Performance Analysis of Scandium-Doped Aluminum Nitride-Based PMUTs Under High-Temperature Conditions
<p>(<b>a</b>) Schematic of the device structure. (<b>b</b>) Front and back images of two PMUTs with different back cavity sizes.</p> "> Figure 2
<p>Process flow of the device. (<b>a</b>) BOX wafer. (<b>b</b>) Thin-film deposition. (<b>c</b>) Thin-film etching and metalization. (<b>d</b>) Backside etching.</p> "> Figure 3
<p>XRD result of AlScN thin film.</p> "> Figure 4
<p>Frequency variation with temperature for devices with different back cavity sizes (FEM).</p> "> Figure 5
<p>Frequency variation with temperature for devices with different Si thicknesses (FEM).</p> "> Figure 6
<p>FEA and experimental result comparison of PMUT with 1000 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m back cavity.</p> "> Figure 7
<p>Frequency characteristics of four devices with a back cavity size of 1000 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m as temperature changes.</p> "> Figure 8
<p>Impedance phase variation of four devices with temperature.</p> "> Figure 9
<p>Variation in electromechanical coupling coefficient of the devices with temperature.</p> "> Figure 10
<p>Frequency and impedance phase variation with temperature for devices with a 600 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m back cavity (<b>a</b>) Frequency (<b>b</b>) Impedance phase.</p> "> Figure 11
<p>Frequency variation with temperature for devices with a 600 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m back cavity with different top Si thickness.</p> "> Figure 12
<p>Amplitude and mechanical resonant frequency variation with temperature for devices with a 1000 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m back cavity (LDV test results).</p> "> Figure 13
<p>Resonant frequency variation during heating and cooling cycles for devices with different back cavity sizes: (<b>a</b>) 600 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m and (<b>b</b>) 1000 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m.</p> ">
Abstract
:1. Introduction
2. Device and Methodology
3. Experiment and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehdizadeh, E.; Piazza, G. AlN on SOI pMUTs for ultrasonic power transfer. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Shelton, S.; Chan, M.L.; Park, H.; Horsley, D.; Boser, B.; Izyumin, I.; Przybyla, R.; Frey, T.; Judy, M.; Nunan, K.; et al. CMOS-compatible AlN piezoelectric micromachined ultrasonic transducers. In Proceedings of the 2009 IEEE International Ultrasonics Symposium, Rome, Italy, 20–23 September 2009; pp. 402–405. [Google Scholar] [CrossRef]
- Algamili, A.S.; Khir, M.H.M.; Dennis, J.O.; Ahmed, A.Y.; Alabsi, S.S.; Ba Hashwan, S.S.; Junaid, M.M. A Review of Actuation and Sensing Mechanisms in MEMS-Based Sensor Devices. Nanoscale Res. Lett. 2021, 16, 16. [Google Scholar] [CrossRef] [PubMed]
- Mahameed, R.; Sinha, N.; Pisani, M.B.; Piazza, G. Dual-beam actuation of piezoelectric AlN RF MEMS switches monolithically integrated with AlN contour-mode resonators. J. Micromech. Microeng. 2008, 18, 105011. [Google Scholar] [CrossRef]
- Fernandez-Bolanos Badia, M.; Buitrago, E.; Ionescu, A.M. RF MEMS Shunt Capacitive Switches Using AlN Compared to Si3N4 Dielectric. J. Microelectromech. Syst. 2012, 21, 1229–1240. [Google Scholar] [CrossRef]
- Ruotsalainen, K.; Morits, D.; Ylivaara, O.M.E.; Kyynäräinen, J. Resonating AlN-thin film MEMS mirror with digital control. J. Opt. Microsyst. 2022, 2, 011006. [Google Scholar] [CrossRef]
