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Abstract: Obstructive Sleep Apnea (OSA) is a prevalent chronic sleep-related breathing
disorder characterized by partial or complete airway obstruction. The expensive, time-
consuming, and labor-intensive nature of the gold-standard approach, polysomnography
(PSG), and the lack of regular monitoring of patients’ daily lives with existing solutions
motivates the development of clinical support for enhanced prognosis. In this study, we
utilize image representations of sleep stages and contextual patient-specific data, including
medical history and stage durations, to investigate the use of wearable devices for OSA
screening and comorbid conditions. For this purpose, we leverage the publicly available
Wisconsin Sleep Cohort (WSC) dataset. Given that wearable devices are adept at detecting
sleep stages (often using proprietary algorithms), and medical history data can be efficiently
captured through simple binary (yes/no) responses, we seek to explore neural network
models with this. Without needing access to the raw physiological signals and using
epoch-wise sleep scores and demographic data, we attempt to validate the effectiveness
of screening capabilities and assess the interplay between sleep stages, OSA, insomnia,
and depression. Our findings reveal that sleep stage representations combined with demo-
graphic data enhance the precision of OSA screening, achieving F1 scores of up to 69.40.
This approach holds potential for broader applications in population health management
as a plausible alternative to traditional diagnostic approaches. However, we find that
purely modality-agnostic sleep stages for a single night and routine lifestyle information
by themselves may be insufficient for clinical utility, and further work accommodating
individual variability and longitudinal data is needed for real-world applicability.

Keywords: deep learning; electronic health records; health informatics; hypnograms;
machine learning; mental health; Obstructive Sleep Apnea

1. Introduction
Sleep disorders, which involve disturbances in sleep architecture, significantly affect

psychophysical health and are linked to various health conditions. Obstructive Sleep
Apnea (OSA) is a common sleep disorder, marked by the repeated narrowing or collapse
of the throat while sleeping [1]. This condition affects 5–15% of the global population to
a moderate extent and causes frequent sleep disturbances, occurring up to 15 times an
hour [2]. OSA and other sleep disorders often result in increased sleep latency, fragmented
sleep, and imbalances in sleep stages. Such conditions are associated with a wide range
of pathophysiological states, including cardiovascular, respiratory, endocrine, metabolic,
and neurological/psychiatric disorders [1]. In particular, the link between OSA and de-
pression can be attributed to the concept of neuroplasticity, where sleep fragmentation and
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chronic intermittent hypoxia trigger a series of physiological responses. These include acti-
vation of the sympathoadrenal system, oxidative stress, systemic inflammation, increased
corticosteroid levels, and consequential cognitive decline and poor mental health [2]. Sleep
disorders severely affect sleep quality, so even an average of 8 h of sleep does not feel
completely sufficient for individuals. This has implications for general well-being, as it
causes periodic episodes of depressive and anxiety and other mental health disorders [3].

Polysomnography (PSG), while accurate for sleep assessment, is limited in practice by
the need for a clinical setting and its unique nature, which may not reflect normal sleep pat-
terns. The discomfort of multiple sensors attached can also affect sleep quality, highlighting
the need for more convenient monitoring methods. In contrast, the emergence of wearable
monitoring technologies, such as the Apple iWatch 6, Fitbit Sense, and Garmin Vivo Ac-
tive4, has marked a significant advancement in the detection and management of sleep
disorders [4]. Our work leverages sleep stages scored by sleep technicians using the PSG,
with the intention of empirically validating the utility of a single-night sleep architecture
without additional physiological signals. We believe that this work can be extended to
wearable devices, which provide access only to sleep stage information. These devices offer
insights into night-to-night variability and overall sleep patterns, including the impact of
patient activity levels and sleep stages on mental health and sleep disorder management.
However, clinical and research applications of these devices are limited by proprietary algo-
rithms and restricted access to raw sensor data, hindering the development of customized
diagnostic models and the integration of wearables into clinical practice [5,6]. These limi-
tations become particularly evident when dealing with complex conditions such as OSA,
insomnia, and depression, which require a nuanced analysis of multimodal data. Our
proposed deep learning framework addresses this challenge by combining data obtained
from wearables with patient-specific medical history, effectively capturing the nuances of
physiological and contextual information.

