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Abstract: Heart rate variability (HRV), which is the variation between consecutive heart-
beats, reflects the electrical activity of the heart and provides insight into the autonomic
nervous system (ANS) function. This study uses wavelet transform-based HRV feature
extraction to investigate cardiac sympatho-vagal balance. Both the continuous wavelet
transform (CWT) and discrete wavelet transform (DWT) methods were applied in different
steps. DWT was used for R-peak detection and CWT and MODWT were used to gen-
erate spectrograms from RR intervals. Frequency components (HF, LF, and VLF) within
0.003–0.4 Hz were extracted, and power estimation was performed. The LF/HF ratio,
indicating sympatho-vagal balance, was calculated. ECG data from 42 arrhythmia patients
and 18 normal sinus rhythm subjects were analyzed. The results showed a lower LF/HF
ratio in arrhythmia patients, with higher HF power in arrhythmia subjects and higher
LF power in normal sinus rhythm subjects. The study suggests that the parasympathetic
nervous system dominates the ANS in arrhythmia patients, while the sympathetic nervous
system dominates in normal sinus rhythm patients.

Keywords: arrhythmia; heart rate variability; LF/HF ratio; sympatho-vagal balance;
wavelet transform

1. Introduction
The human heart is crucial for sustaining life by pumping blood and delivering oxygen.

Its rhythmic contractions, regulated by the autonomic nervous system (ANS), are influenced
by the balance between the sympathetic nervous system (SNS) and the parasympathetic
nervous system (PNS). This balance is called sympatho-vagal balance, and significantly
impacts heart rate variability (HRV), a key biomarker for cardiovascular [1]. HRV reflects
fluctuations in the intervals between heartbeats and indicates the dynamic interaction
between SNS and PNS. Healthy HRV shows good autonomic adaptability, while reduced
HRV is linked to conditions like stress, cardiovascular diseases, and metabolic disorders [2].

The clinical significance of HRV was first introduced by Hon and Lee in 1965 by
observing that variation in interbeat intervals preceded instances of fetal distress and
variations in overall heart rate [3]. Since then, numerous research studies have been
conducted to discover the connections between various diseases and heart rate variability.
Research has shown that reduced HRV is correlated with an increased risk of cardiovascular
disease, which remains a leading cause of mortality worldwide [4–6]. A correlation of HRV
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to mental health conditions such as depression and anxiety was found as lower HRV is
associated with higher risks of myocardial infarction and coronary heart disease [7–9]. HRV
is influenced by other factors than diseases including age [10,11], gender [12–14], lifestyle
factors such as smoking [15] and alcohol [16], and environmental factors such as social
stress, noise, and air pollutants [17].

Electrocardiography (ECG) records the electrical activity of the cardiac system as a
signal [3] and provides data for HRV analysis. HRV exhibits abrupt changes in frequency
throughout the ECG signal. According to the previous studies, HRV analysis using FT
(Fourier transform) and STFT (short-term Fourier transform) has not resulted in positive
outcomes due to their limitations such as not being localized in the time domain and having
a fixed window size [18,19]. Wavelet transform analysis has emerged as a powerful tool
for analyzing HRV and assessing cardiac sympatho-vagal balance with both time- and
frequency-localized multi-resolution analysis [20].

1.1. Wavelet Transformation

The wavelet theory was first proposed by the geophysicist Jean Morlet and the theoret-
ical physicist Alex Grossmann in 1981. These wavelets are generated from a single function
called “Mother Wavelet” which produces a family of functions by translation and dilation.
The mother wavelet ψ (t) is given by the following equation [21]:

ψa,b(t) =
1√
|a|

ψ

(
t − b

a

)
; a, b ∈ R, a ̸= 0 (1)

where a is the scaling parameter and b is the translational parameter. The time widths of
wavelets are adapted to their frequencies.

1.1.1. Wavelets

There are various wavelet families, including Morlet, Haar, Daubechies, Symlets,
Gaussian, Mexican Hat, Mayer, and Biorthogonal wavelets. The wavelet chosen depends
on the signal being processed. For ECG signal processing, Daubechies and Symlet wavelets
are often used due to their similarity to the ECG waveform QRS complex [22–26]. The
Daubechies family has 20 types (e.g., db2, db3, and db4), and the Symlet family has
19 types (e.g., sym3, sym4, and sym6). Figure 1 shows the db4 and sym4 wavelets used for
ECG analysis.
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Figure 1. db4 and sym4 wavelets. The sym4 wavelet is from the Symlet family, and db4 is from the
Daubechies family. These wavelets show similarities with the ECG signal waveform and are used in
analyzing the ECG signal waveforms.

1.1.2. Continuous Wavelet Transform (CWT)

Continuous wavelet transform is the convolution of the signal x(t) with the scaled
and translated version of the mother wavelet function Ψ(t). CWT is given by the follow-
ing equation:

X(a, b, t) =
∫ +∞

−∞
x(t)· 1√

|a|
Ψ

(
t − b

a

)
dt (2)
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where a is the scaling parameter and b is the translational parameter.
CWT is used in time-frequency analysis to process spectrograms and filtering purposes

of time-localized frequency components.

