Synthesis, Anticancer Activity, and Molecular Modeling of New Halogenated Spiro[pyrrolidine-thiazolo-oxindoles] Derivatives
"> Figure 1
<p>Natural (Spirotryprostatin A and B) and other synthetic spirooxindole scaffolds with high biological importance and structure-activity relationship.</p> "> Figure 2
<p>Shape similarity of <b>5g</b> with <b>BI-0252</b> as analyzed by Rapid Overlay Shape Chemical Structure (ROCS) and visualized by VIDA application.</p> "> Scheme 1
<p>Synthesis of tetrahydro-1′<span class="html-italic">H</span>-spiro[indoline-3,5’-pyrrolo [1,2-<span class="html-italic">c</span>]thiazol]-2-one <b>5a–n</b>.</p> "> Scheme 2
<p>Plausible reaction mechanism of the synthesized compounds.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of 5a–n
2.2. Biological Activity
2.3. Effect of the Dibromo on the Anticancer Activity
2.4. Shape Alignment by Rapid Overlay Chemical Structure (ROCS) Analysis
2.5. Predicted Pharmacokinetics and Pharmacodynamics Parameters
2.6. Ligand Efficiency (LE) and Lipophilic Efficiency (LipE)
2.7. Lipophilic Efficiency (LipE) or Ligand Lipophilic Efficiency (LEE)
2.8. Structure-Activity Relationship
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Santos, M.M. Recent advances in the synthesis of biologically active spirooxindoles. Tetrahedron 2014, 52, 9735–9757. [Google Scholar] [CrossRef]
- Pavlovska, T.L.; Redkin, R.G.; Lipson, V.V.; Atamanuk, D.V. Molecular diversity of spirooxindoles. Synthesis and biological activity. Mol. Divers. 2016, 20, 299–344. [Google Scholar] [CrossRef]
- Arun, Y.; Bhaskar, G.; Balachandran, C.; Ignacimuthu, S.; Perumal, P. Facile one-pot synthesis of novel dispirooxindole-pyrrolidine derivatives and their antimicrobial and anticancer activity against a549 human lung adenocarcinoma cancer cell line. Bioorg. Med. Chem. Lett. 2013, 23, 1839–1845. [Google Scholar] [CrossRef] [PubMed]
- Girgis, A.S. Regioselective synthesis of dispiro [1H-indene-2, 3’-pyrrolidine-2’, 3 “-[3H] indole]-1, 2 “(1 “h)-diones of potential anti-tumor properties. Eur. J. Med. Chem. 2009, 44, 91–100. [Google Scholar] [CrossRef]
- Islam, M.S.; Park, S.; Song, C.; Kadi, A.A.; Kwon, Y.; Rahman, A.M. Fluorescein hydrazones: A series of novel non-intercalative topoisomerase IIα catalytic inhibitors induce G1 arrest and apoptosis in breast and colon cancer cells. Eur. J. Med. Chem. 2017, 125, 49–67. [Google Scholar] [CrossRef]
- Ali, M.A.; Ismail, R.; Choon, T.S.; Yoon, Y.K.; Wei, A.C.; Pandian, S.; Kumar, R.S.; Osman, H.; Manogaran, E. Substituted spiro [2.3’] oxindolespiro [3.2 “]-5, 6-dimethoxy-indane-1 “-one-pyrrolidine analogue as inhibitors of acetylcholinesterase. Bioorg. Med. Chem. Lett. 2010, 20, 7064–7066. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, A.; Sahu, V.; Upadhyay, S.; Singh, J. Synthesis of bioactive spiro-2-[3’-(2’-phenyl)-3h-indolyl]-1-aryl-3-phenylaziridines and SAR studies on their antimicrobial behavior. Med. Chem. Res. 2009, 18, 383–395. [Google Scholar] [CrossRef]
- Uchida, R.; Imasato, R.; Shiomi, K.; Tomoda, H.; Ōmura, S. Yaequinolones j1 and j2, novel insecticidal antibiotics from penicillium sp. Fki-2140. Org. Lett. 2005, 7, 5701–5704. [Google Scholar] [CrossRef]
- Barakat, A.; Islam, M.S.; Ghawas, H.M.; Al-Majid, A.M.; El-Senduny, F.F.; Badria, F.A.; Elshaier, Y.A.; Ghabbour, H.A. Design and synthesis of new substituted spirooxindoles as potential inhibitors of the MDM2–p53 interaction. Bioorg. Chem. 2019, 86, 598–608. [Google Scholar] [CrossRef]
- Altowyan, M.S.; Barakat, A.; Al-Majid, A.M.; Al-Ghulikah, H.A. Spiroindolone analogues bearing benzofuran moiety as a selective cyclooxygenase COX-1 with TNF-α and IL-6 inhibitors. Saudi J. Biol. Sci. 2020. [Google Scholar] [CrossRef]
- Altowyan, M.S.; Barakat, A.; Al-Majid, A.M.; Al-Ghulikah, H. Spiroindolone analogues as potential hypoglycemic with dual inhibitory activity on α-amylase and α-glucosidase. Molecules 2019, 24, 2342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, G.S.; Desta, Z.Y. Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem. Rev. 2012, 112, 6104–6155. [Google Scholar] [CrossRef] [PubMed]
- Bariwal, J.; Voskressensky, L.G.; Van der Eycken, E.V. Recent advances in spirocyclization of indole derivatives. Chem. Soc. Rev. 2018, 47, 3831–3848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuntz, I.; Chen, K.; Sharp, K.; Kollman, P. The maximal affinity of ligands. Proc. Natl. Acad. Sci. USA 1999, 96, 9997–10002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, A.; Han, Y.; Hopfinger, A.J. Predicting caco-2 cell permeation coefficients of organic molecules using membrane-interaction qsar analysis. J. Chem. Inf. Comput. Sci. 2002, 42, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Available online: https//preadmet.Bmdrc.Kr/druglikeness (accessed on 12 November 2019).
