Comparison of the Observation Errors of Augmented and Spatial Reality Systems
<p>The positional relationship between the eyes, 3D-CG model, an augmented reality (AR) device, and objects (e.g., calipers). In the head-mounted display (HMD), the yellow area is in front of the 3D-CG model, and overlapping objects (e.g., calipers) are displayed. For the spatial reality display (SRD), the blue area is behind the 3D-CG model, and it is displayed without overlapping the object (e.g., calipers).</p> "> Figure 2
<p>Standard model with a mark on the measurement cusp.</p> "> Figure 3
<p>Digital model with a mark on the measurement cusp.</p> "> Figure 4
<p>3D-CG model displayed on HMD.</p> "> Figure 5
<p>3D-CG model displayed on SRD.</p> "> Figure 6
<p>Measurement in the horizontal direction.</p> "> Figure 7
<p>Measurement in the direction of the depth.</p> "> Figure 8
<p>The positional relationship between the person taking the measurement and the measured object at SP.</p> "> Figure 9
<p>The positional relationship between the person taking the measurement and the measured object in the StP.</p> "> Figure 10
<p>3D-CG model at the time of measurement by HMD.</p> "> Figure 11
<p>3D-CG model at the time of measurement by SRD.</p> "> Figure 12
<p>Bland–Altman analysis of first and second measurements. Scatter plots of Bland–Altman limits for SP + Model + Horizontal (<b>a</b>). Bland–Altman plot of SP + Model + Horizontal measurements (<b>b</b>). Scatter plots of Bland–Altman limits for SP + HMD + Horizontal (<b>c</b>). Bland–Altman plot of SP + HMD + Horizontal measurements (<b>d</b>). Scatter plots of Bland–Altman limits for SP + SRD + Horizontal (<b>e</b>). Bland–Altman plot of SP + SRD + Horizontal measurements (<b>f</b>).</p> "> Figure 13
<p>Scatter plot of the Bland–Altman match limits for the measurements by condition. SP + HMD + Horizontal (<b>a</b>). SP + SRD + Horizontal (<b>b</b>). SP + HMD + Depth (<b>c</b>). SP + SRD + Depth (<b>d</b>). StP + HMD + Horizontal (<b>e</b>). StP + SRD + Horizontal (<b>f</b>). StP + HMD + Depth (<b>g</b>) and StP + SRD + Depth (<b>h</b>).</p> "> Figure 14
<p>Bland–Altman analysis of the measurements by condition. SP + HMD + Horizontal measurements (<b>a</b>). SP + SRD + Horizontal measurements (<b>b</b>). SP + HMD + Depth measurements (c). SP + SRD + Depth measurements (<b>d</b>). StP + HMD + Horizontal measurements (<b>e</b>). StP + SRD + Horizontal measurements (<b>f</b>). StP + HMD + Depth measurements (<b>g</b>) and StP + SRD + Depth measurements (<b>h</b>).</p> "> Figure 15
<p>Three-dimensionality and distinctness of HMD and SRD compared with those of the Model.</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Measurement Model
2.2. Measurement Method
2.3. Statistical Analysis
3. Results
3.1. Measurement Value
3.2. Consistency
3.3. Reproducibility