1.1.3. Discrete Wavelet Transform (DWT)

Discrete wavelet transform (DWT) is the discretized scaled and translated version of
the mother wavelet Ψ(t). DWT is given by the following equation:

X(a, b, t) = ∑ p−1
m=0x(tm)·

1√
|a|

Ψ

(
tm − b

a

)
(3)

In CWT, the integral is replaced with a summation as discrete values are considered.
In DWT, the discrete values are represented as a = k2j and b = 2j, where the dyadic power
improves the efficiency of the analysis. DWT is used in multi-resolution analysis for tasks
like signal denoising and signal compression [27,28].

1.1.4. Multi-Resolution Analysis

Wavelet analysis is a multi-resolution technique in both the time and frequency do-
mains, offering good localization in both. It provides better time resolution for higher
frequencies and better frequency resolution for lower frequencies, as shown in Figure 2a.
High frequencies require good time resolution, achieved using narrow wavelets, while
low frequencies spread over longer time durations, requiring wider wavelets for better
frequency resolution [29].

1.1.5. Multilevel Decomposition

Multilevel decomposition is a technique for filtering the high- and low-frequency
components of a signal at multiple levels. At each level, the signal is split into detail
coefficients (high-frequency) and approximation coefficients (low-frequency). The approx-
imation coefficients capture the low-frequency components, while the detail coefficients
capture the high-frequency components [30].

This is achieved by applying low-pass and high-pass filters (LPF and HPF) at each
level. LPF captures lower frequencies while rejecting higher ones, and HPF captures
higher frequencies while rejecting lower ones [31]. In Figure 2b, approximation and detail
coefficients are represented by “A” and “D”, respectively. The approximation coefficients
are iteratively filtered at each level in a dyadic process.
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Figure 2. (a) Graphical representation of multi-resolution analysis. Wider wavelets (windows)
are used in multi-resolution analysis to capture lower frequencies which provide high frequency
resolution, and narrow wavelets (windows) are used to capture higher frequencies which provide
high time resolution. (b) Multilevel decomposition. The approximation coefficients are shown by “A”
and detailed coefficients are shown by “D”. At each level the number of coefficients is halved.

2. Materials and Methods
ECG data for an HRV analysis were sourced from the trusted PhysioNet database [32],

specifically the MIT-BIH Normal Sinus Rhythm and MIT-BIH Arrhythmia Databases. The
Normal Sinus Rhythm Database includes 18 ECG recordings from patients referred to
Beth Israel Deaconess Medical Center who have not exhibited significant arrhythmias, and
involves 5 men aged from 26 to 45 and 13 women aged from 20 to 50. The recordings
were sampled at a sampling rate of 128 Hz. The Arrhythmia Database consists of 24 h
ambulatory ECG recordings of 47 patients, sampled at 360 Hz with 11-bit resolution [33].

The databases provide recordings in multiple formats (.atr, .dat, .hea, and .xws), which
were challenging to handle. To ease processing, PhysioBank ATM offered ECG data in the
more MATLAB-compatible .mat format. The process involved selecting the database and
recording, setting the length to 1 h, and exporting both .mat and .info files.

The .info file contains crucial data such as gain, base value, sampling frequency, and
sampling time, which are needed for ECG waveform plotting.

The analysis was performed using MATLAB 2021a, selecting 18 recordings from the
Normal Sinus Rhythm and 46 from the Arrhythmia database. The MLII channel (lead II)
ECG signal was chosen for the Arrhythmia dataset and the ECG1 signal for the Normal
Sinus Rhythm dataset. Data from the .info files (sample rate, gain, and base values) were
used in the analysis, with each step of the signal processing performed using self-written
code (Figure 3).
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Figure 3. Methodology flowchart. This illustrates the multi-step process of HRV analysis.

The ECG signal data were loaded into MATLAB using the command
ecg=load(’16,265m.mat’), and the sampling rate, total number of samples, gain, and baseline
were defined according to the .info file. Each ECG signal was normalized for consistency
using the formula ecgsignal = ((ecg.val) − base)/gain. A time vector was created cor-
responding to each sample point, and the ECG signal was plotted against this vector,
comparing it with the waveform from PhysioBank ATM.

The next step involved locating the QRS complexes. Bandpass filtering was applied
to identify R peaks within the QRS complexes, which contain middle frequencies in the
ECG signal. There are many research studies conducted on detecting QRS complexes using
wavelet transform. In those studies, the most common method of detecting QRS complex
is using maximum overlap discrete wavelet transform (MODWT) or maximum overlap
discrete wavelet packet transform (MODWPT) [22–24]. For this study, the maximal overlap
discrete wavelet transform (MODWT) was used for wavelet decomposition. Different
sampling frequencies in the Normal Sinus Rhythm and Arrhythmia datasets required
different levels of decomposition. Previous studies have identified the QRS complex within
the 0–50 Hz frequency range [34].

The MIT BIH normal sinus dataset, with a sampling frequency of 128 Hz, was analyzed
using the MODWT, computed down to 5 levels with the db4 wavelet. The corresponding
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frequency bands are shown in Table 1. The detail coefficients from levels 2, 3, 4, and 5 were
retained, while the others were set to zero using the following code:

wt = modwt(ecgsignal,5,‘db4’);

wtrec = zeros(size(wt));

wtrec(2:3:4:5,:) = wt(2:3:4:5,:);

Table 1. Frequency ranges for each level in DWT (sampling frequency 128 Hz).

