Mushroom Ligninolytic Enzymes―Features and Application of Potential Enzymes for Conversion of Lignin into Bio-Based Chemicals and Materials
<p>Schematic representation of biosynthesis for three main monolignol subunit structures for lignin using two aromatic amino acid precursors. Moss green, green, and Prussian blue indicate the biosynthetic pathways for the H-, G-, and S-unit, respectively.</p> "> Figure 2
<p>Comparison of reaction mechanisms for lignin peroxidase (<b>a</b>) and manganese peroxidase (<b>b</b>).</p> "> Figure 3
<p>Sequence alignment (<b>a</b>) and putative structural model (<b>b</b>) of fungal laccases. (<b>a</b>) Partial sequence alignment of <span class="html-italic">Trametes versicolor</span> laccase and its homologs. PDB accession number: 1KYA, <span class="html-italic">Trametes versicolor</span> laccase; 2HZH, <span class="html-italic">T. ochracea</span> laccase; 1GYC, <span class="html-italic">T. versicolor</span> laccase 2; 3T6V, <span class="html-italic">Steccherinum ochraceum</span> laccase; 1A65, <span class="html-italic">Coprinus cinereus</span> laccase; 5EHF, <span class="html-italic">Antrodiella faginea</span> laccase; 1V10, <span class="html-italic">Rigidoporus microporus</span> laccase; 3PPS, <span class="html-italic">Canariomyces arenarius</span> laccase; 2Q9O, <span class="html-italic">Melanocarpus albomyces</span> laccase-1. Four copper (Cu) binding motifs were marked. (<b>b</b>) Overall structure of <span class="html-italic">Hericium erinaceus</span> laccase 1 and a closer view of the active site for putative copper binding in a laccase with modification from the reference [<a href="#B137-applsci-11-06161" class="html-bibr">137</a>]. The mushroom laccase structure was predicted by PHYRE2 based on the homologous laccase 3-D structure in Pdb data files.</p> "> Figure 4
<p>Summary of the potential applications of various lignin derivatives and other biomolecules by laccase catalytic activity for lignin valorization. (<b>a</b>) Schematic representation of the laccase catalytic mechanism (<b>b</b>) Biotechnological applications for depolymerization, grafting, and polymerization based on laccase catalytic activities.</p> "> Figure 5
<p>Metabolic pathways for biodegradation of aromatic compounds derived from depolymerized lignin and its derivative for lignin valorization.</p> ">
Abstract
:1. Introduction
2. Structure of Lignin for Valuable Aromatic Compounds
3. Challenge of Lignin Fractionation and Depolymerization
4. Lignin Biodegradation and Ligninolytic Enzymes
4.1. Laccase and Laccase-Like Multicopper Oxidase
4.2. Lignin Peroxidase (LiP)
4.3. Manganese Peroxidase (MnP)
4.4. Versatile Peroxidase (VP)
4.5. Other Ligninolytic Enzymes in Mushroom
5. Structural Properties of Mushroom Laccases
6. Bioconversion of Lignin Derivative into Bio-Based Chemicals and Materials
7. Concluding Remarks and Future Perspective
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brethauer, S.; Studer, M.H. Biochemical conversion processes of lignocellulosic biomass to fuels and chemicals—A review. Chimia 2015, 69, 572–581. [Google Scholar] [CrossRef]
- Capolupo, L.; Faraco, V. Green methods of lignocellulose pretreatment for biorefinery development. Appl. Microbiol. Biotechnol. 2016, 100, 9451–9467. [Google Scholar] [CrossRef] [Green Version]
- Silveira, M.H.; Morais, A.R.; da Costa Lopes, A.M.; Olekszyszen, D.N.; Bogel-Łukasik, R.; Andreaus, J.; Pereira, L.R. Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem 2015, 8, 3366–3390. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Jarboe, L.; Brown, R.; Wen, Z. A thermochemical-biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals. Biotechnol. Adv. 2015, 33, 1799–1813. [Google Scholar] [CrossRef]
- Yoo, C.G.; Meng, X.; Pu, Y.; Ragauska, A.J. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. Bioresour Technol. 2020, 301, 122784. [Google Scholar] [CrossRef]
- Cantero, D.; Jara, R.; Navarrete, A.; Pelaz, L.; Queiroz, J.; Rodríguez-Rojo, S.; Cocero, M.J. Pretreatment processes of biomass for biorefineries: Current status and prospects. Annu. Rev. Chem. Biomol. Eng. 2019, 10, 289–310. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Park, J.M.; Seo, J.W.; Kim, C.H. Sequential acid-/alkali-pretreatment of empty palm fruit bunch fiber. Bioresour. Technol. 2012, 109, 229–233. [Google Scholar] [CrossRef]
- Kim, S. Xylitol production from byproducts generated during sequential acid-/alkali-pretreatment of empty palm fruit bunch fiber by an adapted Candida tropicalis. Front. Energy Res. 2019, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, C.H. Bioethanol production using the sequential acid/alkali-pretreated empty palm fruit bunch fiber. Renew. Energ. 2013, 54, 150–155. [Google Scholar] [CrossRef]
- Kim, S. Enhancing bioethanol productivity using alkali-pretreated empty palm fruit bunch fiber hydrolysate. BioMed Res. Int. 2018, 2018, 5272935. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Sung, B.H. Isolation and characterization of the stress-tolerant Candida tropicalis YHJ1 and evaluation of its xylose reductase for xylitol production from acid pre-treatment wastewater. Front. Bioeng. Biotechnol. 2019, 7, 138. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.-D.; Sohn, S.Y. Evaluation of the wastewater generated during alkaline pretreatment of biomass for feasibility of recycling and reusing. Renew. Energ. 2020, 155, 1156–1164. [Google Scholar] [CrossRef]
- Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; et al. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol. Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover, NREL/TP-5100-47764. 2011. Available online: https://www.nrel.gov/docs/fy11osti/47764.pdf (accessed on 30 June 2021).
- Liu, W.; Wang, J.; Richard, T.L.; Hartley, D.S.; Spatari, S.; Volk, T.A. Economic and life cycle assessments of biomass utilization for bioenergy products. Biofuel Bioprod. Biorefin. 2017, 11, 633–647. [Google Scholar] [CrossRef]
- Zakzeski, J.; Bruijnincx, P.C.; Jongerius, A.L.; Weckhuysen, B.M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 2010, 110, 3552–3599. [Google Scholar] [CrossRef]
- Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M.; et al. Lignin valorization: Improving lignin processing in the biorefinery. Science 2014, 344, 1246843. [Google Scholar] [CrossRef]
- Pollegioni, L.; Tonin, F.; Rosini, E. Lignin-degrading enzymes. FEBS J. 2015, 282, 1190–1213. [Google Scholar] [CrossRef]
- Plácido, J.; Capareda, S. Ligniolytic enzymes: A biotechnological alternative for bioethanol production. Bioresour. Bioprocess 2015, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- Janusz, G.; Pawlik, A.; Sulej, J.; Swiderska-Burek, U.; Jarosz-Wilkolazka, A.; Paszczynski, A. Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 2017, 41, 941–962. [Google Scholar] [CrossRef] [Green Version]
- Alexander, M. Nonbiodegradable and other recalcitrant molecules. Biotechnol. Bioeng. 1973, 15, 611–647. [Google Scholar] [CrossRef]