Furthermore, traditional diagnostic models do not account for individual differences,
causing variability in the performance of the screening achieved. These models are trained
with the intention of finding the largest separation between the classification outcomes
and, as such, often have trouble with data that are on the periphery of multiple classes [7].
Addressing this gap, our study advocates the integration of multiple dimensions of data,
reflective of the complex pathophysiology of comorbid conditions, to enable improved pre-
cision medicine. In this work, we propose a multimodal learning approach, in which we try
to classify OSA, depression severity, and insomnia using the same set of independent char-
acteristics while accounting for cofounders for each condition. This methodology promises
a more nuanced understanding of the intricate relationship between sleep disorders and
mental health.

For this purpose, we construct image representations of sleep stages that can be com-
pared to the graphs most sleep tracking applications and devices can generate [8] to classify
OSA. We implement the state-of-the-art Convolutional Bidirectional Long-Short-Term
Memory (CNN-BiLSTM) model to process both the temporal sequence component (i.e.,
transitions) and the spatial content of the pixel colors (i.e., duration of each stage) [9]. This
study expands beyond individual patient health to address broader aspects of population
health management. It employs a noninvasive and cost-effective approach, using com-
prehensive patient data from electronic health records. These records provide detailed
information on medical history, including prevalent comorbidities such as cardiovascular
disorders, diabetes, obesity, and hypertension, as well as demographic variables such as
age, race, and gender, which have been linked to OSA, insomnia, and depression.
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Our focus is on elucidating the connection between fragmented sleep, its cognitive
and mental health implications, and the transformative potential of machine learning in
medical diagnostics and treatment.

The contributions of this study are listed below.

1. The development of deep learning models for the detection of OSA, insomnia, and de-
pression using sleep stage data from wearable devices and patient-specific medical
history.

2. The construction of hypnodensity and hypnogram visualizations to enrich quantita-
tive data obtained from wearable devices.

3. The application of multimodal learning to analyze OSA in the context of its comor-
bidities.

The structure of this paper is as follows. Section 2 details the materials and methods,
Section 3 reports the results, and Section 4 presents a discussion of the results.

2. Materials and Methods
The methodology of this study is structured as an end-to-end sequential pipeline (as

shown in Figure 1, involving (i) preprocessing of datasets with hypnograms and hypn-
odensity graphs, (ii) processing of EHR data, and (iii) training and evaluation of deep
learning models.

Figure 1. Flow diagram of the data pipeline from data preprocessing to analysis.

2.1. Dataset

The primary data source for this study is the Wisconsin Sleep Cohort (WSC) of the
University of Wisconsin-Madison, which investigates the causes, consequences, and natural
history of sleep disorders [10]. This data set consists of 2570 records from 1500 partici-
pants evaluated at four-year intervals, where each participant can have up to five records
in the study. The dataset contains a wide range of electronic health records (EHR) that
includes demographics and health history. The latter includes general health status, exist-
ing medical conditions, and sleep quality, collected via self-administered questionnaires.
The exhaustive list of characteristics is provided in Table 1. Additional details can be
found in the original work [10], and any specific pre-processing followed the pipeline
outlined in [11,12]. We account for sleep parameters mainly corresponding to Rapid Eye
Movement (REM) and non-REM sleep stages [13] to ensure unformity between modality
and image representations.
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Table 1. Categorized independent features available from WSC with their associated descriptions.

Feature Description Type

Demographics and General Habits

Age Measured in years Numeric
Gender Male or Female Nominal
Body Mass Index Measures height and weight ratio in kg/m2 Numeric
Alcohol Number of drinks weekly Numeric
Caffeine Number of drinks weekly Numeric
Smoking Indicates yes or no Nominal

Health Status

Excessive daytime sleepiness Feeling of sleepiness and fatigue Nominal
Epworth Sleepiness Scale Likelihood of dozing off during day Nominal
State Anxiety Score (STAI-1) Quantifies current anxiety Numeric
Trait Anxiety Score (STAI-2) Quantifies general anxiety Numeric
Cardiovascular Conditions Indicates present or absent Nominal
Diabetes Conditions Indicates present or absent Nominal
Thyroid Conditions Indicates present or absent Nominal
Arthritis Conditions Indicates present or absent Nominal
Asthma Conditions Indicates present or absent Nominal
Emphysema Conditions Indicates present or absent Nominal
Stroke Conditions Indicates present or absent Nominal

Medication Status

Depression Medication Indicates taking or not Nominal
Anxiety Medication Indicates taking or not Nominal
Cholesterol Medication Indicates taking or not Nominal
Hypertension Medication Indicates taking or not Nominal
Diabetes Medication Indicates taking or not Nominal
Thyroid Medication Indicates taking or not Nominal
Asthma Medication Indicates taking or not Nominal
Narcotics Medication Indicates taking or not Nominal
Sedative Medication Indicates taking or not Nominal
Stimulant Medication Indicates taking or not Nominal
Antihistamines Medication Indicates taking or not Nominal
Androgen Medication Indicates taking or not Nominal
Decongestants Medication Indicates taking or not Nominal