- Available online: http://molsoft.Com/mprop/ (accessed on 12 November 2019).
- Jabeen, I.; Pleban, K.; Rinner, U.; Chiba, P.; Ecker, G.F. Structure-activity relationships, ligand efficiency, and lipophilic efficiency profiles of benzophenone-type inhibitors of the multidrug transporter p-glycoprotein. J. Med. Chem. 2012, 55, 3261–3273. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Ghawas, H.M.; El-Senduny, F.F.; Al-Majid, A.M.; Elshaier, Y.A.; Badria, F.A.; Barakat, A. Synthesis of new thiazolo-pyrrolidine-(spirooxindole) tethered to 3-acylindole as anticancer agents. Bioorg. Chem. 2019, 82, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Arnott, J.A.; Kumar, R.; Planey, S.L. Lipophilicity indices for drug development. J. Appl. Biopharm. Pharmacokinet. 2013, 1, 31–36. [Google Scholar]
Sample Availability: Samples of the compounds 5a–n are available from the authors. |
Compound | R | Cancer Type/Cell Line | ||
---|---|---|---|---|
Liver HepG2 (IC50 a, µM) | Breast MCF-7 (IC50, µM) | Colon HCT-116 (IC50, µM) | ||
4b | 3.57 ± 0.50 | NT c | 8.00 ± 1.20 | |
4c | 2.00 ± 0.50 | NT | 3.00 ± 0.50 | |
4d | 0.85 ± 0.20 | NT | 2.00 ± 0.60 | |
4f | 0.80 ± 0.10 | NT | 3.00 ± 0.50 | |
4i | 2.40 ± 1.00 | NT | 8.00 ± 0.30 | |
4j | >50.00 | NT | 14.50 ± 1.50 | |
4k | >50.00 | NT | 19.00 ± 2.00 | |
4l | 0.90 ± 0.10 | NT | 1.57 ± 0.30 | |
4m | 2.40 ± 0.40 | NT | 5.00 ± 0.30 | |
4n | 0.90 ± 0.20 | NT | 2.90 ± 0.40 | |
5a | 10.00 ± 0.47 | 6.00 ± 0.13 | 4.50 ± 0.05 | |
5b | 30.00 ± 0.38 | 5.50 ± 0.47 | 5.00 ± 0.30 | |
5c | 25.00 ± 0.09 | 3.00 ±1.26 | 2.90 ± 0.25 | |
5d | >50.00 ± 0.28 | 9.00 ± 0.05 | 8.50 ± 0.10 | |
5e | 22.00 ± 1.02 | 3.00 ± 0.32 | 5.00 ± 0.12 | |
5f | 50.00 ± 0.38 | 2.50 ± 1.66 | 2.20 ± 0.15 | |
5g | 5.00 ± 0.66 | 4.00 ± 0.29 | 2.80 ± 0.20 | |
5h | NA b | NA | NA | |
5i | NA | NA | NA | |
5j | NA | NA | NA | |
5k | 40.00 ± 0.57 | 8.00 ± 0.20 | 13.00 ± 0.72 | |
5l | 35.00 ± 0.45 | 3.00 ± 0.04 | 2.80 ± 0.19 | |
5m | 17.00 ± 0.678 | 4.50 ± 0.08 | 4.00 ± 0.52 | |
5n | 30.00 ± 0.79 | 5.00 ± 0.16 | 3.70 ± 1.04 | |
cisplatin | 9.00 ± 0.76 | 9.00 ± 0.29 | 3.00 ± 0.24 |
# | Lipinski’s Rule | PreADMET [16] Prediction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MW | LogP [17] | HBD | HBA | BBB | PPB | HIA | Caco-2 Value | Skin Permeability | Drug-Likeness Model Score [17] | |
5a | 607.98 | 5.02 | 1 | 4 | 0.39 | 100.00 | 97.99 | 39.51 | −2.45 | 0.36 |
5b | 636.01 | 5.82 | 1 | 4 | 0.95 | 94.44 | 98.03 | 41.48 | −2.28 | 0.60 |
5c | 679.25 | 6.44 | 1 | 4 | 1.64 | 100.00 | 98.04 | 44.04 | −2.49 | 0.83 |