- Brunow, G.; Lundquist, K. Functional groups and bonding patterns in lignin (including the lignin-carbohydrate complexes). In Lignin and Lignan: Advances in Chemistry; CRC Press, Taylor Francis Group: New York, NY, USA, 2010; pp. 267–299. [Google Scholar]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin biosynthesis. Annu. Rev. Plant. Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef]
- Scalbert, A.; Monties, B.; Lallemand, J.-Y.; Guittet, E.; Rolando, C. Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochemistry 1985, 24, 1359–1362. [Google Scholar] [CrossRef]
- Muller-Harvey, I.; Hartley, R.D. Linkage of p-coumaroyl and feruloyl groups to cell-wall polysaccharides of barley straw. Carbohydr. Res. 1986, 148, 71–85. [Google Scholar] [CrossRef]
- Vanholme, R.; De Meester, B.; Ralph, J.; Boerjan, W. Lignin biosynthesis and its integration into metabolism. Curr. Opin. Biotechnol. 2019, 56, 230–239. [Google Scholar] [CrossRef]
- Ralph, J.; Peng, J.P.; Lu, F.C.; Hatfield, R.D.; Helm, R.F. Are lignins optically active? J. Agric. Food Chem. 1999, 47, 2991–2996. [Google Scholar] [CrossRef]
- Zhu, X.; Akiyama, T.; Yokoyama, T.; Matsumoto, Y. Lignin-biosynthetic study: Reactivity of quinone methides in the diastereopreferential formation of p-hydroxyphenyl- and guaiacyl-type β-O-4 structures. J. Agric. Food Chem. 2019, 67, 2139–2147. [Google Scholar] [CrossRef]
- Novaes, E.; Kirst, M.; Chiang, V.; Winter-Sederoff, H.; Sederoff, R. Lignin and biomass: A negative correlation for wood formation and lignin content in trees. Plant. Physiol. 2010, 154, 555–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Fridrich, B.; de Santi, A.; Elangovan, S.; Barta, K. Bright side of lignin depolymerization: Toward new platform chemicals. Chem. Rev. 2018, 118, 614–678. [Google Scholar] [CrossRef] [Green Version]
- Strassberger, Z.; Tanase, S.; Rothenberg, G. The pros and cons of lignin valorization in an integrated biorefinery. RSC Adv. 2014, 4, 25310–25318. [Google Scholar] [CrossRef] [Green Version]
- Collard, F.-X.; Blin, J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sustain. Energy Rev. 2014, 38, 594–608. [Google Scholar] [CrossRef]
- Kirubakaran, V.; Sivaramakrishnan, V.; Nalini, R.; Sekar, T.; Premalatha, M.; Subramanian, P. A review on gasification of biomass. Renew. Sustain. Energy Rev. 2009, 13, 179–186. [Google Scholar] [CrossRef]
- Ten Have, R.; Teunissen, P.J.M. Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem. Rev. 2001, 101, 3397–3414. [Google Scholar] [CrossRef]
- Atlas, R.M.; Bartha, R. Biogeochemical cycling: Carbon, hydrogen, and oxygen. In Microbial Ecology: Fundamentals and Applications, 3rd ed.; The Benjamin/Cummings Publishing Co. Inc.: Redwood City, CA, USA, 1993; pp. 289–313. [Google Scholar]
- Tian, J.-H.; Pourcher, A.-M.; Bochez, T.; Gelhaye, E.; Peu, P. Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Appl. Microbiol. Biotechnol. 2014, 98, 9527–9544. [Google Scholar] [CrossRef]
- Bugg, T.D.H.; Rahmanpour, R. Enzymatic conversion of lignin into renewable chemicals. Curr. Opin. Chem. Biol. 2015, 29, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Erjavec, J.; Kos, J.; Ravnikar, M.; Dreo, T.; Sabotič, J. Proteins of higher fungi-from forest to application. Trends Biotechnol. 2012, 30, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Roth, S.; Spiess, A.C. Laccases for biorefinery applications: A critical review on challenges and perspectives. Bioprocess Bioyst. Eng. 2015, 38, 2285–2313. [Google Scholar] [CrossRef] [PubMed]
- Senthivelan, T.; Kanagaraj, J.; Panda, R.C. Recent trends in fungal laccase for various industrial applications: An eco-friendly approach—A review. Biotechnol. Bioprocess Eng. 2016, 21, 19–38. [Google Scholar] [CrossRef]
- Arregui, L.; Ayala, M.; Gómez-Gil, X.; Gutiérrez-Soto, G.; Hernández-Luna, C.E.; de Los Santos, M.H.; Levin, L.; Rojo-Domínguez, A.; Romero-Martínez, D.; Saparrat, M.C.N.; et al. Laccases: Structure, function, and potential application in water bioremediation. Microb. Cell Fact. 2019, 18, 200. [Google Scholar] [CrossRef]
- Maestre-Reyna, M.; Liu, W.C.; Jeng, W.Y.; Lee, C.C.; Hsu, C.A.; Wen, T.N.; Wang, A.H.; Shyur, L.F. Structural and functional roles of glycosylation in fungal laccase from Lentinus sp. PLoS ONE 2015, 10, e0120601. [Google Scholar] [CrossRef]
- Taborda, C.P.; da Silva, M.B.; Nosanchuk, J.D.; Travassos, L.R. Melanin as a virulence factor of Paracoccidioides brasiliensis and other dimorphic pathogenic fungi: A minireview. Mycopathologia 2008, 165, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Bonnen, A.M.; Anton, L.H.; Orth, A.B. Lignin-degrading enzymes of the commercial button mushroom, Agaricus bisporus. Appl. Environ. Microbiol. 1994, 60, 960–965. [Google Scholar] [CrossRef] [Green Version]
- Othman, A.M.; Elsayed, M.A.; Elshafei, A.M.; Hassan, M.M. Purification and biochemical characterization of two isolated laccase isoforms from Agaricus bisporus CU13 and their potency in dye decolorization. Int. J. Biol. Macromol. 2018, 113, 1142–1148. [Google Scholar] [CrossRef]
- Ullrich, R.; Huong, L.M.; Dung, N.L.; Hofrichter, M. Laccase from the medicinal mushroom Agaricus blazei: Production, purification and characterization. Appl. Microbiol. Biotechnol. 2005, 67, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto-Akanuma, A.; Akanuma, S.; Motoi, M.; Yamagishi, A.; Ohno, N. Cloning and characterization of laccase DNA from the royal sun medicinal mushroom, Agaricus brasiliensis (higher Basidiomycetes). Int. J. Med. Mushrooms 2014, 16, 375–393. [Google Scholar] [CrossRef] [PubMed]
- Hamuro, Y.; Tajima, K.; Matsumoto-Akanuma, A.; Sakamoto, S.; Furukawa, R.; Yamagishi, A.; Ohno, N.; Akanuma, S. Characterization of a thermostable mutant of Agaricus brasiliensis laccase created by phylogeny-based design. J. Biosci. Bioeng. 2017, 124, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.; Caspersen, M.B.; Mondorf, K.; Halkier, T.; Skov, L.K.; Østergaard, P.R.; Brown, K.M.; Brown, S.H.; Xu, F. Characterization of a Coprinus cinereus laccase. Enzym. Microbiol. Technol. 1999, 25, 502–508. [Google Scholar] [CrossRef]
- Yaver, D.S.; Overjero, M.D.; Xu, F.; Nelson, B.A.; Brown, K.M.; Halkier, T.; Bernauer, S.; Brown, S.H.; Kauppinen, S. Molecular characterization of laccase genes from the basidiomycete Coprinus cinereus and heterologous expression of the laccase lcc1. Appl. Environ. Microbiol. 1999, 65, 4943–4948. [Google Scholar] [CrossRef] [Green Version]
- Ducros, V.; Brzozowski, A.; Wilson, K.; Brown, S.H.; Østergaard, P.; Schneider, P.; Yaver, D.S.; Pedersen, A.H.; Davies, G.J. Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 Å resolution. Nat. Struct. Mol. Biol. 1998, 5, 310–316. [Google Scholar] [CrossRef]
- Bao, S.; Teng, Z.; Ding, S. Heterologous expression and characterization of a novel laccase isoenzyme with dyes decolorization potential from Coprinus comatus. Mol. Biol. Rep. 2013, 40, 1927–1936. [Google Scholar] [CrossRef]