Level Scale Frequency Band (Hz)

1 2 64–128
2 4 32–64
3 8 16–32
4 16 8–16
5 32 4–8

Next, R peaks were isolated, and the inverse MODWT was applied to reconstruct
the signal:

y = imodwt(wtrec,‘db4’);

To obtain positive peaks, the squared magnitude of the reconstructed signal was taken.
R peaks were located using the findpeaks() function, with minimum peak distance and
height determined by plotting the reconstructed signal. These values were applied to
findpeaks() to identify the QRS peak position, time location, and isolated R peaks, which
were then plotted (Figure 4).
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amplitudes of the ECG signal and the x-axis represents the time duration of the ECG signal.

For the MIT BIH Arrhythmia dataset, with a sampling frequency of 360 Hz, the
MODWT was computed down to 6 levels using the sym4 wavelet, providing the frequency
bands shown in Table 2. Detail coefficients from levels 3, 4, 5, and 6 were retained, and
the others were set to zero. The reconstructed signal was generated using IMODWT with
the sym4 wavelet. The same R peak localization procedure as in the normal sinus dataset
analysis was followed.



Appl. Sci. 2025, 15, 1687 7 of 22

Table 2. Frequency ranges for each level in DWT (sampling frequency 360 Hz).

Level Scale Frequency Band (Hz)

1 2 90–180
2 4 45–90
3 8 22.5–45
4 16 11.25–22.5
5 32 5.625–11.25
6 64 2.8125–5.625

Additionally, MODWPT, another wavelet decomposition method, was used to locate
R peaks following the same steps as in the MODWT method. The final step was to calculate
HRV using RR intervals.

HRV analysis, a key objective of this study, involves calculating the variation between
consecutive heartbeats, or the distance between R peaks (Figure 5). This was performed by
using the following code:

rr_intervals = diff(locs) × 1000;
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Figure 5. Reconstructed signal containing R peaks in red color annotations of record no. 16,265.

The difference between R peak time locations was used to compute the RR intervals.
These values, initially in the millisecond range, were multiplied by 1000 to convert them
into milliseconds. The RR interval values were then plotted against the beat number
(Figure 6), representing HRV.

Next, the frequency components of the RR intervals were extracted using CWT for a time-
frequency analysis. The sampling frequency and time vector of the RR intervals were calculated
based on the number of RR intervals and the original ECG signal’s sampling frequency:

rr_intervals_Fs = (length(rr_intervals)/length(samples)) × Fs;

rr_intervals_t = (0:(length(rr_intervals) − 1))/(rr_intervals_Fs × 60);

The CWT spectrogram was then plotted using the cwt() function, as shown in Figure 7.
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Figure 7. The CWT spectrogram of record no. 16,265. CWT spectrum represents 3 dimensions:
frequency, time, and the RR interval magnitude by each coordinate. The dashed line is the cone of
influence which indicates the more accurate results inside the cone. We can observe high-magnitude
events in bright colors in the spectrograms.

In the HRV analysis, the time-localized frequency components can be extracted by
applying inverse continuous wavelet transform (ICWT) to the ECG signal [35]. This
was carried out by reconstructing the long-term ECG signal for each frequency band
separately. ECG signal is divided into 4 major frequency bands: ultra-low frequency
(LF), very low frequency (VLF), low frequency (LF), and high frequency (HF) (Figure 8).
These frequency band values are different for short-term and long-term ECG signals. For
short-term ECG signals, the frequency bands are defined as VLF ≤ 0.04 Hz, LF range:
0.04–0.15 Hz, and HF range: 0.15–0.4 Hz. For long-term ECG signals, the frequency bands
are defined as ULF ≤ 0.003 Hz, VLF range: 0.003–0.04 Hz, LF range: 0.04–0.15 Hz, and HF
range–0.15–0.4 Hz [36].
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These extracted frequency components were then plotted separately against time.
The next step was to calculate the power of the VLF, LF, and HF bands. This was per-

formed by calculating the square of the root mean square (RMS) values of the reconstructed
signals for each frequency band:

power_VLF = rms(vlf_reconstruct)ˆ2;

The total power was then obtained by summing the powers of the VLF, LF, and HF
bands. To facilitate comparison, the power values were normalized by dividing them by
the total power. The LF/HF ratio was then computed by dividing the normalized power of
the LF band by the normalized power of the HF band.

3. Results and Discussion
Electrocardiography (ECG) is a non-invasive method used to assess cardiac health by

capturing the heart’s electrical activity. Wavelet transformation is a promising technique
for analyzing ECG signals, providing insights into heart rate variability (HRV).

This study analyzed HRV using wavelet transformation on 60 ECG recordings from
the MIT-BIH Normal Sinus Rhythm and Arrhythmia databases. The analysis followed
five main steps: locating R peaks, calculating RR intervals, generating spectrograms,
extracting frequency bands, and determining the LF/HF ratio using both continuous
wavelet transform (CWT) and discrete wavelet transform (DWT).

