone Simulation Study for Apia, Samoa. J. Mar. Sci. Eng. 2015, 3, 1117–1135. [Google Scholar] [CrossRef] [Green Version]
- Colle, B.A.; Bowman, M.J.; Roberts, K.J.; Hamish Bowman, M.; Flagg, C.N.; Kuang, J.; Weng, Y.; Munsell, E.B.; Zhang, F. Exploring Water Level Sensitivity for Metropolitan New York during Sandy (2012) Using Ensemble Storm Surge Simulations. J. Mar. Sci. Eng. 2015, 3, 428–443. [Google Scholar] [CrossRef] [Green Version]
- Didier, D.; Bernatchez, P.; Boucher-Brossard, G.; Lambert, A.; Fraser, C.; Barnett, R.L.; Van-Wierts, S. Coastal Flood Assessment Based on Field Debris Measurements and Wave Runup Empirical Model. J. Mar. Sci. Eng. 2015, 3, 560–590. [Google Scholar] [CrossRef]
- Ferrando, I.; Brandolini, P.; Federici, B.; Lucarelli, A.; Sguerso, D.; Morelli, D.; Corradi, N. Coastal Modification in Relation to Sea Storm Effects: Application of 3D Remote Sensing Survey in Sanremo Marina (Liguria, NW Italy). Water 2021, 13, 1040. [Google Scholar] [CrossRef]
Station | Name | Coordinates |
---|---|---|
WS-01 | Lago Patria | 40°56′37.8600′′ N–14°01′46.5960′′ E |
WS-02 | Bacoli–Lago Miseno | 40°47′31.6320′′ N–14°04′39.4680′′ E |
WS-03 | Capo Posillipo | 40°48′05.2200′′ N–14°11′09.6000′′ E |
WS-04 | Port of Naples | 40°50′39.0480′′ N–14°15′35.5320′′ E |
Parameter Name | Unit | Sensor Type | Description of Measured Parameter |
---|---|---|---|
Air temperature | °C | thermometer | air temperature |
Relative humidity | % | hygrometer | relative humidity |
Wind speed | m s−1 | anemometer | wind speed (average on last 10 min) |
Gust speed | m s−1 | anemometer | max gust speed during last 10 min |
Wind direction | ° | anemometer | prevalent direction of wind during last 10 min |
Gust direction | ° | anemometer | direction of maximum gust during last 10 min |
Barometric pressure | hPa | barometer | site atmospheric pressure (average on 10 min) adjusted to sea level |
Rainfall amount | mm | pluviometer | rainfall amount (cumulated on 10 min) |
Rainfall rate | mm h−1 | pluviometer | max instantaneous rainfall rate during last 10 min |
Sensor | Parameter | Data Resolution and Unit | Range | Accuracy | Sampling Rate |
---|---|---|---|---|---|
anemometer | wind speed | 0.5 m s−1 (0.97 knots) | 0–89 m s−1 | ±1 m s−1 or 5% | 3 s |
anemometer | wind direction | 1° | 0–360° | ±3° | 3 s |
barometer | barometric pressure | 0.1 hPa | 540–1100 hPa | ±1 hPa | 1 min |
hygrometer | relative humidity | 1% | 1–100% | ±2% | 1 min |
rain gauge | rainfall amount | 0.25 mm | 0–999.8 mm | ±4% | 20–24 s |
rain gauge | rainfall rate | 0.1 mm h−1 | 0–2438 mm h−1 | ±5% | 20–24 s |
thermometer | air temperature | 0.1 °C | −40 to 65 °C | ±0.3 °C | 10–12 s |
Dir (°) | Fg (Km) | Fr (Km) |
