Size Effect on the Acoustic Emission Behavior of Textile-Reinforced Cement Composites
<p>Average frequency–rise time plot from bending tests on TRC beams, taken from [<a href="#B7-applsci-11-05425" class="html-bibr">7</a>].</p> "> Figure 2
<p>Schematic representation of AE in curved plates with different widths. Corresponding to (<b>a</b>) a beam of 25 mm width (<b>b</b>) a beam of 50 mm width, (<b>c</b>) plate with 300 mm width.</p> "> Figure 3
<p>(<b>a</b>,<b>b</b>) Bending set-up. (<b>c</b>) AE sensor positions.</p> "> Figure 4
<p>TRC plate with AE sensors at a distance of 100 mm.</p> "> Figure 5
<p>Waveforms from sensors at different distances from pencil lead excitation on the TRC plate: (<b>a</b>) out-of-plane excitation and (<b>b</b>) in-plane excitation. The arrow in front of the plate denotes the direction of the excitation. The amplitude values of the second sensor are shifted downward for clarity.</p> "> Figure 6
<p>Load history with (<b>a</b>) cumulative hits and (<b>b</b>) rise times from a curved TRC beam 25 mm wide.</p> "> Figure 7
<p>Load history with (<b>a</b>) cumulative hits and (<b>b</b>) rise times from a curved TRC plate 300 mm wide.</p> "> Figure 8
<p>Sliding average of the rise time (<b>a</b>) and AF (<b>b</b>) for the first 200 hits in specimens with different widths (sliding window of 30 points).</p> "> Figure 9
<p>Representative AE waveforms during the cracking stage from a beam (width of 25 mm) and a plate (width of 300 mm).</p> "> Figure 10
<p>Sliding average of the rise time for plane TRC specimens with different widths under three-point loading.</p> "> Figure 11
<p>Average frequency vs. rise time of matrix cracking signals for a curved beam and a curved plate specimen. The large symbols denote the centers of the two populations. The axes of the ellipses are equal to the standard deviation (horizontal: rise time; vertical: average frequency).</p> ">
Abstract
:1. Introduction
2. Experimental Details
3. Results
3.1. Effect of Propagation Distance
3.2. Effect of the Width of the Curved Elements on AE Behavior
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grosse, C.U.; Ohtsu, M. (Eds.) Acoustic Emission Testing; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Ohtsu, M. Recommendation of RILEM TC 212-ACD: Acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete, Test method for damage qualification of reinforced concrete beams by acoustic emission. Mater. Struct. 2010, 43, 1183–1186. [Google Scholar]
- Kundu, T. Acoustic source localization. Ultrasonics 2014, 54, 25–38. [Google Scholar] [CrossRef]
- Kravchuk, R.; Landis, E.N. Acoustic emission-based classification of energy dissipation mechanisms during fracture of fiber-reinforced ultra-high-performance concrete. Constr. Build. Mater. 2018, 176, 531–538. [Google Scholar] [CrossRef]
- Godin, N.; Reynaud, P.; Fantozzi, G. Challenges and limitations in the identification of acoustic emission signature of damage mechanisms in composites materials. Appl. Sci. 2018, 8, 1267. [Google Scholar] [CrossRef] [Green Version]
- Kalteremidou, K.-A.; Aggelis, D.G.; Van Hemelrijck, D.; Pyl, L. On the use of acoustic emission to identify the dominant stress/strain component in carbon/epoxy composite materials. Mech. Res. Commun. 2021, 111, 103663. [Google Scholar] [CrossRef]
- Aggelis, D.G.; De Sutter, S.; Verbruggen, S.; Tsangouri, E.; Tysmans, T. Acoustic emission characterization of damage sources of lightweight hybrid concrete beams. Eng. Fract. Mech. 2019, 210, 181–188. [Google Scholar] [CrossRef]
- Tsangouri, E.; Aggelis, D.G. A review of acoustic emission as indicator of reinforcement effectiveness in concrete and cementitious composites. Constr. Build. Mater. 2019, 224, 198–205. [Google Scholar] [CrossRef]
- Chandarana, N.; Sanchez, D.M.; Soutis, C.; Gresil, M. Early damage detection in composites during fabrication and mechanical testing. Materials 2017, 10, 685. [Google Scholar] [CrossRef] [PubMed]