Accurately locating R peaks is crucial, as the RR interval accuracy depends on it.
Previous studies showed that the MODWT and MODWPT methods were effective for
R peak detection, with MODWPT offering better resolution. Thus, both methods were
tested on six randomly selected recordings from both databases (Normal Sinus: 16,265,
16,786, and 19,140; Arrhythmia: 106, 112, and 117) to evaluate their performance.

Except for recording no. 117, no significant differences were observed in the R
peak localization, RR intervals, and spectrogram plots generated using MODWPT and
MODWT for these ECG recordings. This similarity is illustrated in recording no. 16,786 in
Figures 9 and 10. The total power and LF/HF ratio of these recordings, computed using
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both the MODWPT and MODWT methods, were nearly equal, except for recording no. 117,
as shown in Table 3.
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Table 3. Estimated LF/HF ratio values using MODWPT and MODWT methods.

LF/HF Ratio

Index
16,265 16,786 19,140 106 112 117

Method

MODWPT 3.188 1.869 1.682 0.103 1.032 0.424

MODWT 3.164 1.875 1.700 0.098 1.028 0.852

Figure 11a shows the R peak localization for recording no. 117 using MODWPT and
MODWT, respectively, revealing a significant difference in R peak localization from beat 0
to 600. The RR interval vs. beat number plot for MODWPT (Figure 11b) also differs from the
MODWT plot (Figure 12b) until the 600th beat. While the spectrograms from both methods
show no significant difference (Figures 11c and 12c), the extracted frequency bands show a
large difference in HF band power, confirming that MODWPT provides better resolution
in the HF range than MODWT. This is because MODWPT decomposes both LF and HF
components at each level, resulting in more filtered sub-frequency components, while
MODWT only decomposes LF components. As a result, MODWPT offers better resolution
in both LF and HF ranges, whereas MODWT performs better in LF components only.
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Figure 12. (a) Located R peaks. (b) RR interval vs. beat no. plot. (c) CWT spectrogram for record: 117
using MODWT.

However, the computational power required for MODWPT’s multilevel decomposi-
tion leads to longer processing times, and in some cases, the analysis failed due to memory
issues. Therefore, the study continued with the MODWT method.

For the analysis, the db4 and sym4 wavelets were used, as they resemble the QRS
complex. The signals from the MIT-BIH normal sinus dataset were decomposed into five
levels using db4, considering levels 2 to 5 for R peak localization. MIT-BIH arrhythmia
signals were decomposed into six levels using sym4, with levels 3–6 considered. R peaks
correspond to middle frequencies in the ECG signal, and previous studies suggest a
sampling frequency of around 50 Hz for QRS peaks, explaining the exclusion of higher
frequency levels.

During the R peak localization process, missing R peaks were observed in normal
sinus ECG recordings (no: 16,420 and 16,483) and arrhythmia ECG recordings (no: 101, 111,
121, 201, and 234). These missing peaks are highlighted in Figure 13 with a yellow circle.

The missing peaks in the analysis were likely caused by selecting inappropriate values
for the “MinPeakDistance” and “MinPeakHeight” parameters in the “findpeaks” MATLAB
function or by data loss during the initial R peak localization process. These missing
peaks lead to erroneous higher RR intervals. When a peak is missing, the gap between the
neighboring R peaks increases, resulting in an incorrectly calculated maximum interval.
Figure 14 shows the RR interval plots for recordings no. 16,420 and 121, highlighting the
incorrect higher RR intervals due to these missing peaks.
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Figure 14. The RR interval plot of recording: (a) 16,420 observed with an incorrect higher interval
between R peaks; (b) 16,420 obtained from the PhysioNet Database; (c) 121 observed with an incorrect
higher interval between R peaks; (d) 121 obtained from the PhysioNet Database.

Adjusting the minimum distance and height of the R peaks did not resolve the issue
and instead led to more incorrect higher RR intervals in the RR interval plots. It is important
to note that reducing these parameters too much also caused incorrect R peak identification.
For example, in Figure 13b, many peaks with higher amplitudes than the missing R
peaks were identified, leading to incorrect R peak inclusion. After successfully locating
R peaks, the RR intervals were calculated and plotted against the beat number. While
some recordings showed incorrect higher intervals due to missing peaks, most recordings
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produced accurate RR interval plots. Figure 15 shows the RR interval plots for recordings
no. 16,786 and 115, which resemble the reference plots from PhysioBank ATM.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 13 of 23 
 

maximum interval. Figure 14 shows the RR interval plots for recordings no. 16,420 and 
121, highlighting the incorrect higher RR intervals due to these missing peaks. 

  
(a) (b) 

  
(c) (d) 

Figure 14. The RR interval plot of recording: (a) 16,420 observed with an incorrect higher interval 
between R peaks; (b) 16,420 obtained from the PhysioNet Database; (c) 121 observed with an incor-
rect higher interval between R peaks; (d) 121 obtained from the PhysioNet Database. 