- Mishra, S.; Bisaria, V.S. Production and characterization of laccase from Cyathus bulleri and its use in decolorization of recalcitrant textile dyes. Appl. Microbiol. Biotechnol. 2006, 71, 646–653. [Google Scholar]
- Garg, N.; Bieler, N.; Kenzom, T.; Chhabra, M.; Ansorge-Schumacher, M.; Mishra, S. Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase. BMC Biotechnol. 2012, 12, 75. [Google Scholar] [CrossRef] [Green Version]
- Perie, F.H.; Reddy, G.V.; Blackburn, N.J.; Gold, M.H. Purification and characterization of laccases from the white-rot basidiomycete Dichomitus squalens. Arch. Biochem. Biophys. 1998, 353, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Liu, X.; Chen, L.; Shen, Y.; Zhang, X.; Fang, W.; Wang, X.; Bao, X.; Xiao, Y. Identification of a laccase Glac15 from Ganoderma lucidum 77002 and its application in bioethanol production. Biotechnol. Biofuels 2015, 8, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitheranont, T.; Watanabe, A.; Asada, Y. Extracellular laccase produced by an edible basidiomycetous mushroom, Grifola frondosa: Purification and characterization. Biosci. Biotechnol. Biochem. 2011, 75, 538–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitheranont, T.; Watanabe, A.; Asada, Y. Heterologous expression of two minor laccase isozyme cDNAs from the edible mushroom Grifola frondosa. Biosci. Biotechnol. Biochem. 2017, 81, 2367–2369. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.J.; Wang, H.X.; Ng, T.B.; Huang, C.Y.; Zhang, J.X. Purification and characterization of a novel laccase from the edible mushroom Hericium coralloides. J. Microbiol. 2012, 50, 72–78. [Google Scholar] [CrossRef]
- Nagai, M.; Sato, T.; Watanabe, H.; Saito, K.; Kawata, M.; Enei, H. Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Appl. Microbiol. Biotechnol. 2002, 60, 327–335. [Google Scholar] [PubMed]
- Nagai, M.; Kawata, M.; Watanabe, H.; Ogawa, M.; Saito, K.; Takesawa, T.; Kanda, K.; Sato, T. Important role of fungal intracellular laccase for melanin synthesis: Purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies. Microbiology 2003, 149, 2455–2462. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Nakade, K.; Yano, A.; Nakagawa, Y.; Hirano, T.; Irie, T.; Watanabe, H.; Nagai, M.; Sato, T. Heterologous expression of lcc1 from Lentinula edodes in tobacco BY-2 cells results in the production an active, secreted form of fungal laccase. Appl. Microbiol. Biotechnol. 2008, 79, 971–980. [Google Scholar] [CrossRef]
- Wong, K.S.; Huang, Q.; Au, C.H.; Wang, J.; Kwan, H.S. Biodegradation of dyes and polyaromatic hydrocarbons by two allelic forms of Lentinula edodes laccase expressed from Pichia pastoris. Bioresour. Technol. 2012, 104, 157–164. [Google Scholar] [CrossRef]
- Wong, K.S.; Cheung, M.K.; Au, C.H.; Kwan, H.S. A novel Lentinula edodes laccase and its comparative enzymology suggest guaiacol-based laccase engineering for bioremediation. PLoS ONE 2013, 8, e66426. [Google Scholar] [CrossRef] [Green Version]
- Schückel, J.; Matura, A.; van Pée, K.H. One-copper laccase-related enzyme from Marasmius sp.: Purification, characterization and bleaching of textile dyes. Enzyme Microb. Technol. 2011, 48, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.J.; Lim, S.J. Purification and characterization of the laccase involved in dye decolorization by the white-rot fungus Marasmius scorodonius. J. Microbiol. Biotechnol. 2017, 27, 1120–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dedeyan, B.; Klonowska, A.; Tagger, S.; Tron, T.; Iacazio, G.; Gil, G.; Le Petit, J. Biochemical and molecular characterization of a laccase from Marasmius quercophilus. Appl. Environ. Microbiol. 2000, 66, 925–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quaratino, D.; Federici, F.; Petruccioli, M.; Fenice, M.; D’Annibale, A. Production, purification and partial characterisation of a novel laccase from the white-rot fungus Panus tigrinus CBS 577.79. Antonie Leeuwenhoek 2007, 91, 57–69. [Google Scholar] [CrossRef]
- Ben Younes, S.; Mechichi, T.; Sayadi, S. Purification and characterization of the laccase secreted by the white rot fungus Perenniporia tephropora and its role in the decolourization of synthetic dyes. J. Appl. Microbiol. 2007, 102, 1033–1042. [Google Scholar] [CrossRef]
- Srinivasan, C.; Dsouza, T.M.; Boominathan, K.; Reddy, C.A. Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl. Environ. Microbiol. 1995, 61, 4274–4277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz, C.; Guillén, F.; Martínez, A.T.; Martínez, M.J. Laccase isoenzymes of Pleurotus eryngii: Characterization, catalytic properties and participation in activation of molecular oxygen and Mn2+ oxidation. Appl. Environ. Microbiol. 1997, 63, 2166–2174. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, E.; Ruiz-Dueñas, F.J.; Kooistra, R.; Ram, A.; Martínez, A.T.; Martínez, M.J. Isolation of two laccase genes from the white-rot fungus Pleurotus eryngii and heterologous expression of the pel3 encoded protein. J. Biotechnol. 2008, 134, 9–19. [Google Scholar] [CrossRef]
- Ueda, M.; Shintani, K.; Nakanishi-Anjyuin, A.; Nakazawa, M.; Kusuda, M.; Nakatani, F.; Kawaguchi, T.; Tsujiyama, S.; Kawanishi, M.; Yagi, T.; et al. A protein from Pleurotus eryngii var. tuoliensis C.J. Mou with strong removal activity against the natural steroid hormone, estriol: Purification, characterization, and identification as a laccase. Enzyme Microb. Technol. 2012, 51, 402–407. [Google Scholar] [CrossRef]
- Das, N.; Chakraborty, T.K.; Mukherjee, M. Purification and characterization of a growth-regulating laccase from Pleurotus florida. J. Basic Microbiol. 2001, 41, 261–267. [Google Scholar] [CrossRef]
- Yuan, X.; Tian, G.; Zhao, Y.; Zhao, L.; Wang, H.; Ng, T.B. Biochemical characteristics of three laccase isoforms from the basidiomycete Pleurotus nebrodensis. Molecules 2016, 21, 203. [Google Scholar] [CrossRef] [Green Version]
- Piscitelli, A.; Giardina, P.; Mazzoni, C.; Sannia, G. Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2005, 69, 428–439. [Google Scholar] [CrossRef]
- Palmieri, G.; Cennamo, G.; Sannia, G. Remazol Brilliant Blue R decolourisation by the fungus Pleurotus ostreatus and its oxidative enzymatic system. Enzym. Microb. Technol. 2005, 36, 17–24. [Google Scholar] [CrossRef]
- Giardina, P.; Autore, F.; Faraco, V.; Festa, G.; Palmieri, G.; Piscitelli, A.; Sannia, G. Structural characterization of heterodimeric laccases from Pleurotus ostreatus. Appl. Microbiol. Biotechnol. 2007, 75, 1293–1300. [Google Scholar] [CrossRef]
- Faraco, V.; Ercole, C.; Festa, G.; Giardina, P.; Piscitelli, A.; Sannia, G. Heterologous expression of heterodimeric laccase from Pleurotus ostreatus in Kluyveromyces lactis. Appl. Microbiol. Biotechnol. 2008, 77, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Marques De Souza, C.G.; Peralta, R.M. Purification and characterization of the main laccase produced by the white-rot fungus Pleurotus pulmonarius on wheat bran solid state medium. J. Basic Microbiol. 2003, 43, 278–286. [Google Scholar] [CrossRef]