3.4. Visibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yeung, A.W.K.; Tosevska, A.; Klager, E.; Eibensteiner, F.; Laxar, D.; Stoyanov, J.; Glisic, M.; Zeiner, S.; Kulnik, S.T.; Crutzen, R.; et al. Virtual and Augmented Reality Applications in Medicine: Analysis of the Scientific Literature. J. Med. Internet Res. 2021, 23, e25499. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, J.; Belec, J.; Sheikh, A.; Chepelev, L.; Althobaity, W.; Chow, B.; Mitsouras, D.; Christensen, A.; Rybicki, F.J.; La Russa, D. Applying Modern Virtual and Augmented Reality Technologies to Medical Images and Models. J. Digit. Imaging 2019, 32, 38–53. [Google Scholar] [CrossRef]
- Mitsuno, D.; Ueda, K.; Itamiya, T.; Nuri, T.; Otsuki, Y. Intraoperative Evaluation of Body Surface Improvement by an Augmented Reality System That a Clinician Can Modify. Plast. Reconstr. Surg. Glob. Open 2017, 5, e1432. [Google Scholar] [CrossRef] [PubMed]
- Carl, B.; Bopp, M.; Saß, B.; Pojskic, M.; Voellger, B.; Nimsky, C. Spine Surgery Supported by Augmented Reality. Glob. Spine J. 2020, 10, 41S–55S. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Xu, X.; Jiang, H.; Ding, Y. The effectiveness of virtual reality-based technology on anatomy teaching: A meta-analysis of randomized controlled studies. BMC Med. Educ. 2020, 20, 127. [Google Scholar] [CrossRef] [PubMed]
- Dennler, C.; Bauer, D.E.; Scheibler, A.-G.; Spirig, J.; Götschi, T.; Fürnstahl, P.; Farshad, M. Augmented reality in the operating room: A clinical feasibility study. BMC Musculoskelet. Disord. 2021, 22, 451. [Google Scholar] [CrossRef] [PubMed]
- Al Janabi, H.F.; Aydin, A.; Palaneer, S.; Macchione, N.; Al-Jabir, A.; Khan, M.S.; Dasgupta, P.; Ahmed, K. Effectiveness of the HoloLens mixed-reality headset in minimally invasive surgery: A simulation-based feasibility study. Surg. Endosc. 2020, 34, 1143–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sytek, L.; Inglehart, M.R.; Ramaswamy, V.; Aronovich, S.; Edwards, S.; Kim-Berman, H. Comparisons of orthodontic residents’ performance and attitudes using 2D, 3D, and virtual reality surgical simulation methods. J. Dent. Educ. 2021, 85, 1415–1426. [Google Scholar] [CrossRef] [PubMed]
- Zitzmann, N.U.; Matthisson, L.; Ohla, H.; Joda, T. Digital Undergraduate Education in Dentistry: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 3269. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, T.; Penfield, W. Further studies of the sensory and motor cerebral cortex of man. Fed. Proc. 1947, 6, 452–460. [Google Scholar] [PubMed]
- Wang, Y.; Zhai, G.; Chen, S.; Min, X.; Gao, Z.; Song, X. Assessment of eye fatigue caused by head-mounted displays using eye-tracking. Biomed. Eng. Online 2019, 18, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Condino, S.; Turini, G.; Parchi, P.D.; Viglialoro, R.M.; Piolanti, N.; Gesi, M.; Ferrari, M.; Ferrari, V. How to Build a Patient-Specific Hybrid Simulator for Orthopaedic Open Surgery: Benefits and Limits of Mixed-Reality Using the Microsoft HoloLens. J. Health Eng. 2018, 2018, 5435097. [Google Scholar] [CrossRef] [PubMed]
- Eye-Sensing Light Field Display. Available online: https://www.sony.com/en/SonyInfo/technology/stories/LFD/ (accessed on 25 May 2021).