- Lei, H.; Wen, Q.; Yu, F.; Li, D.; Shang, Z.; Huang, J.; Wen, Z. AlN film based piezoelectric large-aperture MEMS scanning micromirror integrated with angle sensors. J. Micromech. Microeng. 2018, 28, 115012. [Google Scholar] [CrossRef]
- Segovia-Fernandez, J.; Sonmezoglu, S.; Block, S.T.; Kusano, Y.; Tsai, J.M.; Amirtharajah, R.; Horsley, D.A. Monolithic piezoelectric Aluminum Nitride MEMS-CMOS microphone. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 414–417. [Google Scholar] [CrossRef]
- Fei, C.; Liu, X.; Zhu, B.; Li, D.; Yang, X.; Yang, Y.; Zhou, Q. AlN piezoelectric thin films for energy harvesting and acoustic devices. Nano Energy 2018, 51, 146–161. [Google Scholar] [CrossRef]
- Roy, K.; Lee, J.E.Y.; Lee, C. Thin-film PMUTs: A review of over 40 years of research. Microsyst. Nanoeng. 2023, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Akhbari, S.; Sammoura, F.; Shelton, S.; Yang, C.; Horsley, D.; Lin, L. Highly responsive curved aluminum nitride pMUT. In Proceedings of the 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, USA, 26–30 January 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 124–127. [Google Scholar] [CrossRef]
- Sun, S.; Wang, J.; Ning, Y.; Zhang, M. Air-coupled piezoelectric micromachined ultrasonic transducers for surface stain detection and imaging. Nanotechnol. Precis. Eng. 2022, 5, 013004. [Google Scholar] [CrossRef]
- Karuthedath, C.B.; Sebastian, A.T.; Saarilahti, J.; Sillanpaa, T.; Pensala, T. Design and Fabrication of Aluminum Nitride Piezoelectric Micromachined Ultrasonic Transducers for Air Flow Measurements. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 2489–2492. [Google Scholar] [CrossRef]
- Sammoura, F.; Akhbari, S.; Lin, L.; Kim, S.G. Enhanced coupling of piezoelectric micromachined ultrasonic transducers with initial static deflection. In Proceedings of the SENSORS, Baltimore, MD, USA, 3–6 November 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Akhbari, S.; Sammoura, F.; Eovino, B.; Yang, C.; Lin, L. Bimorph Piezoelectric Micromachined Ultrasonic Transducers. J. Microelectromech. Syst. 2016, 25, 326–336. [Google Scholar] [CrossRef]
- Su, J.; Fichtner, S.; Ghori, M.Z.; Wolff, N.; Islam, M.R.; Lotnyk, A.; Kaden, D.; Niekiel, F.; Kienle, L.; Wagner, B.; et al. Growth of Highly c-Axis Oriented AlScN Films on Commercial Substrates. Micromachines 2022, 13, 783. [Google Scholar] [CrossRef] [PubMed]
- Sadeghpour, S.; Joshi, S.V.; Wang, C.; Kraft, M. Novel Phased Array Piezoelectric Micromachined Ultrasound Transducers (pMUTs) for Medical Imaging. IEEE Open J. Ultrason. Ferroelectr. Freq. Control 2022, 2, 194–202. [Google Scholar] [CrossRef]
- Savoia, A.S.; Casavola, M.; Boni, E.; Ferrera, M.; Prelini, C.; Tortoli, P.; Giusti, D.; Quaglia, F. Design, Fabrication, Characterization, and System Integration of a 1-D PMUT Array for Medical Ultrasound Imaging. In Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), Xi’an, China, 11–16 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–3. [Google Scholar] [CrossRef]
- Hardy, E.; Fain, B.; Mesquida, T.; Blard, F.; Gardien, F.; Rummens, F.; Bastien, J.; Chatroux, J.; Martin, S.; Rat, V.; et al. Spike-based Beamforming using pMUT Arrays for Ultra-Low Power Gesture Recognition. In Proceedings of the 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–24. [Google Scholar] [CrossRef]
- Gubinyi, Z.; Batur, C.; Sayir, A.; Dynys, F. Electrical properties of PZT piezoelectric ceramic at high temperatures. J. Electroceramics 2008, 20, 95–105. [Google Scholar] [CrossRef]