- Linke, D.; Bouws, H.; Peters, T.; Nimtz, M.; Berger, R.G.; Zorn, H. Laccases of Pleurotus sapidus: Characterization and cloning. J. Agric. Food Chem. 2005, 53, 9498–9505. [Google Scholar] [CrossRef] [PubMed]
- Soden, D.M.; O’Callaghan, J.; Dobson, A.D.W. Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host. Microbiology 2002, 148, 4003–4014. [Google Scholar] [CrossRef] [Green Version]
- Eggert, C.; Temp, U.; Eriksson, K.E. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: Purification and characterization of the laccase. Appl. Environ. Microbiol. 1996, 62, 1151–1158. [Google Scholar] [CrossRef] [Green Version]
- Ryan, S.; Schnitzhofer, W.; Tzanov, T.; Cavaco-Paulo, A.; Gübitz, G.M. An acid-stable laccase from Sclerotium rolfsii with potential for wool dye decolourization. Enzym. Microb. Technol. 2003, 33, 766–774. [Google Scholar] [CrossRef] [Green Version]
- Daroch, M.; Houghton, C.A.; Moore, J.K.; Wilkinson, M.C.; Carnell, A.J.; Bates, A.D.; Iwanejko, L.A. Glycosylated yellow laccases of the basidiomycete Stropharia aeruginosa. Enzym. Microb. Technol. 2014, 10, 58–59. [Google Scholar] [CrossRef] [PubMed]
- Zouari-Mechichi, H.; Mechichi, T.; Dhouib, A.; Sayadi, S.; Martínez, A.T.; Martínez, M.J. Laccase purification and characterization from Trametes trogii isolated in Tunisia: Decolorization of textile dyes by the purified enzyme. Enzym. Microb. Technol. 2006, 39, 141–148. [Google Scholar] [CrossRef]
- Bertrand, B.; Martinez-Morales, F.; Tinoco, R.; Rojas-Trejo, S.; Serrano-Carreon, L.; Trejo-Hernandez, M.R. Induction of laccases in Trametes versicolor by aqueous wood extracts. World J. Microbiol. Biotechnol. 2014, 30, 135–142. [Google Scholar] [CrossRef]
- Zheng, F.; An, Q.; Meng, G.; Wu, X.J.; Dai, Y.C.; Si, J.; Cui, B.K. A novel laccase from white rot fungus Trametes orientalis: Purification, characterization, and application. Int. J. Biol. Macromol. 2017, 102, 758–770. [Google Scholar] [CrossRef]
- Rudakiya, D.M.; Patel, D.H.; Gupte, A. Exploiting the potential of metal and solvent tolerant laccase from Tricholoma giganteum AGDR1 for the removal of pesticides. Int. J. Biol. Macromol. 2020, 144, 586–595. [Google Scholar] [CrossRef]
- Chen, S.; Ge, W.; Buswell, J.A. Biochemical and molecular characterization of a laccase from the edible straw mushroom, Volvariella volvacea. Eur. J. Biochem. 2004, 271, 318–328. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, G.; Giardina, P.; Bianco, C.; Fontanella, B.; Sannia, G. Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 2000, 66, 920–924. [Google Scholar] [CrossRef] [Green Version]
- Velázquez-Cedeño, M.; Farnet, A.M.; Billette, C.; Mata, G.; Savoie, J.M. Interspecific interactions with Trichoderma longibrachiatum induce Pleurotus ostreatus defense reactions based on the production of laccase isozymes. Biotechnol. Lett. 2007, 29, 1583–1590. [Google Scholar] [CrossRef]
- Kilaru, S.; Hoegger, P.J.; Kües, U. The laccase multi-gene family in Coprinopsis cinerea has seventeen different members that divide into two distinct subfamilies. Curr. Genet. 2006, 50, 45–60. [Google Scholar] [CrossRef]
- Courty, P.E.; Hoegger, P.J.; Kilaru, S.; Kohler, A.; Buée, M.; Garbaye, J.; Martin, F.; Kües, U. Phylogenetic analysis, genomic organization, and expression analysis of multi-copper oxidases in the ectomycorrhizal basidiomycete Laccaria bicolor. New Phytol. 2009, 182, 736–750. [Google Scholar] [CrossRef]
- Pezzella, C.; Lettera, V.; Piscitelli, A.; Giardina, P.; Sannia, G. Transcriptional analysis of Pleurotus ostreatus laccase genes. Appl. Microbiol. Biotechnol. 2013, 97, 705–717. [Google Scholar] [CrossRef]
- Fernández-Alejandre, K.I.; Flores, N.; Tinoco-Valencia, R.; Caro, M.; Flores, C.; Galindo, E.; Serrano-Carreón, L. Diffusional and transcriptional mechanisms involved in laccases production by Pleurotus ostreatus CP50. J. Biotechnol. 2016, 223, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Schneider, W.D.H.; Costa, P.C.; Fontana, R.C.; de Siqueira, F.G.; Dillon, A.J.P.; Camassola, M. Upscale and characterization of lignin-modifying enzymes from Marasmiellus palmivorus VE111 in a bioreactor under parameter optimization and the effect of inducers. J. Biotechnol. 2019, 295, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Welinder, K.G. Superfamily of plant, fungal and bacterial peroxidases. Curr. Opin. Struct. Biol. 1992, 2, 388–393. [Google Scholar] [CrossRef]
- Morgenstern, I.; Klopman, S.; Hibbett, D.S. Molecular evolution and diversity of lignin degrading heme peroxidases in the Agaricomycetes. J. Mol. Evol. 2008, 66, 243–257. [Google Scholar] [CrossRef]
- Coconi-Linares, N.; Magaña-Ortíz, D.; Guzmán-Ortiz, D.A.; Fernández, F.; Loske, A.M.; Gómez-Lim, M.A. High-yield production of manganese peroxidase, lignin peroxidase, and versatile peroxidase in Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 2014, 98, 9283–9294. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Dueñas, F.J.; Martínez, M.J.; Martínez, A.T. Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol. Microbiol. 1999, 31, 223–235. [Google Scholar] [CrossRef]
- Fernández-Fueyo, E.; Castanera, R.; Ruiz-Dueñas, F.J.; López-Lucendo, M.F.; Ramírez, L.; Pisabarro, A.G.; Martínez, A.T. Ligninolytic peroxidase gene expression by Pleurotus ostreatus: Differential regulation in lignocellulose medium and effect of temperature and pH. Fungal Genet. Biol. 2014, 72, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Ahlawat, O.P.; Rajor, A. Identification of the potential of microbial combinations obtained from spent mushroom cultivation substrates for use in textile effluent decolorization. Bioresour. Technol. 2012, 125, 217–225. [Google Scholar] [CrossRef]
- Barr, D.P.; Shah, M.M.; Aust, S.D. Veratryl alcohol-dependent production of molecular oxygen by lignin peroxidase. J. Biol. Chem. 1993, 268, 241–244. [Google Scholar] [CrossRef]
- Bissaro, B.; Várnai, A.; Røhr, Å.K.; Eijsink, V.G.H. Oxidoreductases and reactive oxygen species in conversion of lignocellulosic biomass. Microbiol. Mol. Biol. Rev. 2018, 82, e00029-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Chandra, R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 2020, 6, e03170. [Google Scholar] [CrossRef] [PubMed]
- Biko, O.D.V.; Viljoen-Bloom, M.; van Zyl, W.H. Microbial lignin peroxidases: Applications, production challenges and future perspectives. Enzym. Microb. Technol. 2020, 141, 109669. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Bilal, M.; Iqbal, H.M.N.; Raj, A. Lignin peroxidase in focus for catalytic elimination of contaminants—A critical review on recent progress and perspectives. Int. J. Biol. Macromol. 2021, 177, 58–82. [Google Scholar] [CrossRef] [PubMed]