- De Sutter, S.; Verbruggen, S.; Tysmans, T.; Aggelis, D.G. Fracture monitoring of lightweight composite-concrete beams. Compos. Struct. 2017, 167, 11–19. [Google Scholar] [CrossRef]
- Abdelrahman, M.; ElBatanouny, M.; Dixon, K.; Serrato, M.; Ziehl, P. Remote monitoring and evaluation of damage at a decommissioned nuclear facility using acoustic emission. Appl. Sci. 2018, 8, 1663. [Google Scholar] [CrossRef] [Green Version]
- Barat, V.A.; Terentyev, D.A.; Kostenko, P.P.; Bardakov, V.V.; Alyakritsky, A.L.; Koltsov, V.G.; Trofimov, P.N. Acoustic emission monitoring of industrial facilities under static and cyclic loading. Appl. Sci. 2018, 8, 1228. [Google Scholar]
- Domaneschi, M.; Niccolini, G.; Lacidogna, G.; Cimellaro, G.P. Nondestructive monitoring techniques for crack detection and localization in RC elements. Appl. Sci. 2020, 10, 3248. [Google Scholar] [CrossRef]
- Ono, K. Structural Health Monitoring of Large Structures Using Acoustic Emission–Case Histories. Appl. Sci. 2019, 9, 4602. [Google Scholar] [CrossRef] [Green Version]
- Aggelis, D.G.; Shiotani, T.; Papacharalampopoulos, A.; Polyzos, D. The influence of propagation path on elastic waves as measured by acoustic emission parameters. Struct. Health Monit. 2012, 11, 359–366. [Google Scholar] [CrossRef]
- Sause, M.G.R.; Hamstad, M.A. Numerical modeling of existing acoustic emission sensor absolute calibration approaches. Sens. Actuators A Phys. 2018, 269, 294–307. [Google Scholar] [CrossRef]
- Scholey, J.J.; Wilcox, P.D.; Wisnom, M.R.; Friswell, M.I. Quantitative experimental measurements of matrix cracking and delamination using acoustic emission. Compos. Part A 2010, 41, 612–623. [Google Scholar] [CrossRef]
- Aggelis, D.G.; Matikas, T.E. Effect of plate wave dispersion on the acoustic emission parameters in metals. Comput. Struct. 2012, 98, 17–22. [Google Scholar] [CrossRef]
- Al-Jumaili, S.K.; Holford, K.M.; Eaton, M.J.; Pullin, R. Parameter correction technique (PCT): A novel method for acoustic emission characterisation in large-scale composites. Compos. Part B 2015, 75, 336–344. [Google Scholar] [CrossRef]
- Hamstad, M.A.; Gallagher, A.O.; Gary, J. Effects of lateral plate dimensions on acoustic emission signals from dipole sources. J. Acoust. Emiss. 2001, 19, 258–274. [Google Scholar]
- Gorman, M.R. Some connections between AE testing of large structures and small samples. Nondestruct. Test. Eval. 1998, 14, 89–104. [Google Scholar] [CrossRef]
- Ospitia, N.; Aggelis, D.G.; Tsangouri, E. Dimension Effects on the Acoustic Behavior of TRC Plates. Materials 2020, 13, 955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsangouri, E.; Van Driessche, A.; Livitsanos, G.; Aggelis, D.G. Design, casting and fracture analysis of textile reinforced cementitious shells. Dev. Built Environ. 2020, 3, 100013. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ospitia, N.; Hardy, A.; Si Larbi, A.; Aggelis, D.G.; Tsangouri, E. Size Effect on the Acoustic Emission Behavior of Textile-Reinforced Cement Composites. Appl. Sci. 2021, 11, 5425. https://doi.org/10.3390/app11125425
Ospitia N, Hardy A, Si Larbi A, Aggelis DG, Tsangouri E. Size Effect on the Acoustic Emission Behavior of Textile-Reinforced Cement Composites. Applied Sciences. 2021; 11(12):5425. https://doi.org/10.3390/app11125425
Chicago/Turabian StyleOspitia, Nicolas, Aymeric Hardy, Amir Si Larbi, Dimitrios G. Aggelis, and Eleni Tsangouri. 2021. "Size Effect on the Acoustic Emission Behavior of Textile-Reinforced Cement Composites" Applied Sciences 11, no. 12: 5425. https://doi.org/10.3390/app11125425
APA StyleOspitia, N., Hardy, A., Si Larbi, A., Aggelis, D. G., & Tsangouri, E. (2021). Size Effect on the Acoustic Emission Behavior of Textile-Reinforced Cement Composites. Applied Sciences, 11(12), 5425. https://doi.org/10.3390/app11125425