---|---|---|
190 | 327 | 327 |
200 | 317 | 317 |
210 | 644 | 460 |
220 | 566 | 460 |
230 | 672 | 460 |
UTC | Hs (m) | Hmax (m) | Ts (s) | Wave (dir) |
---|---|---|---|---|
06:00 | 1.30 | 1.70 | 4.1 | 264 |
07:00 | 1.50 | 2.10 | 4.5 | 231 |
08:00 | 1.60 | 2.30 | 4.5 | 214 |
09:00 | 1.80 | 3.20 | 4.8 | 210 |
10:00 | 2.10 | 3.40 | 5.3 | 193 |
11:00 | 2.30 | 3.80 | 5.7 | 220 |
12:00 | 2.40 | 3.60 | 5.9 | 229 |
13:00 | 2.50 | 3.90 | 6.4 | 230 |
14:00 | 2.90 | 4.60 | 6.6 | 225 |
15:00 | 2.90 | 4.40 | 6.2 | 217 |
16:00 | 2.90 | 4.50 | 6.3 | 247 |
17:00 | 3.40 | 5.00 | 6.6 | 227 |
18:00 | 3.40 | 5.00 | 6.5 | 220 |
19:00 | 3.40 | 5.00 | 6.4 | 205 |
20:00 | 3.30 | 5.40 | 6.4 | 223 |
Capo Posillipo ISMAR | Port of Naples ISPRA | Average Value | |||
---|---|---|---|---|---|
UTC | Time Progr | Avg. Ws 1 (m s−1) | Avg. Ws 2 (m s−1) | Avg. Ws 1–2 (m s−1) | Wind Dir |
06:00 | 1 | 4.9 | 9.4 | 7.2 | S |
07:00 | 2 | 8.3 | 11.3 | 9.8 | SSW |
08:00 | 3 | 6.0 | 11.9 | 9.0 | S |
09:00 | 4 | 6.6 | 13.4 | 10.0 | S |
10:00 | 5 | 9.0 | 16.6 | 12.8 | SSW |
11:00 | 6 | 10.2 | 17.0 | 13.6 | S |
12:00 | 7 | 10.1 | 17.3 | 13.7 | S |
13:00 | 8 | 10.7 | 17.8 | 14.3 | SSE |
14:00 | 9 | 11.5 | 16.9 | 14.2 | SSE |
15:00 | 10 | 11.0 | 16.4 | 13.7 | SSW |
16:00 | 11 | 10.1 | 16.9 | 13.5 | S |
17:00 | 12 | 11.0 | 17.5 | 14.3 | SSW |
18:00 | 13 | 11.5 | 18.5 | 15.0 | SSW |
19:00 | 14 | 11.6 | 20.1 | 15.9 | SSW |
20:00 | 15 | 8.8 | 4.6 | 8.5 | SW |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fortelli, A.; Fedele, A.; De Natale, G.; Matano, F.; Sacchi, M.; Troise, C.; Somma, R. Analysis of Sea Storm Events in the Mediterranean Sea: The Case Study of 28 December 2020 Sea Storm in the Gulf of Naples, Italy. Appl. Sci. 2021, 11, 11460. https://doi.org/10.3390/app112311460
Fortelli A, Fedele A, De Natale G, Matano F, Sacchi M, Troise C, Somma R. Analysis of Sea Storm Events in the Mediterranean Sea: The Case Study of 28 December 2020 Sea Storm in the Gulf of Naples, Italy. Applied Sciences. 2021; 11(23):11460. https://doi.org/10.3390/app112311460
Chicago/Turabian StyleFortelli, Alberto, Alessandro Fedele, Giuseppe De Natale, Fabio Matano, Marco Sacchi, Claudia Troise, and Renato Somma. 2021. "Analysis of Sea Storm Events in the Mediterranean Sea: The Case Study of 28 December 2020 Sea Storm in the Gulf of Naples, Italy" Applied Sciences 11, no. 23: 11460. https://doi.org/10.3390/app112311460
APA StyleFortelli, A., Fedele, A., De Natale, G., Matano, F., Sacchi, M., Troise, C., & Somma, R. (2021). Analysis of Sea Storm Events in the Mediterranean Sea: The Case Study of 28 December 2020 Sea Storm in the Gulf of Naples, Italy. Applied Sciences, 11(23), 11460. https://doi.org/10.3390/app112311460