Sleep Measures

REM Latency Time to reach first REM stage Numeric
Wake After Sleep Onset Wakefulness after first falling asleep Numeric
Sleep Latency Time to fall asleep Numeric
REM Sleep Duration Time in REM stage Numeric
Total Sleep Duration Time in bed asleep Numeric
Sleep Efficiency Percentage of time spent asleep while in bed Numeric
NREM Sleep Duration Time in NREM stage Numeric
REM Sleep Percentage Percentage of time spent asleep while in REM Numeric
N1 Sleep Percentage Percentage of time spent asleep while in N1 Numeric
N2 Sleep Percentage Percentage of time spent asleep while in N2 Numeric
N34 Sleep Percentage Percentage of time spent asleep while in N3 and N4 Numeric

Labels

OSA Indicates present or absent Nominal
Insomnia Indicates present or absent Nominal
Depression Indicates present or absent Nominal
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Objective measurements were obtained using an 18-channel polysomnography (PSG)
system (Grass Instruments Model 78; Quincy, MA, USA). This system recorded sleep
states using electroencephalography (EEG), electrooculography, and electromyography.
Respiratory evaluations included nasal and oral airflow and oxyhemoglobin saturation,
measured, respectively, by respiratory inductance plethysmography (Respitrace; Ambu-
latory Monitoring, Ardsley, NY, USA), thermocouples (ProTec, Hendersonville, TN and
Validyne Engineering Corp pressure transducer, Northridge, CA, USA), and pulse oximetry
(Ohmeda Biox 3740; Englewood, CO, USA). PSG recordings were analyzed every 30 s,
scoring sleep stages and events indicative of apnea and hypopnea according to conven-
tional standards. These events were defined by the discontinuation of airflow for 10 s and a
discernible reduction in breathing, measured as the sum of chest and abdominal excursions
accompanied by a decrease in oxyhemoglobin saturation of 4%. For each patient, these
recordings were available alongside the EHR [10].

In our previous work, we outlined the feature processing steps for the same dataset,
which was also followed for this work [11]. The Little Missing Completely Random
Test was used to verify that the missing value pattern had no significant relationship
with the rest of the data. Listwise deletion was used to remove entire records where
the values for the clinical characteristics of interest were missing or had numeric values
that were not plausible according to domain knowledge. Pearson’s correlation coefficient
for numerical variables, Kendall’s Tau correlation coefficient for categorical variables,
and mutual information and extremely random trees were also used as the feature selection
method. Most features were found to have approximately similar levels of reasonable
correlation with each of the target variables, except REM latency, which was consistently
ranked higher. Thus, we used the subset of features described in Table 1, from the larger
set of variables available in the WSC dataset. The features are readily collected from the
combination of controllable factors on an individual basis (drinking AND physical health)
and potentially chronic problems and medications. This suggests that individuals can have
a noticeable level of agency in their own lives to curb the progression of adverse effects,
provided the severity of comorbid conditions is reasonably low.

The binary labels used for OSA, depression, and insomnia classification use the
Apnea–Hypopnea Index (AHI) with a cutoff at 5 and the Self-Rating Depression Scale
score, which quantifies depression severity with a cutoff at 50, and the insomnia status
was provided in the dataset [11]. After data cleansing to remove missing information,
the dataset had 2564 records, split into 1456 patients with OSA and 1108 patients without
OSA. For depression, there were 2020 patients with complete information, divided into 532
depressed patients and 2020 non-depressed patients. For insomnia, there were 2024 patients
with complete information, divided into 993 patients with insomnia and 1031 patients
without insomnia.

It is worth mentioning that relevant variables such as depression/anxiety medications
and state/trait anxiety scores were not included in training models to classify depression,
as this introduces obvious multicollinearity and could skew the learning process.

2.2. Sleep Stages

When sleep is analyzed in PSG, it is divided into discrete stages: wake, REM, non-REM
(NREM) sleep stage 1 (N1), 2 (N2) and 3 (N3). Each stage is characterized by different
criteria, as defined by consensus rules published in the American Academy of Sleep
Medicine (AASM) Scoring Manual [14,15]. N1 (sleep onset) is characterized by a slowing
of EEG, the disappearance of occipital alpha waves, decreased EMG, and slow rolling eye
movements, while N2 is associated with spindles and K complexes. N3 is characterized by
the dominance of slow, high-amplitude waves (>20%), while REM sleep is associated with
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low voltage, desynchronized EEG with occasional saw tooth waves, low muscle tone and
REM [16].