Adjusting the minimum distance and height of the R peaks did not resolve the issue 
and instead led to more incorrect higher RR intervals in the RR interval plots. It is im-
portant to note that reducing these parameters too much also caused incorrect R peak 
identification. For example, in Figure 13b, many peaks with higher amplitudes than the 
missing R peaks were identified, leading to incorrect R peak inclusion. After successfully 
locating R peaks, the RR intervals were calculated and plotted against the beat number. 
While some recordings showed incorrect higher intervals due to missing peaks, most re-
cordings produced accurate RR interval plots. Figure 15 shows the RR interval plots for 
recordings no. 16,786 and 115, which resemble the reference plots from PhysioBank ATM. 

  
(a) (b) 

Appl. Sci. 2025, 15, x FOR PEER REVIEW 14 of 23 
 

  
(c) (d) 

Figure 15. (a) RR interval plot of recording 16,786 plotted using MATLAB. (b) RR interval plot of 
recording 16,786 obtained from PhysioBank ATM. (c) RR interval plot of recording 230 plotted using 
MATLAB. (d) RR interval plot of recording 230 obtained from PhysioBank ATM. 

For ECG recordings no. 16,773 (Figure 16b) and 18,784, the reference RR interval plots 
from PhysioBank ATM displayed interruptions in the middle section, raising doubts 
about their accuracy. Consequently, these plots were considered incorrect. 

  
(a) (b) 

Figure 16. (a) RR interval plot of recording no. 16,773 plotted using MATLAB. (b) RR interval plot 
of recording no. 16,773 obtained from PhysioBank ATM. 

Out of 60 recordings, only 7 showed inaccurate RR interval plots, so the study pro-
ceeded to the next steps of plotting spectrograms and extracting frequency components. 
CWT was applied to the RR interval signal to obtain spectrograms, where amplitude (en-
ergy) is represented by three dimensions: frequency increases along the y-axis, with 
lower-frequency components at the bottom. The cone of influence indicates more accurate 
data inside and less accurate data outside. The focus was on the HF, LF, and VLF compo-
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Figure 17a shows a spectrogram of a normal sinus rhythm ECG recording, where the 
LF and VLF ranges are brighter than the HF range, indicating higher LF power than HF 
power for this subject. This was consistent across all 18 normal sinus rhythm spectro-
grams. In contrast, Figure 17b illustrates an arrhythmia ECG recording, where the HF 
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Figure 15. (a) RR interval plot of recording 16,786 plotted using MATLAB. (b) RR interval plot of
recording 16,786 obtained from PhysioBank ATM. (c) RR interval plot of recording 230 plotted using
MATLAB. (d) RR interval plot of recording 230 obtained from PhysioBank ATM.

For ECG recordings no. 16,773 (Figure 16b) and 18,784, the reference RR interval plots
from PhysioBank ATM displayed interruptions in the middle section, raising doubts about
their accuracy. Consequently, these plots were considered incorrect.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 14 of 23 
 

  
(c) (d) 

Figure 15. (a) RR interval plot of recording 16,786 plotted using MATLAB. (b) RR interval plot of 
recording 16,786 obtained from PhysioBank ATM. (c) RR interval plot of recording 230 plotted using 
MATLAB. (d) RR interval plot of recording 230 obtained from PhysioBank ATM. 

For ECG recordings no. 16,773 (Figure 16b) and 18,784, the reference RR interval plots 
from PhysioBank ATM displayed interruptions in the middle section, raising doubts 
about their accuracy. Consequently, these plots were considered incorrect. 

  
(a) (b) 

Figure 16. (a) RR interval plot of recording no. 16,773 plotted using MATLAB. (b) RR interval plot 
of recording no. 16,773 obtained from PhysioBank ATM. 

Out of 60 recordings, only 7 showed inaccurate RR interval plots, so the study pro-
ceeded to the next steps of plotting spectrograms and extracting frequency components. 
CWT was applied to the RR interval signal to obtain spectrograms, where amplitude (en-
ergy) is represented by three dimensions: frequency increases along the y-axis, with 
lower-frequency components at the bottom. The cone of influence indicates more accurate 
data inside and less accurate data outside. The focus was on the HF, LF, and VLF compo-
nents (0.003 Hz to 0.4 Hz). High-magnitude events were observed in some spectrograms, 
like for recordings 19,093 and 228, but the study�s main interest was analyzing HRV data 
through these frequency bands reflecting ANS activity. 

Figure 17a shows a spectrogram of a normal sinus rhythm ECG recording, where the 
LF and VLF ranges are brighter than the HF range, indicating higher LF power than HF 
power for this subject. This was consistent across all 18 normal sinus rhythm spectro-
grams. In contrast, Figure 17b illustrates an arrhythmia ECG recording, where the HF 
range is brighter, indicating higher HF power than LF power. This pattern was observed 
in almost all 42 arrhythmia spectrograms. However, some arrhythmia recordings (e.g., 
112, 123, and 222) also showed bright areas in the LF range, as shown in Figure 18. 

Figure 16. (a) RR interval plot of recording no. 16,773 plotted using MATLAB. (b) RR interval plot of
recording no. 16,773 obtained from PhysioBank ATM.