- Chang, F.; Laguna, B.; Uribe, J.; Vu, L.; Zapala, M.A.; Devincent, C.; Courtier, J. Evaluating the Performance of Augmented Reality in Displaying Magnetic Resonance Imaging–Derived Three-Dimensional Holographic Models. J. Med. Imaging Radiat. Sci. 2020, 51, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Itamiya, T.; To, M.; Oguchi, T.; Fuchida, S.; Matsuo, M.; Hasegawa, I.; Kawana, H.; Kimoto, K. A Novel Anatomy Education Method Using a Spatial Reality Display Capable of Stereoscopic Imaging with the Naked Eye. Appl. Sci. 2021, 11, 7323. [Google Scholar] [CrossRef]
- Jiang, T.; Yu, D.; Wang, Y.; Zan, T.; Wang, S.; Li, Q. HoloLens-Based Vascular Localization System: Precision Evaluation Study With a Three-Dimensional Printed Model. J. Med. Internet Res. 2020, 22, e16852. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Bokijonov, S.; Choi, Y. Review of Microsoft HoloLens Applications over the Past Five Years. Appl. Sci. 2021, 11, 7259. [Google Scholar] [CrossRef]
- Schneider, M.; Kunz, C.; Pal’A, A.; Wirtz, C.R.; Mathis-Ullrich, F.; Hlaváč, M. Augmented reality–assisted ventriculostomy. Neurosurg. Focus 2021, 50, E16. [Google Scholar] [CrossRef] [PubMed]
- Pladere, T.; Luguzis, A.; Zabels, R.; Smukulis, R.; Barkovska, V.; Krauze, L.; Konosonoka, V.; Svede, A.; Krumina, G. When virtual and real worlds coexist: Visualization and visual system affect spatial performance in augmented reality. J. Vis. 2021, 21, 17. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Ellis, S.R.; Ii, J.E.S. The Effect of Focal Distance, Age, and Brightness on Near-Field Augmented Reality Depth Matching. IEEE Trans. Vis. Comput. Graph. 2020, 26, 1385–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Posture | Direction | Mean | SD | |
---|---|---|---|---|
Model | SP | Horizontal | 42.77 | 0.38 |
Depth | 42.52 | 0.40 | ||
StP | Horizontal | 43.46 | 0.33 | |
Depth | 43.29 | 0.37 | ||
HMD | SP | Horizontal *,† | 44.70 | 0.78 |
Depth | 42.82 | 1.55 | ||
StP | Horizontal ‡,§ | 45.16 | 0.61 | |
Depth | 43.66 | 1.00 | ||
SRD | SP | Horizontal | 42.80 | 0.32 |
Depth | 42.11 | 0.77 | ||
StP | Horizontal | 42.87 | 0.37 | |
Depth | 43.27 | 0.63 |
Intra-Rater Reliability | ||||
---|---|---|---|---|
ICC | 95% Confidence Interval | p | ||
SP + Horizontal | Model | 0.79 | 0.55 to 0.92 | 0.00 * |
HMD | 0.79 | 0.56 to 0.92 | 0.00 * | |
SRD | 0.78 | 0.54 to 0.92 | 0.00 * |
Distinctness | Three-Dimensionality | |||||
---|---|---|---|---|---|---|
r | p Value | r | p Value | |||
HMD | SP | Horizontal | 0.484 | 0.079 | 0.232 | 0.426 |
Depth | 0.198 | 0.498 | 0.026 | 0.931 | ||
StP | Horizontal | 0.037 | 0.900 | 0.017 | 0.954 | |
Depth | 0.185 | 0.527 | 0.122 | 0.678 | ||
SRD | SP | Horizontal | 0.128 | 0.663 | 0.098 | 0.738 |
Depth | 0.285 | 0.323 | 0.230 | 0.429 | ||
StP | Horizontal | 0.137 | 0.642 | 0.119 | 0.685 | |
Depth | 0.037 | 0.900 | 0.043 | 0.885 | ||
HMD | Three-dimensionality | 0.413 | 0.142 | |||
SRD | Three-dimensionality * | 0.927 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ariwa, M.; Itamiya, T.; Koizumi, S.; Yamaguchi, T. Comparison of the Observation Errors of Augmented and Spatial Reality Systems. Appl. Sci. 2021, 11, 12076. https://doi.org/10.3390/app112412076
Ariwa M, Itamiya T, Koizumi S, Yamaguchi T. Comparison of the Observation Errors of Augmented and Spatial Reality Systems. Applied Sciences. 2021; 11(24):12076. https://doi.org/10.3390/app112412076
Chicago/Turabian StyleAriwa, Masataka, Tomoki Itamiya, So Koizumi, and Tetsutaro Yamaguchi. 2021. "Comparison of the Observation Errors of Augmented and Spatial Reality Systems" Applied Sciences 11, no. 24: 12076. https://doi.org/10.3390/app112412076
APA StyleAriwa, M., Itamiya, T., Koizumi, S., & Yamaguchi, T. (2021). Comparison of the Observation Errors of Augmented and Spatial Reality Systems. Applied Sciences, 11(24), 12076. https://doi.org/10.3390/app112412076