Generally, there is a progression from N1 to N3 and then to REM throughout the night,
and this process repeats every 90 min. Each stage is associated with different physiological
changes. For example, OSA is relatively less prevalent in N3 versus N2 because of the
central control of breathing changes and is more severe in REM due to weakness in the
upper airway muscles. Sleep continuity in depressed patients is often impaired, with more
frequent wake-up periods, reduced sleep efficiency, and shortened REM [17].

Interpreting visual representations of sleep is a difficult task that requires domain
knowledge and clinical experience. Sleep fragmentation and sleep stage distributions
are particularly important considerations for clinician judgments, and automating this
step with deep learning can help identify sleep-related conditions [18]. The rationale for
considering the visual representation of the sleep stages is that clinicians often derive
significant insights from visual representations of sleep architecture (as reported in Table 1).

Using the 30-second scored sleep stages, we constructed image representations that
capture the entire night time spent in each stage (hypnodensity), as well as a sleep stage
transition plot (hypnogram) [16,19]. Figure 2 shows the sleep patterns of a patient with
WSC with high OSA and severity of depression, as well as the sleep patterns of a patient
in the same cohort with low OSA and severity of depression. The rationale was that the
information required to build both sets of features is readily available from commercial
wearable fitness trackers or sleep-tracking apps.

The hypnogram provides a numeric indicator of wake and the sleep stages for the
epoch score and often includes markings that include the time before the lights are turned
off and the time after the lights are turned on. Labels and timestamps were provided in the
dataset for removing these latter values, as well as for each epoch with the corresponding
indicator. The x-axis shows the total duration of sleep throughout the night, and the y-axis
shows the sleep stage label. On average, the participants in Figure 2 had a full night of
sleep between 6 and 8 h, as in Patient 65492. It should be mentioned that some people woke
up completely in the middle of the night and did not go back to sleep during the study,
such as Patient 98255 in Figure 2.

The hypnodensity graph was introduced in [16] as a hypnogram that does not have a
strict single sleep stage label but uses a membership function for each of the sleep stages,
allowing more information to be conveyed about sleep trends. A hypnogram typically
assigns a single sleep stage (e.g., REM, W, N1, N2 and N3) to each epoch; the cumulative
probability of sleep refers to the fact that hypnodensity can show probabilities for multiple
stages at the same time. This allows for the better capture of transitions and could help
identify patterns during periods where sleep stages fluctuate. This is especially useful
when an epoch has multiple labels (i.e., from different sleep scorers), and this uncertainty
needs to be emphasized in the graphical representations. Essentially, instead of a numeric
indicator as in the hypnogram, five probabilities are given that represent the likelihood of
the sleep stage for the current epoch.

We adapt the code and steps provided in the original approach [16] (which utilized
multiple models to predict fuzzy values for the multi-label probability distribution of the
sleep stages) to produce a cumulative sleep stage probability throughout the night. This
was performed with the intention of reducing oversampling and undersampling issues for
certain fluctuating stages when strict single labels are used, especially during transitional
states. The steps for graphical construction are as follows:

1. For each patient, a probability matrix is computed where each row corresponds to an
epoch and each column corresponds to a specific sleep stage. This matrix is initialized
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such that all elements are set to zero, and the stage for each epoch is then represented
by setting the corresponding stage column to 1.

2. Once the epoch-wise probability matrix is computed for each patient, a cumulative
sum is performed along the time axis (rows of the matrix).

3. The cumulative hypnodensity is then visualized as a polygon plot, where each poly-
gon represents the cumulative probability of a sleep stage over time.

Figure 2. Examples of OSA-Depression labels transformed into hypnodensity graphs and hypno-
grams. (a) Hypodensity plot for Patient 65492 with high OSA and depression; (b) Hypnogram plot
for Patient 65492 with high OSA and depression; (c) Hypodensity plot for Patient 98255 with low
OSA and depression; (d) Hypnogram plot for Patient 98255 with low OSA and depression. Color
scheme for stages: Wake: White; N1: Gold; N2: Light Blue; N2: Dark Blue; N3: Green; REM: Red.