Appl. Sci. 2025, 15, 1687 14 of 22

Out of 60 recordings, only 7 showed inaccurate RR interval plots, so the study pro-
ceeded to the next steps of plotting spectrograms and extracting frequency components.
CWT was applied to the RR interval signal to obtain spectrograms, where amplitude
(energy) is represented by three dimensions: frequency increases along the y-axis, with
lower-frequency components at the bottom. The cone of influence indicates more accurate
data inside and less accurate data outside. The focus was on the HF, LF, and VLF compo-
nents (0.003 Hz to 0.4 Hz). High-magnitude events were observed in some spectrograms,
like for recordings 19,093 and 228, but the study’s main interest was analyzing HRV data
through these frequency bands reflecting ANS activity.

Figure 17a shows a spectrogram of a normal sinus rhythm ECG recording, where the
LF and VLF ranges are brighter than the HF range, indicating higher LF power than HF
power for this subject. This was consistent across all 18 normal sinus rhythm spectrograms.
In contrast, Figure 17b illustrates an arrhythmia ECG recording, where the HF range is
brighter, indicating higher HF power than LF power. This pattern was observed in almost
all 42 arrhythmia spectrograms. However, some arrhythmia recordings (e.g., 112, 123, and
222) also showed bright areas in the LF range, as shown in Figure 18.
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Figure 18. RR intervals vs. beat no. plots of recordings no. (a) 112, (b) 123, and (c) 222.

Figure 18 shows accurate RR interval plots, with higher variations in the RR intervals
due to the recordings themselves, not missing R peaks. These variations lead to high-
magnitude events in the LF and HF regions, as seen in the spectrograms in Figure 19,
suggesting an unexpected LF/HF ratio. At the power estimation stage (Table 4), the LF/HF
ratio for these recordings was higher than one, deviating from other arrhythmia recordings.

Recording no. 16,539, shown in Figure 20a, exhibited bright LF and VLF ranges typical
of normal sinus rhythm, along with bright spots in the HF range after 35 min. The RR
interval plot (Figure 20b) shows that the variations are due to the recording, not missing
R peaks. However, the power estimation (Table 5) indicated a lower LF/HF ratio than



Appl. Sci. 2025, 15, 1687 15 of 22

one, deviating from other normal sinus recordings due to the higher magnitudes in the
HF band.
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Table 4. Estimated power values for MIT-BIH Normal Sinus Rhythm dataset.

Record No.
Power (ms2)

Total Power
Normalized Power (n.u)

LF/HF Ratio
VLF LF HF VLF LF HF

16,265 982.206 797.42 251.961 2031.588 0.483 0.392 0.124 3.164

16,272 3695.852 871.607 334.761 4902.22 0.753 0.177 0.068 2.603

16,273 1923.648 613.323 213.616 2750.588 0.699 0.222 0.077 2.871

16,420 497.22 634.57 56.026 1187.818 0.418 0.534 0.047 11.326

16,483 505.501 648.268 81.5 1235.27 0.409 0.524 0.065 7.954

16,539 2869.741 1244.762 2916.094 7010.597 0.409 0.174 0.415 0.42

16,773 3323.282 2259.39 775.58 6358.26 0.522 0.355 0.121 2.913

16,786 1284.794 1068.521 569.724 2923.039 0.439 0.365 0.194 1.875

16,795 4178.642 1943.284 1074.122 7196.048 0.58 0.27 0.149 1.809

17,052 3553.84 1132.412 6411.643 5327.416 0.667 0.212 0.12 1.766

17,453 1568.02 1000.653 3384.886 2907.171 0.539 0.344 0.116 2.956

18,177 1150.257 749.455 441.022 2340.735 0.491 0.320 0.188 1.699

18,184 2325.916 1015.988 2211.593 3563.063 0.652 0.285 0.062 4.593

19,088 727.481 366.368 231.762 1325.611 0.548 0.276 0.174 1.58

19,090 1194.602 617.317 144.911 1956.831 0.61 0.315 0.074 4.259

19,093 3770.705 1456.669 325.436 5552.81 0.679 0.262 0.058 4.476

19,140 806.541 479.895 280.741 1567.178 0.514 0.306 0.179 1.709

19,830 247.947 85.615 22.06 365.63 0.678 0.261 0.06 4.332
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Table 5. Estimated power values for MIT-BIH Arrhythmia dataset.

Index
Power (ms2)

Total Power
Normalized Power (n.u)