- Hiscox, J.; Baldrian, P.; Rogers, H.J.; Boddy, L. Changes in oxidative enzyme activity during interspecific mycelial interactions involving the white-rot fungus Trametes versicolor. Fungal Genet. Biol. 2010, 47, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Hildén, K.; Mäkelä, M.R.; Lankinen, P.; Lundell, T. Agaricus bisporus and related Agaricus species on lignocellulose: Production of manganese peroxidase and multicopper oxidases. Fungal Genet. Biol. 2013, 55, 32–41. [Google Scholar] [CrossRef]
- Vos, A.M.; Jurak, E.; Pelkmans, J.F.; Herman, K.; Pels, G.; Baars, J.J.; Hendrix, E.; Kabel, M.A.; Lugones, L.G.; Wösten, H.A.B. H2O2 as a candidate bottleneck for MnP activity during cultivation of Agaricus bisporus in compost. AMB Express 2017, 7, 124. [Google Scholar] [CrossRef]
- Wariishi, H.; Valli, K.; Gold, M.H. Manganese (II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J. Biol. Chem. 1992, 267, 23688–23695. [Google Scholar] [CrossRef]
- Hofrichter, M. Review: Lignin conversion by manganese peroxidase (MnP). Enzym. Microb. Technol. 2002, 30, 454–466. [Google Scholar] [CrossRef]
- Camarero, S.; Sarkar, S.; Ruiz-Dueñas, F.J.; Martínez, M.J.; Martínez, A.T. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J. Biol. Chem. 1999, 274, 10324–10330. [Google Scholar] [CrossRef] [Green Version]
- Heinfling, A.; Ruiz-Dueñas, F.J.; Martínez, M.J.; Bergbauer, M.; Szewzyk, U.; Martínez, A.T. A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett. 1998, 428, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Kamitsuji, H.; Watanabe, T.; Honda, Y.; Kuwahara, M. Direct oxidation of polymeric substrates by multifunctional manganese peroxidase isoenzyme from Pleurotus ostreatus without redox mediators. Biochem. J. 2005, 386, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Knop, D.; Ben-Ari, J.; Salame, T.M.; Levinson, D.; Yarden, O.; Hadar, Y. Mn²-deficiency reveals a key role for the Pleurotus ostreatus versatile peroxidase (VP4) in oxidation of aromatic compounds. Appl. Microbiol. Biotechnol. 2014, 98, 6795–6804. [Google Scholar] [CrossRef] [PubMed]
- Ayuso-Fernández, I.; Ruiz-Dueñas, F.J.; Martínez, A.T. Evolutionary convergence in lignin-degrading enzymes. Proc. Natl. Acad. Sci. USA 2018, 115, 6428–6433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Dueñas, F.J.; Barrasa, J.M.; Sánchez-García, M.; Camarero, S.; Miyauchi, S.; Serrano, A.; Linde, D.; Babiker, R.; Drula, E.; Ayuso-Fernández, I.; et al. Genomic analysis enlightens Agaricales lifestyle evolution and increasing peroxidase diversity. Mol. Biol. Evol. 2021, 38, 1428–1446. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Boada, M.; Ruiz-Dueñas, F.J.; Pogni, R.; Basosi, R.; Choinowski, T.; Martínez, M.J.; Piontek, K.; Martínez, A.T. Versatile peroxidase oxidation of high redox potential aromatic compounds: Site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J. Mol. Biol. 2005, 354, 385–402. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Dueñas, F.J.; Morales, M.; Pérez-Boada, M.; Choinowski, T.; Martínez, M.J.; Piontek, K.; Martínez, A.T. Manganese oxidation site in Pleurotus eryngii versatile peroxidase: A site-directed mutagenesis, kinetic, and crystallographic study. Biochemistry 2007, 46, 66–77. [Google Scholar] [CrossRef]
- Ruiz-Dueñas, F.J.; Morales, M.; Mate, M.J.; Romero, A.; Martínez, M.J.; Smith, A.T.; Martínez, A.T. Site-directed mutagenesis of the catalytic tryptophan environment in Pleurotus eryngii versatile peroxidase. Biochemistry 2008, 47, 1685–1695. [Google Scholar] [CrossRef]
- Knop, D.; Yarden, O.; Hadar, Y. The ligninolytic peroxidases in the genus Pleurotus: Divergence in activities, expression, and potential applications. Appl. Microbiol. Biotechnol. 2015, 99, 1025–1038. [Google Scholar] [CrossRef] [PubMed]
- Knop, D.; Levinson, D.; Makovitzki, A.; Agami, A.; Lerer, E.; Mimran, A.; Yarden, O.; Hadar, Y. Limits of versatility of versatile peroxidase. Appl. Environ. Microbiol. 2016, 82, 4070–4080. [Google Scholar] [CrossRef] [Green Version]
- Salvachúa, D.; Prieto, A.; Mattinen, M.L.; Tamminen, T.; Liitiä, T.; Lille, M.; Willför, S.; Martínez, A.T.; Martínez, M.J.; Faulds, C.B. Versatile peroxidase as a valuable tool for generating new biomolecules by homogeneous and heterogeneous cross-linking. Enzym. Microb. Technol. 2013, 52, 303–311. [Google Scholar] [CrossRef]
- Wang, X.; Yao, B.; Su, X. Linking enzymatic oxidative degradation of lignin to organics detoxification. Int. J. Mol. Sci. 2018, 19, 3373. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Eltis, L.D. The multihued palette of dye-decolorizing peroxidases. Arch. Biochem. Biophys. 2015, 574, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Linde, D.; Ruiz-Dueñas, F.J.; Fernández-Fueyo, E.; Guallar, V.; Hammel, K.E.; Pogni, R.; Martínez, A.T. Basidiomycete DyPs: Genomic diversity, structural-functional aspects, reaction mechanism and environmental significance. Arch. Biochem. Biophys. 2015, 574, 66–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.J.; Shoda, M. Purification and characterization of a novel peroxidase from Geotrichum candidum dec 1 involved in decolorization of dyes. Appl. Environ. Microbiol. 1999, 65, 1029–1035. [Google Scholar] [CrossRef] [Green Version]
- Liers, C.; Pecyna, M.J.; Kellner, H.; Worrich, A.; Zorn, H.; Steffen, K.T.; Hofrichter, M.; Ullrich, R. Substrate oxidation by dye-decolorizing peroxidases (DyPs) from wood- and litter-degrading agaricomycetes compared to other fungal and plant heme-peroxidases. Appl. Microbiol. Biotechnol. 2013, 97, 5839–5849. [Google Scholar] [CrossRef] [PubMed]
- Sturm, A.; Schierhorn, A.; Lindenstrauss, U.; Lilie, H.; Brüser, T. YcdB from Escherichia coli reveals a novel class of Tat-dependently translocated hemoproteins. J. Biol. Chem. 2006, 281, 13972–13978. [Google Scholar] [CrossRef] [Green Version]
- Catucci, G.; Valetti, F.; Sadeghi, S.J.; Gilardi, G. Biochemical features of dye-decolorizing peroxidases: Current impact on lignin degradation. Biotechnol. Appl. Biochem. 2020, 67, 751–759. [Google Scholar] [CrossRef]
- Ander, P.; Marzullo, L. Sugar oxidoreductases and veratryl alcohol oxidase as related to lignin degradation. J. Biotechnol. 1997, 53, 115–131. [Google Scholar] [CrossRef]
- Daou, M.; Faulds, C.B. Glyoxal oxidases: Their nature and properties. World J. Microbiol. Biotechnol. 2017, 33, 87. [Google Scholar] [CrossRef]
- Martínez, A.T.; Ruiz-Dueñas, F.J.; Camarero, S.; Serrano, A.; Linde, D.; Lund, H.; Vind, J.; Tovborg, M.; Herold-Majumdar, O.M.; Hofrichter, M.; et al. Oxidoreductases on their way to industrial biotransformations. Biotechnol. Adv. 2017, 35, 815–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ninagawa, S.; George, G.; Mori, K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim. Biophys. Acta. 2021, 1865, 129812. [Google Scholar] [CrossRef]
- Giardina, P.; Faraco, V.; Pezzella, C.; Piscitelli, A.; Vanhulle, S.; Sannia, G. Laccases: A never-ending story. Cell Mol. Life Sci. 2010, 67, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Hoyos, C.; Morales-Álvarez, E.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; Rodríguez-Vázquez, R.; Delgado-Boada, J.M. Fungal laccases. Fungal Biol. Rev. 2013, 27, 67–82. [Google Scholar] [CrossRef]