2.3. Models

CNNs have become ubiquitous in the DL literature for the capability to automati-
cally perform feature extraction effectively due to their inherent translation-invariance
characteristics. More specifically, CNNs capture local conjunctions of features, namely
sub-samples (either spatially or temporally) to reduce data dimensionality, detect semantic
similarities, and utilize a shared-weight architecture to provide generalizability. We employ
1D CNNs, which are appropriate for one-dimensional inputs such as physiological signals.
A standard CNN structure is composed of a set of layers, where each layer narrows down
different aspects of the input data through local receptive fields. A series of simultaneous
and then successive convolutional filters operate in tandem to extract relevant features and
consolidate a learned representation of the input data in the form of feature maps/vectors.
For a single convolution ci of a signal S0

i = [s1, s2, . . . , sn], where n is the 1500 sampling
points (30-second waveform at a frequency of 50Hz), the following equation applies:

cl j
i = h

(
bj +

M

∑
m=1

wj
mxj

i+m−1

)
(1)

In Equation (1), l is the current layer index, h is the activation function, b is the bias of
the jth feature map/vector, M is the kernel size, m is the filter index, and wj

m is the weight
of the corresponding feature map/vector.

Recurrent neural networks, particularly LSTMs, have proven their efficacy in many
applications such as speech recognition, language modeling, and time series forecasting.
Their ability to focus on sequential patterns in the data serves the purpose of capturing
long-term temporal dependencies to a considerable extent. A single LSTM cell is made
up of the cell state, the hidden stat,e and multiple gates, titled input i, output o, and
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forget f gates. The gates themselves are composed of a sigmoid layer and a point-wise
multiplication operation and regulate the flow of specific gradients to the cell state. The cell
state essentially aggregates the information accumulated from the preceding time steps,
whereas the hidden state encodes the information from the immediate previous timestep.
The functional output of the LSTM cell C at any point in time can be defined as

Ct = ftCt−1 + itct (2)

In Equation (2), ft is the activation of the forget gate, it is the activation of the input gate,
and ct is the input to the main cell. With the output gate activation ot, the hidden-unit
activations for a single cell are given by Equation (3):

ht = ot tanh(ct) (3)

To address the unidirectional limitations of standard LSTM architectures in terms of being
restricted to the previous context only, the solution proposed in [20] relating to the process-
ing of data in both the forward and the backward directions is adopted. Let the forward
layer consisting of T cells be indicated by h f

t , and the backward layer consisting of the
same T cells be denoted by hb

t . The former processes the inputs in the fashion [t0, t1, . . . tT ],
while the latter processes in the opposite direction [tT , tT−1, . . . t0]. The amalgamation of
the outputs from both layers results in the vector x̂T and is computed as follows:

h f
t = tanh

(
W f

xhxt + W f
hhht−1 + b f

h

)
hb

t = tanh
(

Wb
xhxt + Wb

hhht+1 + bb
h

)
yt =

(
W f

hyh f
t + Wb

hyhb
t + by

) (4)

In Equation (4), Wx values are the input-to-hidden-layer weights, Wh values are the consec-
utive hidden-to-hidden-state weights, and b is the bias vector of the hidden state.

To emphasize any patterns found across the features, we employ the Luong-style soft-
attention mechanism of the dot product proposed in [21]. Let the outputs of the BiLSTM
block be X̂i = [x̂1, x̂2 . . . x̂T ] combined into a matrix A of size N × T, where N is the size
of the output vector and T is the number of time steps. Then, the weighted output vector
hattn of the attention mechanism is formulated as

β = softmax
(

wT
attn A

)
hattn = AβT

(5)

In Equation (5), β is a weight vector calculated from the matrix A, and the output hattn is
calculated as the weighted sum of all outputs leaving the BiLSTM block.

The proposed model is shown in Figure 3 and consists of a single dilated convolutional
layer with rectified linear unit (ReLU) on a time-distributed wrapper, a BiLSTM layer, and
an attention mechanism followed by two fully connected layers with ReLU and sigmoid
activations, respectively. In terms of regularization, batch normalization was added after the
convolutional layer reduced covariance shift and a dropout layer preceded and succeeded
the BiLSTMAttn block to mitigate overfitting. The model accepts the first input, with a
dimensionality of [2552, 128, 128, 3, 1] indicating timesteps of 10 (3 s), with features of
per-image signal sampling points. The CNN output is a X-dimensional feature vector
that summarizes the spatial irregularities and patterns found in the raw input signal.
This output is propagated through the BiLSTM network, where the temporal patterns are
captured and fed into the attention mechanism to highlight the integral aspects of the
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input. The model then accepts the second auxiliary input of sleep features and additional
EHR measurements with a dimensionality of [37, 1] and concatenates this into the output
of the attention mechanism to help improve the representation of the input. Finally, this
concatenated vector passes through a sigmoid activation function for binary classification
of the different classes.