LF/HF Ratio
VLF LF HF VLF LF HF

100 295.895 136.511 863.592 1295.999 0.228 0.105 0.666 0.158

101 740.593 508.507 967.957 2217.058 0.334 0.229 0.436 0.525

103 874.086 283.325 619.681 1777.093 0.491 0.159 0.348 0.457

105 278.359 291.088 1080.02 1649.463 0.168 0.176 0.654 0.269

106 4155.21 1863.38 18,948.4 24,967 0.166 0.074 0.758 0.098

107 83.027 275.126 904.511 1262.666 0.065 0.217 0.716 0.304

108 2258 3386 7143 12,788 0.176 0.264 0.558 0.474

109 225.357 55.861 506.856 788.076 0.285 0.07 0.643 0.11

111 248.827 179.993 728.289 1157.111 0.215 0.155 0.629 0.247

112 108.338 37.878 36.819 183.036 0.591 0.206 0.201 1.02

113 2017.82 2532.15 4264.53 8814.49 0.228 0.287 0.483 0.593

114 836.476 788.307 5093.99 6718.77 0.125 0.117 0.758 0.154

115 3063.9 1841.02 1896.19 6801.099 0.45 0.27 0.278 0.97

116 267.311 574.905 1630.48 2472.701 0.108 0.232 0.659 0.352

117 1026.8 222.463 261.004 1510.326 0.679 0.147 0.172 0.852

118 898.244 699.618 1809.2 3407.059 0.263 0.205 0.531 0.386

119 966.203 1168.92 21,469.9 23,605 0.04 0.049 0.909 0.054

121 847.944 171.545 205.958 1225.449 0.691 0.139 0.168 0.832

122 928.243 128.752 71.893 1128.889 0.822 0.114 0.063 1.79

123 4304.29 6332.78 2945.29 13,582.36 0.316 0.466 0.216 2.15

124 1353.45 435.352 1467.37 3256.174 0.415 0.133 0.45 0.296

200 691.461 881.709 3113.06 4686.227 0.147 0.188 0.664 0.283

201 22,255 13,128.3 31,395.5 66,778.85 0.333 0.196 0.47 0.418

202 4171.18 3406.07 8072.44 15,649.7 0.266 0.217 0.515 0.421

205 128.279 81.507 378.745 588.532 0.217 0.138 0.643 0.215

209 2886.21 580.797 769.583 4236.593 0.681 0.137 0.181 0.754

210 1139.49 2012.61 4775.11 7927.211 0.143 0.253 0.602 0.421

212 345.922 380.276 539.868 1266.067 0.273 0.3 0.426 0.704

213 15.81 53.506 173.516 243.834 0.068 0.219 0.711 0.308

214 2396.8 3278.84 9936.07 15,611.7 0.153 0.21 0.636 0.329

215 80.294 229.978 924.845 1235.119 0.065 0.186 0.748 0.248

217 661.746 749.83 2301.01 3712.586 0.178 0.201 0.619 0.325

220 1865.91 1179.83 3409.84 6455.575 0.289 0.182 0.528 0.346

221 1636.79 4791.15 15,135.5 21,563.49 0.075 0.222 0.701 0.316

222 6280.23 12,581.8 8126.31 26,988.38 0.232 0.466 0.301 1.54

223 649.899 333.746 971.99 1955.637 0.332 0.17 0.497 0.343

228 1758.14 2596.81 8272.69 12,627.64 0.139 0.205 0.655 0.313

230 1894.66 991.77 308.061 3194.425 0.593 0.31 0.096 3.21

231 33,216.2 4396.81 3197.72 40,810.67 0.813 0.107 0.078 1.38

232 14,254.9 111,483 221,810 347,547.8 0.041 0.32 0.638 0.502
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Table 5. Cont.

Index
Power (ms2)

Total Power
Normalized Power (n.u)

LF/HF Ratio
VLF LF HF VLF LF HF

233 122.723 1905.31 1998.67 23,119.26 0.053 0.082 0.864 0.095

234 393.933 113.916 167.856 675.706 0.582 0.168 0.248 0.678

Missing R peaks, leading to incorrect higher RR intervals, can also be seen as high-
magnitude events in spectrograms. For example, Figure 21 shows a high magnitude
between 15 and 20 min in the HF range due to a missing R peak, causing the overall
spectrogram to appear dimmer. This condition is observed in all six recordings with
missing R peaks.
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Figure 21. CWT spectrograms of recording no. 121.

The CWT spectrograms of some recordings, such as Figure 22a, show high magnitudes
throughout, while others, like Figure 22b, display reduced brightness. This variation is
due to each person having a unique ECG pattern, influenced by the structure of their heart,
causing differences in signal magnitude and intensity [37].
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The next step involved extracting frequency bands (VLF, LF, and HF) using inverse
CWT, with frequency ranges set as VLF (0.003–0.04 Hz), LF (0.04–0.15 Hz), and HF
(0.15–0.4 Hz) for long-term ECG recordings [36]. The power of these bands was calcu-
lated by taking the square of the RMS values of the reconstructed signals, and power
values were normalized to compare their contribution to total power. The LF/HF ratio
was computed to assess the sympatho-vagal balance of the ANS. The power estimates are
summarized in Tables 4 and 5.

While the LF and HF bands are the main focus for the LF/HF ratio, the VLF band also
contributes significantly to total power. The LF band is believed to reflect both sympathetic
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and parasympathetic activity, while the HF band reflects parasympathetic activity [38–40],
though some studies suggest the LF band represents sympathetic activity [41,42]. How-
ever, the LF/HF ratio is considered an indicator of the sympatho-vagal balance of ANS
activity [43–45].

The power estimates for the Normal Sinus Rhythm dataset in Table 4 show that
normalized HF power is lower than LF power in most recordings, suggesting better activity
in the LF range, potentially leading to an LF/HF ratio greater than one.

Recording no. 16,539 shows an LF/HF ratio of 0.42, the lowest observed in Table 4.
Unlike the other recordings, this one has a higher normalized power for the HF band
than the LF band, resulting in a lower LF/HF ratio. The RR interval plot of this recording
exhibited significant variation in the RR intervals, likely due to the variations in the ECG
recording itself. This suggests that high HRV could lead to a lower LF/HF ratio, and the
subject might have an undiagnosed heart condition or arrhythmia, though no conclusion
can be made.