- Reiss, R.; Ihssen, J.; Richter, M.; Eichhorn, E.; Schilling, B.; Thöny-Meyer, L. Laccase versus laccase-like multi-copper oxidase: A comparative study of similar enzymes with diverse substrate spectra. PLoS ONE 2013, 8, e65633. [Google Scholar] [CrossRef] [Green Version]
- Bourbonnais, R.; Paice, M.G. Oxidation of non-phenolic substrates-an expanded role for laccase in lignin biodegradation. FEBS Lett. 1990, 127, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Díaz-González, M.; Vidal, T.; Tzanov, T. Phenolic compounds as enhancers in enzymatic and electrochemical oxidation of veratryl alcohol and lignins. Appl. Microbiol. Biotechnol. 2011, 89, 1693–1700. [Google Scholar] [CrossRef]
- Mehra, R.; Muschiol, J.; Meyer, A.S.; Kepp, K.P. A structural-chemical explanation of fungal laccase activity. Sci. Rep. 2018, 8, 17285. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, J.; Qin, W.; Li, J.; Zhou, Y.; Gao, Y. Enhanced transformation of organic pollutants by mild oxidants in the presence of synthetic or natural redox mediators: A review. Water Res. 2021, 189, 116667. [Google Scholar] [CrossRef]
- Jeon, J.R.; Murugesan, K.; Kim, Y.M.; Kim, E.J.; Chang, Y.S. Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase. Appl. Microbiol. Biotechnol. 2008, 81, 783–790. [Google Scholar] [CrossRef]
- Munk, L.; Sitarz, A.K.; Kalyani, D.C.; Mikkelsen, D.; Meyer, A.S. Can laccases catalyze bond cleavage in lignin? Biotechnol. Adv. 2015, 33, 13–24. [Google Scholar] [CrossRef]
- Ashe, B.; Nguyen, L.N.; Hai, F.I.; Lee, D.-J.; Van de Merwe, J.P.; Leusch, F.D.L.; Price, W.E.; Nghiem, L.D. Impacts of redox-mediator type on trace organic contaminants degradation by laccase: Degradation efficiency, laccase stability and effluent toxicity. Int. Biodeterior. Biodegrad. 2016, 113, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Arya, S.K. Utility of laccase in pulp and paper industry: A progressive step towards the green technology. Int. J. Biol. Macromol. 2019, 134, 1070–1084. [Google Scholar] [CrossRef]
- Tramontina, R.; Brenelli, L.B.; Sodré, V.; Franco Cairo, J.P.; Travália, B.M.; Egawa, V.Y.; Goldbeck, R.; Squina, F.M. Enzymatic removal of inhibitory compounds from lignocellulosic hydrolysates for biomass to bioproducts applications. World J. Microbiol. Biotechnol. 2020, 36, 166. [Google Scholar] [CrossRef]
- Palonen, H.; Viikari, L. Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood. Biotechnol. Bioeng. 2004, 86, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Brenelli, L.; Squina, F.M.; Felby, C.; Cannella, D. Laccase-derived lignin compounds boost cellulose oxidative enzymes AA9. Biotechnol. Biofuels 2018, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.; Guebitz, G.M.; Pellis, A.; Nyanhongo, G.S. Harnessing the power of enzymes for tailoring and valorizing lignin. Trends Biotechnol. 2020, 38, 1215–1231. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, D.; Heck, T.; Schubert, M.; Yerlikaya, A.; Weymuth, C.; Rentsch, D.; Schober, I.; Richter, M. Enzymatic synthesis of lignin-based concrete dispersing agents. Chembiochem 2018, 19, 1365–1369. [Google Scholar] [CrossRef]
- Linger, J.G.; Vardon, D.R.; Guarnieri, M.T.; Karp, E.M.; Hunsinger, G.B.; Franden, M.A.; Johnson, C.W.; Chupka, G.; Strathmann, T.J.; Pienkos, P.T.; et al. Lignin valorization through integrated biological funneling and chemical catalysis. Proc. Natl. Acad. Sci. USA 2014, 111, 12013–12018. [Google Scholar] [CrossRef] [Green Version]
- Sonoki, T.; Morooka, M.; Sakamoto, K.; Otsuka, Y.; Nakamura, M.; Jellison, J.; Goodell, B. Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds. J. Biotechnol. 2014, 192, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Bugg, T.D.; Ahmad, M.; Hardiman, E.M.; Rahmanpour, R. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. 2011, 28, 1883–1896. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.; Wittmann, C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol. Adv. 2019, 37, 107360. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zheng, Y. Biotransformation of lignin: Mechanisms, applications and future work. Biotechnol. Prog. 2020, 36, e2922. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; You, S.; Beiyuan, J.; Luo, G.; Gupta, J.; Kumar, S.; Singh, L.; Zhang, S.; Tsang, D.C.W. Lignin valorization by bacterial genus Pseudomonas: State-of-the-art review and prospects. Bioresour. Technol. 2021, 320, 124412. [Google Scholar] [CrossRef]
- Martău, G.A.; Călinoiu, L.-F.; Vodnar, D.C. Bio-vanillin: Towards a sustainable industrial production. Trends Food Sci. Technol. 2021, 109, 579–592. [Google Scholar] [CrossRef]
- Elmore, J.R.; Dexter, G.N.; Salvachúa, D.; Martinez-Baird, J.; Hatmaker, E.A.; Huenemann, J.D.; Klingeman, D.M.; Peabody, G.L.; Peterson, D.J.; Singer, C.; et al. Production of itaconic acid from alkali pretreated lignin by dynamic two stage bioconversion. Nat. Commun. 2021, 12, 2261. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.C. Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical. J. Ind. Microbiol. Biotechnol. 2017, 44, 303–315. [Google Scholar] [CrossRef]
- Williamson, J.J.; Bahrin, N.; Hardiman, E.M.; Bugg, T.D.H. Production of substituted styrene bioproducts from lignin and lignocellulose using engineered Pseudomonas putida KT2440. Biotechnol. J. 2020, 15, e1900571. [Google Scholar] [CrossRef]
- Slagman, S.; Zuilhof, H.; Franssen, M.C.R. Laccase-mediated grafting on biopolymers and synthetic polymers: A critical review. Chembiochem. 2018, 19, 288–311. [Google Scholar] [CrossRef] [Green Version]
- Cannatelli, M.D.; Ragauskas, A.J. Laccase-mediated synthesis of lignin-core hyperbranched copolymers. Appl. Microbiol. Biotechnol. 2017, 101, 6343–6353. [Google Scholar] [CrossRef]
- Cannatelli, M.D.; Ragauskas, A.J. Conversion of lignin into value-added materials and chemicals via laccase-assisted copolymerization. Appl. Microbiol. Biotechnol. 2016, 100, 8685–8691. [Google Scholar] [CrossRef]
- Thoresen, P.P.; Matsakas, L.; Rova, U.; Christakopoulos, P. Recent advances in organosolv fractionation: Towards biomass fractionation technology of the future. Bioresour. Technol. 2020, 306, 123189. [Google Scholar] [CrossRef]
- Corona, A.; Biddy, M.J.; Vardon, D.R.; Birkved, M.; Hauschild, M.Z.; Beckham, G.T. Life cycle assessment of adipic acid production from lignin. Green Chem. 2018, 20, 3857–3866. [Google Scholar] [CrossRef] [Green Version]
- Van Duuren, J.B.J.H.; de Wild, P.J.; Starck, S.; Bradtmöller, C.; Selzer, M.; Mehlmann, K.; Schneider, R.; Kohlstedt, M.; Poblete-Castro, I.; Stolzenberger, J.; et al. Limited life cycle and cost assessment for the bioconversion of lignin-derived aromatics into adipic acid. Biotechnol. Bioeng. 2020, 117, 1381–1393. [Google Scholar] [CrossRef]