Figure 3. Architecture of the proposed CNN-BiLSTM-Attn model with sleep stage transition inputs
with auxiliary data.

The CNN-BiLSTM architecture, combined with an attention mechanism, is hypothe-
sized to be more applicable to hypnodensity and hypnogram data because it effectively
utilizes spatial and temporal characteristics. CNNs are adept at capturing local patterns
in the data, such as sharp transitions or microarousal, which are key to identifying sleep
stages. By convolving over the input, CNNs extract hierarchical features while maintaining
robustness to noise or slight temporal misalignments. This is especially important for hypn-
odensity images, where the transitions between stages or subtle changes in probabilities
require detailed local feature extraction.

The BiLSTM component complements CNNs by capturing temporal dependencies and
contextual trends within sleep data. Sleep staging has a strong temporal nature, as current
stages are influenced by prior and subsequent epochs. BiLSTM processes sequences in
both forward and backward directions, allowing the model to understand the broader
context, such as recurring sleep cycles or transitions between sleep stages. The addition of
an attention mechanism enhances this process by dynamically focusing on contextually
important features, such as critical stage transitions or ambiguous epochs, making the
model more robust to intra- and inter-rater disagreements. The attention mechanism
also improves interpretability by highlighting which regions of the data were the most
influential in the predictions.

Standard scaling was applied to the images to bring the pixel values to the [0, 1] range
for faster convergence. The training of the model over 25 epochs was performed with the
adaptive moment estimation (ADAM) optimizer with an initial learning rate of 1 × 10−5,
which was decreased by 10% if the performance in validation stagnated for 5 epochs [22].
We evaluated the trained model following a split 70%-20%-10% training–validation test
separated at the patient level. A batch size of 16 and the binary cross entropy loss were
utilized. Hyperparameters were selected empirically through grid search, with value
ranges set as per [23] which uses similar models.
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3. Results
The metrics of accuracy, sensitivity, specificity, and F1 score are used for quantitative

evaluation. The results are reported in Table 2. The rationale for testing multiple feature
combinations is to provide a systematic evaluation benchmark in the realm of machine learn-
ing for the purpose outlined in this work. The code is provided here: https://colab.research.
google.com/drive/1t6n6Zy03TATbd-_TRfbJ1g8Tja_N0SN5?usp=sharing, accessed on 10
January 2024.

Table 2. Quantitative model performance metrics for classification of each condition with sleep stage
architecture, sleep, and medical features.

Features Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%)

OSA Classification

Hypnodensity 54.20 79.70 21.00 57.80

Hypnodensity + 63.10 74.20 48.70 69.40
Sleep + Medical

Hypnograms 54.00 79.70 20.50 57.80

Hypnograms + 62.80 74.10 48.10 69.30
Sleep + Medical

Insomnia Classification

Hypnograms + 54.90 54.60 55.10 53.90
Sleep + Medical

Depression Classification

Hypnograms + 82.60 31.20 96.10 42.80
Sleep + Medical

In OSA classification, models relying solely on a single feature type, either hypnoden-
sity or hypnograms, achieved an F1 score of 57.80. The inclusion of sleep and medical data
led to a noticeable improvement, with F1 scores increasing to 69.40 and 69.30, respectively.
This enhancement indicates a more balanced model performance in terms of precision
and recall.

In terms of accuracy, both hypnodensity (54.20%) and hypnograms (54.00%) perform
roughly the same, i.e., once again only improving over random chance when additional
contextual information is incorporated. This underscores the importance of adding patient
characteristics and historical health records, allowing the assimilation of patient-specific
nuances into the classification process. For insomnia and depression with the same features,
scores of (54.90%) and (82.60%) are obtained, respectively. When using only image repre-
sentations, the training process was unstable, likely because single-night sleep transitions
offer insufficient information for these two conditions.

Our models achieved high sensitivity (≈79%) but relatively lower specificity (≈48%)
for OSA classification. This suggests that the model effectively identifies true positives
but struggles with false positives. Although high sensitivity is valuable for screening,
especially for conditions such as OSA, where false negatives can lead to serious health risks,
low specificity can result in unnecessary clinical evaluations. An approach to improve
specificity is to incorporate stricter decision thresholds or ensemble models that combine
predictions from multiple classifiers.