5e | 646.34 | 5.56 | 1 | 4 | 0.51 | 100.00 | 97.99 | 40.35 | −2.75 | 0.63 |
5f | 768.15 | 6.72 | 1 | 4 | 1.96 | 100.00 | 97.96 | 46.69 | −2.15 | 0.71 |
5g | 700.35 | 4.47 | 1 | 8 | 0.017 | 100.00 | 98.94 | 18.80 | −2.46 | 0.44 |
5l | 768.15 | 6.72 | 1 | 4 | 1.69 | 100.00 | 97.96 | 46.60 | −2.15 | 0.63 |
5m | 646.34 | 5.56 | 1 | 4 | 0.49 | 100.00 | 97.99 | 40.35 | −2.79 | 0.72 |
5n | 746.34 | 7.49 | 1 | 4 | 3.33 | 100.00 | 98.03 | 48.45 | −1.80 | 0.47 |
Compounds | R | NHA | cLog P | Breast Cancer Cells | Colon Cancer Cells | ||||
---|---|---|---|---|---|---|---|---|---|
pIC50 | LE | LipE (LEE) | pIC50 | LE | LipE (LEE) | ||||
5a | 35 | 5.02 | 5.22 | 0.2 | 0.20 | 5.34 | 0.2 | 0.32 | |
5b | 37 | 5.82 | 5.26 | 0.19 | -0.56 | 5.3 | 0.2 | -0.52 | |
5c | 37 | 6.44 | 5.52 | 0.26 | -0.92 | 5.53 | 0.26 | -0.91 | |
5e | 37 | 5.56 | 5.52 | 0.26 | -0.04 | 5.3 | 0.2 | -0.26 | |
5f | 37 | 6.72 | 5.6 | 0.2 | -1.12 | 5.66 | 0.21 | -1.06 | |
5g | 41 | 4.47 | 5.39 | 0.22 | 0.92 | 5.55 | 0.19 | 1.08 | |
5l | 37 | 6.72 | 5.52 | 0.26 | -1.2 | 5.55 | 0.2 | -0.17 | |
5m | 37 | 5.56 | 5.34 | 0.2 | -0.22 | 5.39 | 0.2 | -0.17 | |
5n | 43 | 7.49 | 5.3 | 0.17 | -2.19 | 5.43 | 0.17 | -2.06 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.S.; Al-Majid, A.M.; El-Senduny, F.F.; Badria, F.A.; Rahman, A.F.M.M.; Barakat, A.; Elshaier, Y.A.M.M. Synthesis, Anticancer Activity, and Molecular Modeling of New Halogenated Spiro[pyrrolidine-thiazolo-oxindoles] Derivatives. Appl. Sci. 2020, 10, 2170. https://doi.org/10.3390/app10062170
Islam MS, Al-Majid AM, El-Senduny FF, Badria FA, Rahman AFMM, Barakat A, Elshaier YAMM. Synthesis, Anticancer Activity, and Molecular Modeling of New Halogenated Spiro[pyrrolidine-thiazolo-oxindoles] Derivatives. Applied Sciences. 2020; 10(6):2170. https://doi.org/10.3390/app10062170
Chicago/Turabian StyleIslam, Mohammad Shahidul, Abdullah Mohammed Al-Majid, Fardous F. El-Senduny, Farid A. Badria, A. F. M. Motiur Rahman, Assem Barakat, and Yaseen A. M. M. Elshaier. 2020. "Synthesis, Anticancer Activity, and Molecular Modeling of New Halogenated Spiro[pyrrolidine-thiazolo-oxindoles] Derivatives" Applied Sciences 10, no. 6: 2170. https://doi.org/10.3390/app10062170
APA StyleIslam, M. S., Al-Majid, A. M., El-Senduny, F. F., Badria, F. A., Rahman, A. F. M. M., Barakat, A., & Elshaier, Y. A. M. M. (2020). Synthesis, Anticancer Activity, and Molecular Modeling of New Halogenated Spiro[pyrrolidine-thiazolo-oxindoles] Derivatives. Applied Sciences, 10(6), 2170. https://doi.org/10.3390/app10062170