- Maiwa, H.; Kim, S.H.; Ichinose, N. Temperature dependence of the electrical and electromechanical properties of lead zirconate titanate thin films. Appl. Phys. Lett. 2003, 83, 4396–4398. [Google Scholar] [CrossRef]
- Esteves, G.; Habermehl, S.D.; Clews, P.J.; Fritch, C.; Griffin, B.A. AlN/SiC MEMS for High-Temperature Applications. J. Microelectromech. Syst. 2019, 28, 859–864. [Google Scholar] [CrossRef]
- Liang, Y.; Eovino, B.E.; Lin, L. Pinned Boundary Piezoelectric Micromachined Ultrasonic Transducers. In Proceedings of the 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Republic of Korea, 27–31 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 791–794. [Google Scholar] [CrossRef]
- Lyu, H.; Xiu, X.; Zhang, S.; Yang, H.; Safari, A. Piezoelectric Micromachined Ultrasonic Transducers under Forced Vibration: Improving Acoustic Range and Reducing Blind Area. IEEE Sens. J. 2024, 24, 36451–36458. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Wang, L.; Liu, Y.; Chen, H.; Wu, Z. Process Control Monitor (PCM) for Simultaneous Determination of the Piezoelectric Coefficients d31 and d33 of AlN and AlScN Thin Films. Micromachines 2022, 13, 581. [Google Scholar] [CrossRef] [PubMed]
Element | wt% | wt% Sigma | Atomic Percentage (%) |
---|---|---|---|
N | 33.35 | 0.38 | 52.02 |
O | 0.32 | 0.20 | 0.43 |
Al | 47.28 | 0.34 | 38.28 |
Sc | 19.06 | 0.30 | 9.26 |
Total | 100.00 | – | 100.00 |
Parameter | Dimension |
---|---|
Top Mo electrode diameter (m) | 468/780 |
Membrane diameter (m) | 600/1000 |
Top Mo electrode thickness (m) | 0.1 |
ScAlN piezoelectric layer thickness (m) | 1 |
Bottom Mo electrode thickness (m) | 0.2 |
Seed layer thickness (m) | 0.05 |
Si structural layer thickness (m) | 4 |
Property | Mo | ScAlN | Si |
---|---|---|---|
Dielectric permittivity | 13.7 | ||
Density (kg/m³) | 10,200 | 3560 | 2320 |
Young’s Modulus (GPa) | 312 | 230 | 130 |
(GPa) | 325 | ||
(GPa) | 279 | ||
(GPa) | 131 | ||
(GPa) | 99 | ||
(GPa) | 94 | ||
(pm/V) | |||
(pm/V) | 9.9 |
Initial Frequency (kHz) | Frequency Drift 80 °C (kHz) | Frequency Drift Percentage 80 °C | Frequency Drift 200 °C (kHz) | Frequency Drift Percentage 200 °C | Linearity |
---|---|---|---|---|---|
62.73 | 69.6 | 11% | 92.39 | 47.3% | 0.19 |
62.46 | 69.17 | 10.7% | 92.03 | 47.3% | 0.19 |
61.07 | 65.68 | 7.5% | 88 | 44.1% | 0.186 |
59.55 | 64.25 | 7.9% | 86.86 | 45.9% | 0.188 |
Device | Initial Warp (m) | Warp at 50 °C (m) | Warp at 100 °C (m) | Warp at 150 °C (m) |
---|---|---|---|---|
600 m No. 1 | 0.20 | 0.34 | 0.55 | 0.87 |
600 m No. 2 | 0.21 | 0.36 | 0.57 | 0.93 |
1000 m No. 1 | 0.19 | 0.58 | 1.12 | 1.83 |
1000 m No. 2 | 0.3 | 0.71 | 1.24 | 2.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, H.; Safari, A. Performance Analysis of Scandium-Doped Aluminum Nitride-Based PMUTs Under High-Temperature Conditions. Appl. Sci. 2025, 15, 2428. https://doi.org/10.3390/app15052428
Lyu H, Safari A. Performance Analysis of Scandium-Doped Aluminum Nitride-Based PMUTs Under High-Temperature Conditions. Applied Sciences. 2025; 15(5):2428. https://doi.org/10.3390/app15052428
Chicago/Turabian StyleLyu, Haochen, and Ahmad Safari. 2025. "Performance Analysis of Scandium-Doped Aluminum Nitride-Based PMUTs Under High-Temperature Conditions" Applied Sciences 15, no. 5: 2428. https://doi.org/10.3390/app15052428
APA StyleLyu, H., & Safari, A. (2025). Performance Analysis of Scandium-Doped Aluminum Nitride-Based PMUTs Under High-Temperature Conditions. Applied Sciences, 15(5), 2428. https://doi.org/10.3390/app15052428