For insomnia, neither metric is remarkable (≈55%), and for depression, there is a
high specificity (96.10%), which is not ideal for screening potential at-risk patients as the
sensitivity is only 31.20%).

https://colab.research.google.com/drive/1t6n6Zy03TATbd-_TRfbJ1g8Tja_N0SN5?usp=sharing
https://colab.research.google.com/drive/1t6n6Zy03TATbd-_TRfbJ1g8Tja_N0SN5?usp=sharing
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4. Discussion
Although wearable devices provide valuable information on sleep stages, they typi-

cally do not provide the underlying physiological signal data, which are essential for a more
detailed analysis. Our research, therefore, explored graphical representations that serve as
a proxy for these underlying signals. Combining visual sleep stage patterns with medical
histories and past health records, the models achieved a substantial improvement in the
classification accuracy of OSA. This result indicates that data from wearables, while limited
to sleep stages, gain significant value when combined with additional patient-centric infor-
mation. The improved performance of the model when using this set of enriched features
underscores the merit of this method, suggesting that it is a promising approach to the
classification of sleep disorders.

Due to the multifaceted nature of OSA and its comorbidities, we also sought to examine
its association with insomnia and depression (marginally better than random chance).
For insomnia, models struggled to delineate insomniacs effectively, even among patients
with higher-severity OSA. This ambiguity reflects the mixed findings within the literature.
Some studies [11,24] report that nocturnal awakenings can be pertinent to chronic insomnia
only and not related to OSA, some [7,25] suggest that they are not necessarily precursors
to each other, and yet more [26,27] view insomnia as a comorbidity arising from OSA.
In examining depression, as measured by the Zung questionnaire, our models similarly
underperformed, mirroring the results of studies [28–30] that employ wearable technology.
Although the initial data appeared promising, the link between depression and sleep
disorders proved to be too weak to support the development of reliable machine learning
models. Comparable machine learning efforts [31,32] have mirrored our results, which can
be attributed to the significant variation in the severity of depression between individuals.
In particular, the variance in the severity of depression symptoms and associated behaviors
between subjects with mild to moderate depression presented a challenge. This variability
led to difficulty in identifying clear patterns, raising concerns that the models may have
learned spurious correlations rather than meaningful relationships. Such findings imply
that the influence of depression on sleep architecture extends beyond the scope of data
captured in a single night.

The limitations in distinguishing insomnia and depression highlight the inherent
complexities of these conditions, as well as the subtlety and heterogeneity of the associ-
ated physiological and behavioral markers. Insomnia often reflects subjective complaints,
such as difficulty in initiating or maintaining sleep, which do not always translate into
measurable deviations in the sleep architecture [33]. Similarly, depression is character-
ized by various symptoms, such as mood disturbances and cognitive changes that may
influence sleep, but are not directly detectable through wearable devices or PSG. This
lack of specificity in the available data reduces the model’s ability to generalize effectively
across different patient profiles. Recent work also observes this phenomenon, and our
work is in agreement with respect to the inconclusiveness of the interplay between sleep
and these conditions [34,35]. To authentically capture their complex interactions, a longi-
tudinal study design is necessary to observe long-term trends and patterns. To improve
diagnostic precision, future studies can integrate additional features such as heart rate
variability, respiratory rates, and accelerometer data, which can complement hypnodensity
and hypnogram data by providing information on physiological states related to sleep
quality. Leveraging transfer learning with large models pre-trained on similar biomedical
or physiological datasets can provide a strong foundation and enable better generalization
when applied to task-specific datasets. Data augmentation techniques, such as simulating
variations in sleep stage transitions or durations, could also improve the robustness of
the model by increasing the diversity of training data. In addition, multitask learning
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approaches could improve the model’s ability to detect overlapping conditions such as
OSA, depression, and insomnia by leveraging shared representations across these disorders.
These methods can significantly improve the generalizability of the model in real-world
clinical applications.