- Montazeri, M.; Eckelman, M.J. Life cycle assessment of catechols from lignin depolymerization. ACS Sustain. Chem. Eng. 2016, 4, 708–718. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Pourhashem, G.; Ullah, A.H.; Bajwa, S.G. A concise review of current lignin production, applications, products and their environmental impact. Ind. Crops Prod. 2019, 139, 111526. [Google Scholar] [CrossRef]
- Hermansson, F.; Janssen, M.; Svanström, M. Allocation in life cycle assessment of lignin. Int. J. Life Cycle Assess. 2020, 25, 1620–1632. [Google Scholar] [CrossRef]
- Moretti, C.; Corona, B.; Hoefnagels, R.; Vural-Gürsel, I.; Gosselink, R.; Junginger, M. Review of life cycle assessments of lignin and derived products: Lessons learned. Sci. Total Environ. 2021, 770, 144. [Google Scholar] [CrossRef] [PubMed]
Mushroom | NCBI Accession Number | Type (Host) (1) | Cellular Localization (Inducer) (2) | Molecular Weight (kDa) | pI | Opt. Temp. (°C) (Substrate) (3) | Opt. pH (substrate) (3) | Substrate Specificity (3),(4) (%) | Protein Structure Availability (PDB) | Application | References |
---|---|---|---|---|---|---|---|---|---|---|---|
Agaricus bisporus | - | native | extracellular | 3.3–3.65 | 6 | Syringaldazin | - | [43] | |||
A. bisporus CU13 Lacc1 | - | native | extracellular | 40 | 55 | 5 | ABTS | - | Dye decoloriztion Acid Blue dye | [44] | |
Lacc2 | - | native | extracellular | 27 | 55 | 5 | ABTS | - | |||
A. blazei | - | native | extracellular | 66 | 4.0 | 5.5 (2,6-DMP, Syringaldazine) | Syringaldazine (100) ABTS (28) 2,6-DMP (1.1) Guaiacol (0.3) | - | - | [45] | |
A. brasiliensis Lac1a/1b | BAO09156.1 BAO09157.1 | [46] | |||||||||
Lac2a */2b mutant | BAO09158.1 BAO09159.1 | recombinant (P. pastoris) | extracellular | - | - | 40–50 | 6 | ABTS | - | Aromatic compound polymerization | [47] |
Lac3 | |||||||||||
Lac4 | |||||||||||
Coprinus cinereus | Native | extracellular | 63 | 3.37 /4.0 | 60–70 | 4 (ABTS) 6.5 (Syringaldazine) | ABTS Syringaldazine | - | [48] | ||
Lcc1 | AAD30964.1 | recombinant (A. oryzae) | extracellular | 65 | 3.5 | 60–70 | 4 (ABTS) 6.5 (Syringaldazine) | ABTS Syringaldazine | 1A65 | - | [49,50] |
Lcc2 | AAD30965.1 | - | |||||||||
Lcc3 | AAD30966.1 | - | |||||||||
C. comatus Lac1 | AFD97050.1 | recombinant (P. pastoris) | extracellular | 67 | - | 65 (ABTS) 55 (Guaiacol) 70 (2,6-DMP) 50 (Syringaldazine) | 3 (ABTS) 6 (Guaiacol) 5.5 (2,6-DMP) 6 (Syringaldazine) | ABTS (100) Guaiacol (0.4) 2,6-DMP (0.1) Syringaldazine (9.1) | Dye decolorization | [51] | |
Lac2 | AFD97049.1 | - | - | - | |||||||
Cyathus bulleri | ABW75771.2 | native recombinant (P. pastoris) | extracellular extracellular | 58 53 | 30 | 5.5 (Guaiacol) 3.5–4.0 (ABTS) | Guaiacol (100) ABTS (55.9) Pyrogallo (3.3) p-Hydroquinone (2.9) | Dye decolorization | [52,53] | ||
Dichomitus squalens CBS 432.34 Laccase c1 | - | native | extracellular | 66 | 3.5 | 3 (2.6-DMP) | Syringic acid (100) 2,3-DMP (85) Guaiacol (80) Catechol (51) p-Hydroquinone (70) 2,6-DMP (87) | [54] | |||
Laccase c2 | - | native | extracellular | 66 | 3.6 | 3 (2.6-DMP) | Syringic acid (100) 2,3-DMP (82) Guaiacol (77) Catechol (50) p-Hydroquinone (69) DMP (85) | ||||
Ganoderma lucidum 77002 laccase Glac15 | - | native | extracellular | 66 | 45–55 | 4.5–5.0 (Syringaldazine) | Syringaldazine (100) DMP (9.9) Guaiacol (3.5) Catechol (11.3) L-Dopamine (5.3) ABTS (16.8) K4Fe(CN)6 (9.4) | Removal of phenolic compounds in corn stover prehydrolysate for bioethanol fermentation | [55] | ||
Grifola frondosa Lac1 | native | extracellular | 71 | 3.5 | 30–60 | 2 (ABTS) 2 (2,6-DMP) 3 (Guaiacol) 3 (Catechnol) 5 (L-DOPA) | ABTS (100) 2,6-DMP (0.6) Guaiacol (0.2) Catechnol (0.05) L-DOPA (0.13)) | [56] | |||
rLac2 | BBB89275 | recombinant (P. pastoris) | extracellular | 93 (60) | 30–40 | 2 (ABTS) 3 (2,6-DMP) 4 (Guaiacol) | ABTS (100) 2,6-DMP (2.0) Guaiacol (0.14) | [57] | |||
rLac3 | BBB89276 | recombinant (P. pastoris) | extracellular | 96 (60) | 30–40 | 2 (ABTS) 4 (2,6-DMP) 4 (Guaiacol) | ABTS (100) 2,6-DMP (0.22) Guaiacol (0.05) | [57] | |||
Hericium coralloides | - | native | extracellular | 65 | 40 | 2.2 (ABTS) | ABTS (100) DMPD (34.9) Catechol (34.2) m-Catechol (17.6) Pyrogallol (3.1) | HIV-1 inhibition | [58] | ||
Lentinula edodes H600 Lcc1 | native | extracellular | 72.2 | 3.0 | 40 | 4.0 (ABTS) | ABTS (100) p-Phenylenediamine (0.05) Pyrogallol (2) DMP (1.7) Guaiacol (0.04) Catechol (0.02) | Dye decolorization Naphtol Blue Black, Bromophenol blue Remazol brilliant blue R | [59] | ||
Lcc2 | native | intracellular | 53–58 | 6.9 | 40 | 3.0 (ABTS) | ABTS (100) DMP (67) Pyrogallol (9.8) Guaiacol (2.4) Catechol (1.4) L-DOPA (0.74) Ferulic acid (0.16) p-Phenylenediamine (0.02) | [60] | |||
rLcc1 | BAB84354.1 BAB83131.1 | recombinant (tobacco BY-2) | extracellular | 72.2 | ABTS (100) DMP (30) Pyrogallol (10) Guaiacol (3) Catechol (<1) L-DOPA (<1) | Dye decolorization Naphtol Blue Black Bromophenol blue Remazol brilliant blue R | [61] | ||||
L. edodes L54 Lcc1A | AET86511.1 | recombinant (P. pastoris) | extracellular | 72.2 | 20–40 | ABTS (100) DMP (4.6) Guaiacol (0.4) L-DOPA (0.06) Catechol (0.16) | Dye decolorization Methyl red Reactive orange 16 Coomassie brilliant blue R-250 Bromophenol blue Crystal violet Indigo carmine Naphthalo blue black Remazol brilliant blue R PHA degradation | [62] | |||
Lcc1B | AET86512.1 | recombinant (P. pastoris) | extracellular | 72.2 | 20–40 | ABTS (48) DMP (44) Guaiacol (40) L-DOPA (45) Catechol (100) | |||||
L. edodes L54A Lcc4A/B | AGO04559.1 AGO04560.1 | recombinant (P. pastoris) | extracellular | 70 | 49 | 2.5 | ABTS (100) Catechol (6.8) DMP (18.4) L-DOPA (1.9) Guaiacol (0.45) | Bioremediation | [63] | ||
Lcc5 | AGO04561.1 | recombinant (P. pastoris) | extracellular | 55 | 99 | 2.5 | ABTS (100) Catechol (6.1) DMP (76.4) L-DOPA (2.3) Guaiacol (3.7) | Bioremediation | |||
Lcc7 | AGO04562.1 | recombinant (P. pastoris) | extracellular | 70 | 57 | 3 | ABTS (543) Catechol (0.003) DMP (0.027) L-DOPA (-) Guaiacol (0.004) | Bioremediation | |||
Marasmius sp. Laccase I Laccase II | native | extracellular | 53 | 3.8 | 45–55 | 3 (ABTS) 6 (Syringaldazine) 5.5 (Guaiacol) | Dye decolorization Blue H-EGN 125 Blue PN-3R Crystal Violet Lanaset Blue5G Levafix Blue E-RA Procion Royal H-EXL Remazol Brilliant Blue BB Remazol Brilliant Blue R Remazol Bordo B Remazol Brilliant Orange FR Remazol Golden Yellow RNL Remazol Black RL | [64] | |||
M. scorodonius NO. 42740 | native | extracellular | 67 | 75 | 3.4 (ABTS) 4.6 (DMP) 4.0 (Guaiacol) | ABTS (100) DMP (4.6) Guaiacol (3.1) | Dye decolorization Malachite green Crystal violet Congo red Methylene green, Reactive orange 16 Remazol brilliant blue R | [65] | |||
M. quercophilus C30 (Trametes sp. C30) | AAF06967.1 | native | extracellular (p-hydroxybenzoic acid) | 63 | 3.6 | 75 | 4.5 (Syringaldazine) | ABTS (100) Catechol 4-Methyl catechol Protocatechuic acid Guaiacol Coniferylic acid Coumarylic alcohol Sinapylic alcohol Ferulic acid Gallic acid Caffeic acid | [66] | ||
Panus tigrinus CBS 577.79 | native | extracellular (2,5-xylidine) | 69.1 | 3.15 | 55 | 3.75 (DMP) | ABTS (100) DMP (51) | [67] | |||