For recordings no. 16,420 and 16,483, the LF/HF ratio was much higher than in
the other recordings due to missing R peaks, which caused incorrect higher RR intervals.
The estimated normalized HF power was very low, while the LF power was higher. The
spectrograms showed high-magnitude events in the HF region that spread into the LF
range, leading to a higher LF/HF ratio [46,47].

The estimated power values for the Arrhythmia dataset are shown in Table 5. In most
cases, the normalized LF power is lower than the normalized HF power, indicating better
activity in the HF range compared to LF. Except for six recordings, most LF/HF ratios were
lower than one, and the ratios in the Arrhythmia dataset were generally lower than those
in the normal sinus dataset.

Recordings no. 106, 119, and 233 have very low LF/HF ratios, with abnormally low
LF power compared to HF power. In the RR interval calculation step, large variations were
observed in these recordings, which also appear as high-magnitude events in the HF range
in the spectrograms (Figures 23 and 24). These variations suggest that high HRV could lead
to a lower LF/HF ratio.
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For recordings no. 112, 122, 123, 222, 230, and 231, the LF/HF ratio was higher than
one, as seen in the spectrograms (Figure 19). These recordings showed high-magnitude
events in both the LF and HF ranges, with the LF events being brighter than HF. These
variations were reflected in the RR interval plots and confirmed during power estimation,
where the LF/HF ratio was higher than one, deviating from the other recordings.

To compare the LF/HF ratios between the Normal Sinus Rhythm and Arrhythmia
datasets, scatter plots were created (Figure 25), illustrating the LF/HF ratios of both groups.
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Figure 25a shows the distribution of the LF/HF ratios for the normal sinus rhythm
recordings, where most ratios are above one, except for recording no. 16,539, which
deviated due to variations in the RR intervals. Recordings no. 16,420 and 16,483 showed
higher ratios due to missing R peaks, causing incorrect high variations.

Figure 25b displays the LF/HF ratios for the arrhythmia recordings, with most ratios
below one, except for six recordings. Recordings no. 112 and 115 had a ratio close to one,
indicating balanced parasympathetic and sympathetic nervous system activity.

Anomalous recordings in both datasets were due to high variations in the RR intervals.
In the Normal Sinus Rhythm dataset, recording no. 16,539 showed a low LF/HF ratio, while
in the arrhythmia recordings, the high LF range power contributed to a higher LF/HF ratio.
The comparison between both datasets shows that arrhythmia subjects are more likely to
have a lower LF/HF ratio, indicating a dominance of the parasympathetic nervous system
(PNS), while normal sinus rhythm subjects show a higher ratio, indicating sympathetic
nervous system (SNS) dominance.

As a future work wavelet transform could be used in the HRV analysis of patients
suffering from different kinds of diseases and it could also be used to study the effect of
gender and age on HRV.

4. Conclusions
Heart rate variability (HRV) reflects cardiac activity and overall autonomic nervous

system health. Proper HRV analysis aids in identifying diseases and managing heart
conditions. Using ECG signals from the PhysioNet database, the HRV analysis employed
the continuous wavelet transform (CWT) and discrete wavelet transform (DWT) methods.

R peaks localization was performed using DWT methods: MODWPT and MODWT.
MODWPT outperformed MODWT due to superior signal decomposition but was not
continued due to computational limitations. Seven out of 60 recordings had missing R
peaks due to data loss during initial localization.
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CWT was applied to RR interval signals to generate spectrograms, revealing patterns
related to heart conditions In these spectrograms high magnitude events were spotted.
In some spectrograms, the power of the HF range was dominant, this was commonly
observed in the arrhythmia ECG recordings. In some other spectrograms, the power of
the LF range was dominant, this was commonly observed in the normal sinus rhythm
ECG recordings. The CWT spectrogram of some recordings exhibited high magnitudes all
over the spectrogram, while some other recordings displayed a reduction in brightness
throughout the spectrogram. The reason is that every person has a unique pattern in ECG
due to the different structures of their hearts and therefore, the ECG signal can vary in
magnitude, having low or high intensities depending on the person.

Frequency band extraction using ICWT reconstructed HF, LF, and VLF bands
(0.003–0.5 Hz). Power estimation, calculated as the square of the RMS values of recon-
structed signals, indicated significant differences in LF/HF ratios between the Normal
Sinus Rhythm and Arrhythmia datasets. Normal sinus rhythm often showed abnormally
low LF/HF ratios due to dominant HF power, while the Arrhythmia dataset exhibited
abnormally high LF/HF ratios due to dominant LF power.

The scatter plot analysis confirmed lower LF/HF ratios in the Arrhythmia dataset,
indicating parasympathetic dominance, whereas the Normal Sinus Rhythm dataset showed
sympathetic dominance. This highlights the use of wavelet-based HRV analysis for distin-
guishing autonomic regulation patterns in cardiac health and disease.

As a future direction, taking a more statistical approach together with MODWPT-
based HRV analysis will provide a more quantitative and reliable interpretation of HRV
with deeper insight into the autonomic nervous system. Also, DWT feature extraction
could improve with machine learning to enhance the interpretation of CWT spectrograms
in HRV analysis.
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