Due to the subjectivity of the annotation task and the resulting inter-rater disagree-
ments between experts, ambiguous or low-certainty epoch-by-epoch labeling may contain
errors. The sleep staging methods in portable sleep trackers are optimized for epoch-by-
epoch performance, which does not guarantee that clinically relevant characteristics will be
captured throughout the night [36,37]. As such, fragmented sleep identification with respect
to the reference PSG is poor, and there is no standardized approach for the validation of the
wearable computation of the overnight statistics [38]. Thereby, the goal of our work was to
combine multiple sources of data that may be readily available on wearables and study if
deep learning approaches can prove useful in screening for multi-morbidity in limited data
settings. We used the gold standard PSG data to perform our study, and this establishes
a baseline for extensions to applications such as narcolepsy [39], emotional climate [40],
and other sleep disorders. In terms of limitations, a lack of diversity in the collected data
(single dataset) and the artificial structure of the experiments (PSG in controlled settings)
may pose challenges while adapting to noisy real-world datasets. However, due to the
scarcity of such data, we believe that this work affirms that single-instance, overnight,
multimodal sleep stage information for a patient is insufficient to reveal signs of depression
or insomnia but has the potential to detect the onset of OSA. This is in agreement with
recent studies [41,42] in which sleep and circadian measures alone could not strongly
discriminate depression outcomes, but several characteristics that overlap with our study
(insomnia, excessive daytime sleepiness, time spent in N1) and others (snoring, inactivity
at night, and lower morning activity) were shown to be common features between sleep
and mental health problems. This emphasizes that sociodemographic, lifestyle, and ge-
netic characteristics should be considered in addition to the metrics of existing wearable
devices [36,38].

Recent studies consider sensing modalities such as EEG, electrocardiograms (ECG),
or respiratory signals to classify OSA or depression [43]. We conducted this study to be
modality-agnostic, such that only the epoch-wise sleep stage scores and routine demo-
graphic information are available, as proprietary algorithms used by wearables are difficult
to access, and sought to validate the effectiveness of the hypnograms/hypnodensity graphs
as a proxy nocturnal feature set. Our approach was found to underperform compared to
methods using ECG [44], EEG [45], or a combination [46]. This is expected as we do not use
information directly corresponding to individual physiological states, which better reflect
the characteristics attributed to different conditions.

In WSC [10], it appears that the cohort included primarily healthy individuals in
the community, which led the models to learn a poorer separation between positive and
negative classes. Notably, there was significant data imbalance in the case of depressed
and non-depressed patients, and it appears on average that none of the feature sets used
showed a clear distinction between the two populations. This is likely due to having a
sufficient sample size representative of the conditions and the lower levels of disease sever-
ity between populations. The dataset is also skewed toward the Caucasian demographic
as well as limited by geography, limiting its generalization to other ethnicities in other
locations. As found in [47], individuals with OSA and excessive daytime sleepiness had
stronger associations with depression, suggesting that suffering from the effects of sleep
disorders is more indicative of depression than simply having the disorder. In particular,
the dataset overrepresents middle-aged and older adults, whose sleep characteristics may
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vary differently from younger populations and may present a different relationship with
depression or the other variables considered, especially in longitudinal studies [48].

Based on these findings, in future work, we will consider the National Sleep Research
Resource (NSRR) as a source of public datasets focused on the standardized evaluation
of sleep disorders. Some of the specific datasets of interest to the scope of our work
include the Sleep Heart Health Study (SHHS) [49], Outcomes of Sleep Disorders in Older
Men (MrOS Sleep Study) [50] and the Multiethnic Study of Atherosclerosis (MESA) [51].
This will allow cross-population validation, incorporating multicenter information and
heterogeneity-aware analysis.

The findings of this study show the potential of wearable technologies in the diagnosis
and management of sleep disorders. By offering a cost-effective and scalable alternative
to traditional methods such as PSG, wearables can enhance the diagnostic accuracy for
conditions such as OSA while reducing the reliance on clinical settings. Beyond passive
monitoring, these devices can evolve into integral tools in personalized medicine, enabling
early detection, long-term mental health monitoring, and proactive interventions. This
advancement not only improves patient outcomes but also holds promise in reducing
healthcare costs and broadening access to care.

To integrate these findings into clinical workflows, data from wearable devices should
be incorporated into EHR systems to enable seamless access and analysis by clinicians.
Decision support systems leveraging machine learning models can flag potential cases of
OSA, insomnia, or depression for further evaluation. Collaborations between wearable
technology developers and healthcare institutions should focus on creating standardized
protocols for data integration, ensuring reliability and consistency in clinical applications.

5. Conclusions
Leveraging the transitional nature of sleep stages throughout the duration of sleep

during a PSG test with image representations as a proxy and contextualizing them with
additional patient-specific information could help mitigate the need for proprietary raw
physiological signals. In summary, we have shown that sleep-related features derived from
wearable devices, when supplemented with additional patient information and used within
our constructed models, hold the potential to advance the diagnosis of sleep disorders
and envision this work as a stepping stone to iterative development and validation in
real-world settings. However, the complex interaction between these disorders and mental
health conditions such as depression and insomnia requires further investigation with
models that need to evolve to account for individual variability and longitudinal data.
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