Perenniporia tephropora | native | extracellular | 63 | 3.3 | 4 (DMP) 5 (ABTS) | DMP (100) ABTS (33.5) | Dye decolorization Remazol brilliant blue R (91) Neolane blue (88) Neolane pink (81) | [68] | |||
Phanerochaete chrysosporium BKM-F1767 | native | extracellular | 46.5 | ABTS 6-Hydroxydopamine | [69] | ||||||
Pleurotus eryngii CBS 613.91Laccase I | native | extracellular | 65 | 4.1 | 65 | 4 (ABTS) | DMP (66.5) MeOH2 (100) QH2 (7.9) Catechol (25.1) Guaiacol (1.4) p-Methothyphenol (23.2) p-Anisidine (11.3) p-Aminophenol (10.7) | [70] | |||
Laccase II | native | extracellular | 61 | 4.2 | 52 | 3.5 (ABTS) | DMP (100) MeOH2 (63.4) QH2 (12.2) Catechol (46.3) Guaiacol (2.4) p-Methothyphenol (11.0) p-Anisidine (65.9) p-Aminophenol (9.8) | ||||
Pel3 | AAV85769.1 | recombinant (A. niger) | extracellular | 58 | 2.5 (ABTS) 6 (DMP) | ABTS | [71] | ||||
Pel4 | ABB30169.1 | ||||||||||
P. eryngii var. tuoliensis C.J. Mou | native | extracellular | 60 | 50 | 7 (Estirol) | ABTS (100) DMP (78.8) Catechol (77.8) Pyrogallol (39.9) Guaiacol (57.6) Estriol (6.6) | Degradation of natural steroid hormones | [72] | |||
P. florida ITCC 3308 L1 | native | extracellular | 77–82 | 4.1 | 50 | [73] | |||||
L2 | native | extracellular | 70–73 | 4.2 | 6 (Guaiacol) 5.5 (o-Dianisidine) 4.0 (ABTS) | o-Dianisidine (100) Guaiacol (0.8) | |||||
P. nebrodensis Lac1 | native | extracellular | 68 | 50–60 | 3 (ABTS) | ABTS (100) Guaiacol (16) Dimethylphthalate (22.8) Syringaldazine (100) Ferulic acid (72.7) Caffeic acid (34.6) Hydroquinone (25) Catechol (100) p-Phenylenediamine (18) | [74] | ||||
Lac2 | native | extracellular | 64 | 60 | 3 (ABTS) | ABTS (100) Guaiacol (24) Dimethylphthalate (100) Syringaldazine (89.5) Ferulic acid (3.6) Caffeic acid (12.5) Hydroquinone (6.25) Catechol (92.7) p-Phenylenediamine (54.6) | |||||
Lac3 | native | extracellular | 51 | 50–60 | 3 (ABTS) | ABTS (100) Guaiacol (100) Dimethylphthalate (92.4) Syringaldazine (84.5) Ferulic acid (100) Caffeic acid (100) Hydroquinone (100) Catechol (42.7) p-Phenylenediamine (100) | |||||
P. ostreatus rPOXA1b | CAA84357.1 | recombinant (Kluyveromyces lactis; Saccharomyces cerevisiae) | extracellular | 62 | 6.5–7.6 | ABTS (100) DMP (84) | [75] | ||||
rPOXC | CAA06292.1 | recombinant (K. lactis; S. cerevisiae) | extracellular | 71 | 7.2–7.3 | ABTS (100) DMP (7.2) | |||||
P. ostreatus (Jacq.:Fr.) Kummer (type Florida), | Dye decolorization Remazol Brilliant Blue R | [76] | |||||||||
POXC | native | extracellular | 4.5 (RBBR) | ||||||||
POXA3 | CAC69853 | native | extracellular | 4 (RBBR) | |||||||
rPOXA3 (Large subunit) | recombinant (K. lactis) | extracellular | [78] | ||||||||
P. ostreatus MYA-2306 | [77] | ||||||||||
POXA3a | CAL64897.1 (small subunit) | native | extracellular | 67 (L)/ 18–16(S) | |||||||
rPOXA3 (small subunit) | recombinant (E. coli) | 18–16(S) | [78] | ||||||||
POX3b | CAL64898.1 (small subunit) | native | extracellular | 67 (L)/ 18–16(S) | |||||||
Pleurotus pulmonarius CCB19 Lcc1 | extracellular | [79] | |||||||||
Lcc2 | extracellular | 46 | 45 | 4–5.5 (Guaiacol) 6–8 (ABTS) 6.2–6.5 (Syringaldazine) | Syringaldazine (100) ABTS (13.3) Guaiacol (1.0) | ||||||
P. sapidus DSMZ 8266 | AJ786026 | native | extracellular | 66.8/64.3 | 4.0–4.1 | 50 | 3.5 (ABTS) | [80] | |||
P. sajor-caju P32–1 Lac4 | AAG27436.1 | recombinant (P. pastoris) | extracellular | 59 | 4.38 | 35 | 3.3 (ABTS) 6 (DMP) 6.5 (Syringaldazine) 7 (Guaiacol) | ABTS (6.1) DMP (100) Syringaldazine (25.9) Guaiacol (21.3) | [81] | ||
Pycnoporus cinnabarinus | native (2,5-xylidine) | extracellular | 81 | 3.7 | 50 | 4 (Guaiacol) | ABTS (100) Guaiacol (31.2) 4-Hydroxyindole (23.8) m-Catechol (22.9) DMP (22.1) Ferulic acid (16.8) Catechol (16.4) Hydroquinone (13.7) Pyrogallol (7.6) DMPD (4.4) | [82] | |||
Sclerotium rolfsii CBS 350.80 SRL1 | native (2,5-xylidine) | extracellular | 55 | 5.2 | 62 | 2.4 (ABTS) | Syringaldazine (100) ABTS (82) DMP (60) Guaiacol (21) Catechol (11) Lignin sulfonic acid (0.9) Pyrogallol (7) | Dye decolorization Diamond Black PV 200 | [83] | ||
SRL2 | native (2,5-xylidine) | extracellular | 86 | ||||||||
Stropharia aeruginosa CBS 839.87 Yel1p | AFE48785.1 | native | extracellular | 55 | 40 | 3 (ABTS) | ABTS (100) o-Dianisidin (6.8) Syringaldazine (2.3) | Dye decolorization Amaranth (5) New coccine (7) Orange G (8) Tartrazine (8) Remazol Brilliant Blue R (19) Reactive Black (12) Reactive Orange (7) | [84] | ||
Yel3p | extracellular | 55 | 40 | 3 (ABTS) | ABTS (100) o-Dianisidin (0.90) Syringaldazine (0.94) | Dye decolorization Amaranth (8) New coccine (13) Orange G (31) Tartrazine (11) Remazol Brilliant Blue R (59) Reactive Black (19) Reactive Orange (13) | |||||
Trametes trogii LacI | native | extracellular | 58–62 | 4.2 | 50 | 2 (ABTS) 2.5 (DMB) | ABTS | Dye decolorization Neolane yellow Neolane pink Neolane blue Bezaktiv yellow | [85] | ||
LacII | native | extracellular | 58–62 | 4.5 | 50 | ||||||
Trametes versicolor HEMIM-9 Lcc1 Lcc2 | native (Synthetic inducer) | 55 130 | 4.6–5.8 | [86] | |||||||
Trametes orientalis Tolacc-T | native | extracellular | 44 | 80 | 4 (ABTS) | ABTS (100) Hydroquinone (14) Guaiacol (3.3) Phenol (2.2) Veratryl alcohol (1.8) L-DOPA (1.6) Tyrosine (1.1) Catechol (0.7) DMP (0.5) Gallic acid (0.4) | Dye decolorization (5) Reactive Blue 4 (40) Reactive Blue 19 (34) Acid Black 172 (51) Direct Red 28 (60) Basic Blue 9 (11) Basic Red 5 (51) Vat Blue 1 (43) Acid Green 1 (69) Basic Violet 3 (65) | [87] | |||
Tricholoma giganteum AGDR1 | AWX24479.1 | native | extracellular | 41 | 6.45 | 45 | 3 (ABTS) | ABTS (100) Syringaldazine (26.8) Guaiacol (1.69) o-Dianisidine (0.99) Catechol (0.90) DMP (0.54) Vanillin (0.44) Phenol Red (0.75) | Removal of pesticides(5) Chlorpyrifos (29.4) Profenofos (6.89) Thiophanate methyl (72.4) | [88] | |
Volvariella volvacea | AAO72981.2 | native | extracellular | 58 | 3.7 | 45 | 3 (ABTS) 5.6 (Syringaldazine) 4.6 (DMP) | ABTS (100) Syringaldazine (89.6) DMP (1.8) | [89] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S. Mushroom Ligninolytic Enzymes―Features and Application of Potential Enzymes for Conversion of Lignin into Bio-Based Chemicals and Materials. Appl. Sci. 2021, 11, 6161. https://doi.org/10.3390/app11136161
Kim S. Mushroom Ligninolytic Enzymes―Features and Application of Potential Enzymes for Conversion of Lignin into Bio-Based Chemicals and Materials. Applied Sciences. 2021; 11(13):6161. https://doi.org/10.3390/app11136161
Chicago/Turabian StyleKim, Seonghun. 2021. "Mushroom Ligninolytic Enzymes―Features and Application of Potential Enzymes for Conversion of Lignin into Bio-Based Chemicals and Materials" Applied Sciences 11, no. 13: 6161. https://doi.org/10.3390/app11136161
APA StyleKim, S. (2021). Mushroom Ligninolytic Enzymes―Features and Application of Potential Enzymes for Conversion of Lignin into Bio-Based Chemicals and Materials. Applied Sciences, 11(13), 6161. https://doi.org/10.3390/app11136161